NDMI011: Combinatorics and Graph Theory 1

Tutorial #7

Irena Penev

December 9, 2021

In what follows, our edge colorings need not be proper, i.e. it is possible that two edges that share an endpoint receive the same color.

Exercise 1. Find the smallest $n \in \mathbb{N}$ such that, for every graph G on at least n vertices, either G contains K_3 as a subgraph, or \overline{G} (the complement of G) contains $K_{1,3}$ as a subgraph.

Exercise 2. Let k and p be positive integers. Prove that there exists some positive integer n such that, whenever we color the edges of a complete graph on at least n vertices with p colors, the graph contains a monochromatic complete subgraph on at least k vertices.

Hint: Induction on p. For p = 1, this is trivial. For p = 2, this can easily be translated into Ramsey numbers (how?). Then what?

Exercise 3. Determine which of the following statements are true. If the statement is true, then prove it. If it is false, construct a counterexample. In what follows, k is a fixed positive integer.

- (a) If we color a sufficiently large complete graph with a loop at each vertex (we color edges and loops) with 2 colors, we always obtain a monochromatic k-vertex complete subgraph with a loop at each vertex.
- (b) There exists a positive integer n such that every graph G on at least n vertices contains either $K_{k,k}$ or $\overline{K_{k,k}}$ (the complement of $K_{k,k}$) as a subgraph.

¹ "Monochromatic" means that all edges are colored with the same color.

- (c) There exists a positive integer n such that for every graph G on at least n vertices, G contains either $K_{k,k}$ or $\overline{K_{k,k}}$ as an induced subgraph.
- (d) For every graph G, there exists a positive integer n such that in each 2-edge-coloring of K_n , there is an induced monochromatic copy of G.²

Exercise 4. Prove that for every $k \in \mathbb{N}$, there exists some $n \in \mathbb{N}$ such that for every graph G on at least n vertices, and every 2-edge-coloring of G, there exists some $U \subseteq V(G)$ such that |U| = k and all the edges of G[U] have the same color.

Exercise 5. Let n be a non-negative integer, and let X be an n-element set. A half-antichain in $(\mathscr{P}(X), \subseteq)$ is a set A of subsets of X such that there do **not** exist sets $A_1, A_2, A_3 \in A$ such that $A_1 \subsetneq A_2 \subsetneq A_3$.

(a) Prove that any half-antichain in $(\mathscr{P}(X),\subseteq)$ has at most $2\binom{n}{\lfloor n/2\rfloor}$ elements.

Hint: Imitate the proof of Sperner's theorem. You may use the statements of Claims 1 and 2 from the proof of Sperner's theorem without (re)proving them.

(b) Prove that if n is odd, then there is a half-antichain in $(\mathscr{P}(X),\subseteq)$ that has precisely $2\binom{n}{\lfloor n/2 \rfloor}$ elements.

 $^{^{2}}$ So, the edges of G are colored with one color, and the non-edges of G with the other color.