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In what follows, our edge colorings need not be proper, i.e. it is possible that
two edges that share an endpoint receive the same color.

Exercise 4 from Tutorial 7. Prove that for every k ∈ N, there exists
some n ∈ N such that for every graph G on at least n vertices, and every
2-edge-coloring of G, there exists some U ⊆ V (G) such that |U | = k and all
the edges of G[U ] have the same color.

Exercise 5 from Tutorial 7. Let n be a non-negative integer, and let X be
an n-element set. A half-antichain in (P(X),⊆) is a set A of subsets of X
such that there do not exist sets A1, A2, A3 ∈ A such that A1 ⫋ A2 ⫋ A3.

(a) Prove that any half-antichain in (P(X),⊆) has at most 2
(

n
⌊n/2⌋

)
ele-

ments.

Hint: Imitate the proof of Sperner’s theorem. You may use
the statements of Claims 1 and 2 from the proof of Sperner’s
theorem without (re)proving them.

(b) Prove that if n is odd, then there is a half-antichain in (P(X),⊆) that
has precisely 2

(
n

⌊n/2⌋
)
elements.

Exercise 1. Let k be a positive integer. Using Ramsey numbers, prove that
there exists a positive integer N such that any sequence a1, . . . , aN of real
numbers contains a subsequence of length k that is either strictly increasing,
strictly decreasing, or constant.

Schur’s Theorem. For any positive integer k, there exists a positive integer
N such that for any coloring of the set {1, . . . , N} with k colors, there exist
x, y, z ∈ {1, . . . , N} that have the same color and satisfy x+ y = z.
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Exercise 2. Prove Schur’s theorem.

Hint: Take N = R2(3, . . . , 3︸ ︷︷ ︸
k

), and then color the edges of the

complete graph KN in a convenient way.
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