NDMI012: Combinatorics and Graph Theory 2 HW#3

Irena Penev Winter 2020/2021

due Tuesday, March 30, 2021 before midnight (Prague time)

Remark: Please e-mail me (ipenev@iuuk.mff.cuni.cz) your HW as a **PDF attachment** (no other format will be accepted).

Definition 1. Given a graph G and disjoint sets $A, B \subseteq V(G)$,

- we say that A is complete to B if every vertex of A is adjacent to every vertex of B;¹
- we say that A is anticomplete to B if no vertex of A is adjacent to any vertex of B.²

Problem 1 (60 points). Let G be a graph whose vertex set can be partitioned into five sets, call them A_0, A_1, A_2, A_3, A_4 (with indices understood to be in \mathbb{Z}_5), satisfying the following properties:

- $|A_0| = |A_2| = |A_3| = 3$ and $|A_1| = |A_4| = 2$;
- A_0, A_1, A_2, A_3, A_4 are all cliques;
- for all $i \in \mathbb{Z}_5$, A_i is complete to $A_{i-1} \cup A_{i+1}$ and anticomplete to $A_{i-2} \cup A_{i+2}$.

(So, G is precisely Catlin's graph from Lecture Notes 4.)

- (a) [20 points] Prove that $\chi(G) = 7$;
- (b) [20 points] Prove that $K_7 \not\preceq_t G$;
- (c) [20 points] Prove that $K_7 \preceq_m G$.

¹So, all possible edges between A and B are present. ²So, there are no edges between A and B.

Definition 2. A graph G is maximally planar if it is planar, but for all distinct, non-adjacent vertices $x, y \in V(G)$, the graph G + xy is not planar.³

Definition 3. A minimally non-planar graph is a graph that is not planar, but all of whose proper subgraphs are planar.

Problem 2 (40 points). Prove or disprove the following statement: "Every minimally non-planar graph G has an edge e such that G - e is maximally planar."

Remark: So, if the statement is correct, then you should prove it. If it is false, you should construct a counterexample (and prove that your counterexample is correct).

³Here, G + xy is the graph with vertex set V(G) and edge set $E(G) \cup \{xy\}$. So, G + xy is the graph obtained from G by adding an edge between x and y.