NDMI012: Combinatorics and Graph Theory 2 HW#7

Irena Penev Winter 2020/2021

due Tuesday, May 11, 2021 before midnight (Prague time)

Remark: Please e-mail me (ipenev@iuuk.mff.cuni.cz) your HW as a **PDF** attachment (no other format will be accepted).

Problem 1 (20 points).

(a) [10 points] Prove that for all $n \ge 1$, $T_{C_n}(x, y) = y + \sum_{i=1}^{n-1} x^i$.

(b) [10 points] Prove that for $n \ge 1$, $T_{I_n}(x, y) = x + \sum_{i=1}^{n-1} y^i$, where I_n is the 2-vertex multigraph with n edges between them.

Hint: Induction on n, using the recursive deletion-contraction formula for the Tutte polynomial.

Problem 2 (20 points). Prove that every cubic (i.e. 3-regular), Hamiltonian graph G satisfies $\chi'(G) = 3$.

Problem 3 (20 points). Prove or disprove the following statement: "If G is a graph on at least three vertices, and G has at least $\alpha(G)$ universal vertices,¹ then G is Hamiltonian."

Remark: So, if the statement is true, then you should prove it. If it false, then you should construct a counterexample (and prove that your counterexample really is a counterexample).

Problem 4 (20 points). Let G be a graph that is not a forest and has girth at least five.² Prove that \overline{G} (the complement of G) is Hamiltonian.

Hint: Ore's theorem.

Problem 5 (20 points). Prove that any non-Hamiltonian graph G on n vertices has at most $\binom{n-1}{2} + 1$ edges.

Hint: Induction on n.

¹A *universal vertex* is a vertex that is adjacent to all other vertices of the graph.

 $^{^{2}}$ The *girth* of a graph that is not a forest is the length of the shortest cycle in the graph.