NDMI011: Combinatorics and Graph Theory 1

Tutorial #3

Irena Penev

November 11, 2021

Exercise 1. Let X be the set of points and \mathcal{P} the set of lines constructed in the proof of Theorem 2.3 from Lecture Notes 5. Using Exercise 2 from Tutorial 2 (or in some other way),¹ show that (X, \mathcal{P}) is indeed a finite projective plane of order n. Make sure you carefully indicate where you are using the fact that L_1, \ldots, L_{n-1} are Latin squares, and where you are using orthogonality.

Exercise 2.

- (a) Give an example of a non-bipartite graph G_1 in which the maximum size of a matching is strictly smaller than the minimum size of a vertex cover.
- (b) Give an example of a non-bipartite graph G_2 in which the maximum size of a matching is equal to the minimum size of a vertex cover.

In both parts, make sure you prove that your answer is correct.

Remark: Recall that a graph is bipartite if and only if it contains no odd cycles. So, make sure that both G_1 and G_2 have an odd cycle. Try to make your G_1 and G_2 as small as possible (there are some very small examples.)

¹This exercise (or rather, just part (e)) is stated below. You are supposed to **use** the statement from the exercise below, not prove it.

Exercise 2 from Tutorial 2. Let $n \ge 2$ be an integer, and let (X, \mathcal{P}) be a set system² such that $|X| = |\mathcal{P}| = n^2 + n + 1$. Assume that |P| = n + 1 for all $P \in \mathcal{P}$, and assume furthermore that all distinct $P_1, P_2 \in \mathcal{P}$ satisfy $|P_1 \cap P_2| \le 1$. In what follows, we refer to the elements of X as points and to the elements of \mathcal{P} as lines.

⁽e) Prove that (X, \mathcal{P}) is a finite projective plane of order n.

Exercise 3. Let k be a positive integer. Prove that $\lambda(K_{k+1}) = k$.

Remark: This result was used in the proof of Theorem 3.3 from Lecture Notes 7.

Exercise 4. Using the graph theoretic formulation of Hall's theorem (the one with matchings), prove the combinatorial formulation of Hall's theorem (the one with transversals).

Exercise 5. Using Tutte's theorem, prove the "(a) \implies (b)" part of the graph theoretic formulation of Hall's theorem. More precisely, let G be a bipartite graph with bipartition (A, B), and assume that all sets $A' \subseteq A$ satisfy $|A'| \leq |N_G(A')|$. Using Tutte's theorem, prove that G has an A-saturating matching.

Hint: First, reduce the problem to the case when |A| = |B|. (If $|A| \neq |B|$, then add vertices and edges to G in a convenient way.) Then, show that for each $S \subsetneq V(G)$, the number of components C of $G \setminus S$ such that $|A \cap V(C)| \neq |B \cap V(C)|$ is at most |S|. Now what?