NDMI011: Combinatorics and Graph Theory 1

Tutorial #8

Irena Penev

December 16, 2021

In what follows, our edge colorings need not be proper, i.e. it is possible that two edges that share an endpoint receive the same color.

Exercise 4 from Tutorial 7. Prove that for every $k \in \mathbb{N}$, there exists some $n \in \mathbb{N}$ such that for every graph G on at least n vertices, and every 2-edge-coloring of G, there exists some $U \subseteq V(G)$ such that |U| = k and all the edges of G[U] have the same color.

Exercise 5 from Tutorial 7. Let n be a non-negative integer, and let X be an n-element set. A half-antichain in $(\mathscr{P}(X), \subseteq)$ is a set \mathcal{A} of subsets of X such that there do **not** exist sets $A_1, A_2, A_3 \in \mathcal{A}$ such that $A_1 \subsetneq A_2 \subsetneqq A_3$.

(a) Prove that any half-antichain in $(\mathscr{P}(X), \subseteq)$ has at most $2\binom{n}{\lfloor n/2 \rfloor}$ elements.

Hint: Imitate the proof of Sperner's theorem. You may use the statements of Claims 1 and 2 from the proof of Sperner's theorem without (re)proving them.

(b) Prove that if n is odd, then there is a half-antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $2\binom{n}{\lfloor n/2 \rfloor}$ elements.

Exercise 1. Let k be a positive integer. Using Ramsey numbers, prove that there exists a positive integer N such that any sequence a_1, \ldots, a_N of real numbers contains a subsequence of length k that is either strictly increasing, strictly decreasing, or constant.

Schur's Theorem. For any positive integer k, there exists a positive integer N such that for any coloring of the set $\{1, ..., N\}$ with k colors, there exist $x, y, z \in \{1, ..., N\}$ that have the same color and satisfy x + y = z.

Exercise 2. Prove Schur's theorem.

Hint: Take $N = R^2(\underbrace{3, \ldots, 3}_k)$, and then color the edges of the complete graph K_N in a convenient way.