NDMI012: Combinatorics and Graph Theory 2 HW#4

Irena Penev Winter 2020/2021

due Tuesday, April 6, 2021 before midnight (Prague time)

Remark: Please e-mail me (ipenev@iuuk.mff.cuni.cz) your HW as a **PDF** attachment (no other format will be accepted).

Problem 1 (50 points). Prove that for every graph G, there exists an ordering v_1, \ldots, v_n of the vertices of G such that the greedy coloring algorithm applied to G with the ordering v_1, \ldots, v_n yields an optimal coloring of G.¹

Problem 2 (50 points). Using the theorem below, prove that every bipartite graph G satisfies $\chi'(G) = \Delta(G)$.²

Theorem. Every regular bipartite graph that has at least one edge has a perfect matching.³

¹An optimal coloring of G is a proper coloring of G that uses precisely $\chi(G)$ colors. ²We already proved this in Lecture Notes 5. Here, you are asked to give a different proof.

 $^{^3\}mathrm{This}$ theorem was proven in Combinatorics & Graph Theory 1.