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@ This is essentially a review of some Linear Algebra topics, but
we will use row vectors instead of column vectors, and we will
swap the roles of rows and columns in matrices.

o Reason: this is customary in coding theory.

@ For a field F and a positive integer n, we denote by F" the set
of all row vectors of length n whose entries are all in F.
@ For vectors x = (x1,...,xp) and y = (y1,...,yn) in F", we

define (x,y) = >"" 1 x;y;, where the summation and
multiplication denote the operations from the field F.

e So, (x,y) € F.
o If (x,y) =0, then x and y are said to be orthogonal.
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@ Instead of multiplying matrices by column vectors on the right
(Ax), we will multiply matrices by row vectors on the left
(xA).

o If Ais an n x m matrix with entries in F, and x € F", then we
can think of x as a 1 x n matrix, and we can compute xA
according to the usual rules of matrix multiplication.

o We obtain a row vector of length m.
ri
o Ifx=(xq,...,xp) and A= | © | (i.e. r1,...,r, are the
Yn

n

rows of A, from top to bottom), then xA = Y x;r;.
i=1

o If e; is the i-th standard basis vector of F”, i.e. the row vector
whose i-th entry is 1, and all of whose other entries are 0,
then e;A is equal to the i-th row of A.

@ With these adjustments, all familiar theorems of Linear
Algebra still hold, but with rows and columns reversed.
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For a field IF and a subspace C of F", we define
Ct={yePF"|(x,y) =0forall xe C}.

o It is easy to see that C is a subspace of F”.

Let IF be a field, and let C be a subspace of F”. Then
dim C +dim C+ = n.

Proof. Set k = dim C. WTS dim C+ = n— k. If k =0, then
C = {0} and C* =F", and so dim C* = n = n— k. From now

on, we assume that kK > 1. Let {cy,...,ck} be a basis for C, and
C1

let G=| : |. Then Ct ={ycF"|yG™ =0} = Ker(G"). By
Ck

the Rank-nullity theorem, rank(G") + dimKer(G') = n. But
rank(G') = rank(G) = k, and it follows that k + dim C+ = n, i.e.
dim C+ = n— k.
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Definition
For a field IF and a subspace C of F", we define
Ct={yeF"|(x,y) =0forall xe C}.

Let IF be a field, and let C be a subspace of F". Then
dim C +dim C+ = n.

Proposition 1.2
Let F be a field, and let C be a subspace of F". Then (C+)+ = C.

Proof. Obviously, C C (C+)*; since C and (C1)* are both
subspaces of ", it follows that C is a subspace of (C+)+. On the
other hand, by Theorem 1.1, we have that

dim(CHt = n—dimCt = n—(n—dimC) = dimC,

and we deduce that C = (C*+)+.



Part Il: Linear codes



Part Il: Linear codes

Definition

A linear code is a subspace C of a vector space [F, where [F is a
finite field of size g (here, g is a prime power).




Part Il: Linear codes

Definition

A linear code is a subspace C of a vector space [F, where [F is a
finite field of size g (here, g is a prime power).

@ Note that every linear code contains the zero vector.



Part Il: Linear codes

Definition

A linear code is a subspace C of a vector space [F, where [F is a
finite field of size g (here, g is a prime power).

@ Note that every linear code contains the zero vector.
o If a linear code C is an (n, k, d)4-code, then we write that C
is an [n, k, d]q-code.



Part Il: Linear codes

Definition

A linear code is a subspace C of a vector space [F, where [F is a
finite field of size g (here, g is a prime power).

@ Note that every linear code contains the zero vector.
o If a linear code C is an (n, k, d)4-code, then we write that C
is an [n, k, d]q-code.
e Reminder:
@ g = size of alphabet;
@ n = length of codewords;
o k=log, |Cl;
@ d = minimum distance between codewords.
e The square brackets indicate that C is a linear code.




Part Il: Linear codes

Definition

A linear code is a subspace C of a vector space [F, where [F is a
finite field of size g (here, g is a prime power).

@ Note that every linear code contains the zero vector.
o If a linear code C is an (n, k, d)4-code, then we write that C
is an [n, k, d]q-code.
e Reminder:
@ g = size of alphabet;
@ n = length of codewords;
o k=log, |Cl;
@ d = minimum distance between codewords.
e The square brackets indicate that C is a linear code.

® An [n, k, d]g-code is a subspace of Fg.




Part Il: Linear codes

Definition

A linear code is a subspace C of a vector space [F, where [F is a
finite field of size g (here, g is a prime power).

@ Note that every linear code contains the zero vector.
o If a linear code C is an (n, k, d)4-code, then we write that C
is an [n, k, d]q-code.
e Reminder:
@ g = size of alphabet;
@ n = length of codewords;
o k=log,|C];
@ d = minimum distance between codewords.
e The square brackets indicate that C is a linear code.

® An [n, k, d]g-code is a subspace of Fg.

Proposition 2.1

Let C be an [n, k, d]g-code. Then dim C = k, i.e. the dimension of
C as a vector space is k.




Proposition 2.1

Let C be an [n, k, d]g-code. Then dim C = k, i.e. the dimension of
C as a vector space is k.

Proof.



Proposition 2.1

Let C be an [n, k, d]g-code. Then dim C = k, i.e. the dimension of
C as a vector space is k.

Proof. Since C is an [n, k, d]4-code, we know that C is a subspace
of FZ; set / =dim C. WTS /¢ = k.



Proposition 2.1

Let C be an [n, k, d]g-code. Then dim C = k, i.e. the dimension of
C as a vector space is k.

Proof. Since C is an [n, k, d]4-code, we know that C is a subspace
of FZ; set / =dim C. WTS /¢ = k.

Let {c1,...,c/} be a basis for C.



Proposition 2.1
Let C be an [n, k, d]g-code. Then dim C = k, i.e. the dimension of
C as a vector space is k.

Proof. Since C is an [n, k, d]4-code, we know that C is a subspace
of FZ; set / =dim C. WTS /¢ = k.

Let {c1,...,ce} be a basis for C. Then C is the set of all vectors
of the form Zle a;ic;, where ag,...,0p € Fg. There are g choices
for each «j, and so there are g’ choices for the ¢-tuple

(ag,...,qp).



Proposition 2.1

Let C be an [n, k, d]g-code. Then dim C = k, i.e. the dimension of
C as a vector space is k.

Proof. Since C is an [n, k, d]4-code, we know that C is a subspace
of FZ; set / =dim C. WTS /¢ = k.

Let {c1,...,ce} be a basis for C. Then C is the set of all vectors
of the form Zle a;ic;, where ag,...,0p € Fg. There are g choices
for each «j, and so there are g’ choices for the ¢-tuple
(a1,...,a¢). On the other hand, since {cy,...,cs} is linearly
independent (because it is a basis), we know that

St aie = Y8 Bic iff (a,. .. a) = (B - - -, Be)



Proposition 2.1

Let C be an [n, k, d]g-code. Then dim C = k, i.e. the dimension of
C as a vector space is k.

Proof. Since C is an [n, k, d]4-code, we know that C is a subspace
of FZ; set / =dim C. WTS /¢ = k.

Let {c1,...,ce} be a basis for C. Then C is the set of all vectors
of the form Zle a;ic;, where ag,...,0p € Fg. There are g choices
for each «j, and so there are g’ choices for the ¢-tuple
(a1,...,a¢). On the other hand, since {cy,...,cs} is linearly
independent (because it is a basis), we know that

S aici =0 Bici iff (ag,...,a0) = (B1, ..., Be). It follows
that |C| = g%, and consequently, ¢ = log,, |C|.



Proposition 2.1

Let C be an [n, k, d]g-code. Then dim C = k, i.e. the dimension of
C as a vector space is k.

Proof. Since C is an [n, k, d]4-code, we know that C is a subspace
of FZ; set / =dim C. WTS /¢ = k.

Let {c1,...,ce} be a basis for C. Then C is the set of all vectors
of the form Zle a;ic;, where ag,...,0p € Fg. There are g choices
for each «j, and so there are g’ choices for the ¢-tuple
(a1,...,a¢). On the other hand, since {cy,...,cs} is linearly
independent (because it is a basis), we know that

S aici =0 Bici iff (ag,...,a0) = (B1, ..., Be). It follows
that |C| = g%, and consequently, ¢ = log,, |C|.

Since k = log,, |C| (by definition), it follows that £ = k, which is
what we needed to show.
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@ Suppose that C C Fg be an [n, k, d]-code, with 0 < k < n.
@ By Proposition 2.1, dim C = k.
@ Let G be any matrix whose rows form a basis for C (in
particular, G € ]FSX").
e G is called the generator matrix of the linear code C.
o We have C*+ = {y eFy | yGT =0}
@ Suppose H is any matrix such that the rows of H' form a
basis for C-.

e So, HT is a generator matrix for c+.
o H is called a parity check matrix for C, and by Proposition 1.2,
it satisfies C = {x € 'y | xH = 0}, i.e. C = Ker(H).
@ The parity check matrix H can be used to check whether a
vector x € g is a codeword of C.
o Indeed, if xH =0, then x € C, and otherwise, x ¢ C.

@ Note that, given a generator matrix for C, one can easily
compute a parity check matrix for C, and vice versa.
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Given a vector x € Fg, the Hamming weight of x, denoted by
wt(x), is the number of non-zero coordinates in x.

Proposition 2.2

Let C G I be an [n, k, d]4-code, with 0 < k < n. Then
d = min{wt(x) | x € C,x # 0}.

Proof. Fix x € C \ {0} with minimum Hamming weight. WTS
d = wt(x).

Since C is a linear code, we know that 0 € C, and so (since x and
0 are distinct codewords in C) we have that d(x,0) > d. But
obviously, d(x,0) = wt(x), and it follows that wt(x) > d.

WTS wt(x) < d. Fix distinct y,z € C such that d(y,z) = d. Since
C is a vector space, we know that y — z € C, and so by the choice
of x, we have that wt(x) < wt(y — z). But now

d =d(y,z) = wt(y — z) > wt(x).
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@ Fix an integer £ > 2, and set n=2-1k=2—-¢—-1, and
d=3.

@ Our goal in this section is to construct an [n, k, d]»-code,
called a Hamming code.

e It is also possible to construct “g-ary Hamming codes,” which
are over the (more general) field F,,.

o For the sake of simplicity, though, we consider only binary
Hamming codes, i.e. those over the field 5.

@ We do this by constructing its parity check matrix H; then the

code in question will simply be the subspace
C={xeF;|xH =0}
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o Let H=| : |. Note that H € F5**.

hn

o Let C={xeFj|xH=0}. WTS [n, k, d]»-code.

@ Obviously, C is a subspace of F5.

e So, Cis a linear code, and furthermore, n and the subscript 2
in [n, k, d]> are correct.

o Each of e‘i,...,eg is a row of H, and {e{,...,eﬁ} is a basis
for F5; so, rank(H) = £.

@ By the Rank-nullity theorem, rank(H) + dim Ker(H) = n.

So, dimKer(H) = n—{ = k.

e But C = Ker(H), and so dim C = k.

e So, kin [n, k,d] is correct.
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@ What about error correction for the Hamming code C that we
just constructed?

@ Suppose w € F7 differs in exactly one coordinate from some
codeword in C, that is, that w can be obtained from a
codeword in C by introducing one error (i.e. by changing
exactly one 1 into 0, or vice versa, in some codeword of C).

@ Then there exist some x € C and i € {1,..., n} such that
w =x+ e/, and so

wH = (x+e)H = xH+e/H = h;.
=0

@ But h; is simply the integer / written in binary code!

@ So, if w was obtained from a codeword in C by introducing
exactly one error, then the coordinate of that error is the
integer whose binary representation is given by the vector wH.

@ We can correct the error by altering the entry (from 1 to 0, or
vice versa) in that one coordinate of w.



