NDMI011: Combinatorics and Graph Theory 1

Tutorial #4

Irena Penev

November 18, 2021

Exercise 5 from Tutorial 3. Using Tutte's theorem, prove the "(a) \implies (b)" part of the graph theoretic formulation of Hall's theorem. More precisely, let G be a bipartite graph with bipartition (A, B), and assume that all sets $A' \subseteq A$ satisfy $|A'| \leq |N_G(A')|$. Using Tutte's theorem, prove that G has an A-saturating matching.

Hint: First, reduce the problem to the case when |A| = |B|. (If $|A| \neq |B|$, then add vertices and edges to G in a convenient way.) Then, show that for each $S \subsetneq V(G)$, the number of components C of $G \setminus S$ such that $|A \cap V(C)| \neq |B \cap V(C)|$ is at most |S|. Now what?

Exercise 1. Let (G, s, t, c) be a network. Prove that some maximum flow f in (G, s, t, c) satisfies the property that the in-flow into s and the out-flow from t are both zero, i.e. $\sum_{(x,s)\in E(G)} f(x,s) = \sum_{(t,x)\in E(G)} f(t,x) = 0.$

Hint: Let f be a maximum flow for which the number of edges $(x, y) \in E(G)$ such that f(x, y) = 0 is as large as possible. Now show that f has the desired property.

Exercise 2. Explain how the problem of finding a maximum flow in a network with more than one source or more than one sink can be reduced to the usual problem of finding a maximum flow in a network with one source and one sink. (You do not have to give a formal proof of correctness; just explain the construction.¹) Then, find a maximum flow in the network below, where s_1, s_2 are sources and t_1, t_2 are sinks.

¹Or, if you want a bit of a challenge, try to prove the correctness of your construction.

