NDMI011: Combinatorics and Graph Theory 1

Tutorial #9

Irena Penev

January 6, 2022

Exercise 1. Let $\ell \geq 2$ be an integer, and set $n = 2^{\ell} - 1$, $k = 2^{\ell} - \ell - 1$, and d = 3. Let C be an $(n, k, d)_2$ -code over some two-element alphabet $\Sigma^{,1}$. Prove that for all $\mathbf{x} \in \Sigma^n$, there exists a unique codeword $\mathbf{c} \in C$ such that $d(\mathbf{x}, \mathbf{c}) \leq 1$.

Hint: What is the number of words in Σ^n at Hamming distance at most one from a codeword in C?

Exercise 2. Compute the parity check matrix and the generating matrix for the Hamming $[7, 4, 3]_2$ code C constructed in section 3 of Lecture Notes 13.² Further, for each of the following vectors $\mathbf{x} \in \mathbb{F}_2^7$, compute the unique codeword $\mathbf{c} \in C$ such that $d(\mathbf{x}, \mathbf{c}) \leq 1$ (such a \mathbf{c} exists by Exercise 1):

- (a) $\mathbf{x} = (1, 0, 0, 0, 0, 1, 1);$
- (b) $\mathbf{x} = (1, 1, 0, 1, 0, 1, 1);$
- (c) $\mathbf{x} = (1, 0, 1, 1, 0, 1, 1).$

Exercise 3. Consider the alphabet $\Sigma = \{0, 1, 2\}$.

(a) Show that if a code $C \subseteq \Sigma^4$ corrects one error, then $|C| \leq 9$. More precisely, assume that a code $C \subseteq \Sigma^4$ has the property that for all $\mathbf{w} \in \Sigma^4$, there is at most one codeword $\mathbf{x} \in C$ such that $d(\mathbf{w}, \mathbf{x}) \leq 1.^3$ Prove that $|C| \leq 9$.

¹We constructed such a code in section 3 of Lecture Notes 13. Here, you are not supposed to use that particular construction, though. You should only use the fact that C is some $(2^{\ell} - 1, 2^{\ell} - \ell - 1, 3)_2$ -code.

²So, using the notation from that section, we have $\ell = 3$.

³For such a code, if the sender sends codeword \mathbf{x} , and at most one error is made during transmission, then the receiver is able to reconstruct the word that was sent.

(b) Exhibit a code $C \subseteq \Sigma^4$ that has at least 20 codewords, and that has the property that C recognizes one error. More precisely, exhibit a code $C \subseteq \Sigma^4$ that has at least 20 codewords, and that has the property that for any $\mathbf{x} \in C$ and $\mathbf{w} \in \Sigma^4$ such that $d(\mathbf{w}, \mathbf{x}) = 1$, we have that $\mathbf{w} \notin C$.⁴

⁴For such a code, if the sender sends a word \mathbf{x} , and exactly one error is made during transmission, the receiver can tell that an error was made, but he might not be able to fix it.