NDMI011: Combinatorics and Graph Theory 1

Lecture #13

Linear codes

Irena Penev

January 5, 2021

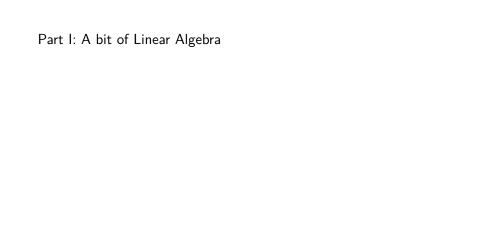
• a bit of Linear Algebra;

This lecture consists of three parts:

- a bit of Linear Algebra;
- linear codes;

This lecture consists of three parts:

- a bit of Linear Algebra;
- linear codes;
- Hamming codes.



- This is essentially a review of some Linear Algebra topics, but we will use row vectors instead of column vectors, and we will swap the roles of rows and columns in matrices.
 - Reason: this is customary in coding theory.

- This is essentially a review of some Linear Algebra topics, but we will use row vectors instead of column vectors, and we will swap the roles of rows and columns in matrices.
 - Reason: this is customary in coding theory.
- For a field \mathbb{F} and a positive integer n, we denote by \mathbb{F}^n the set of all row vectors of length n whose entries are all in \mathbb{F} .

- This is essentially a review of some Linear Algebra topics, but we will use row vectors instead of column vectors, and we will swap the roles of rows and columns in matrices.
 - Reason: this is customary in coding theory.
- For a field \mathbb{F} and a positive integer n, we denote by \mathbb{F}^n the set of all row vectors of length n whose entries are all in \mathbb{F} .
- For vectors $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_n)$ in \mathbb{F}^n , we define $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i$, where the summation and multiplication denote the operations from the field \mathbb{F} .
 - So, $\langle \mathbf{x}, \mathbf{y} \rangle \in \mathbb{F}$.

- This is essentially a review of some Linear Algebra topics, but we will use row vectors instead of column vectors, and we will swap the roles of rows and columns in matrices.
 - Reason: this is customary in coding theory.
- For a field \mathbb{F} and a positive integer n, we denote by \mathbb{F}^n the set of all row vectors of length n whose entries are all in \mathbb{F} .
- For vectors $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_n)$ in \mathbb{F}^n , we define $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i$, where the summation and multiplication denote the operations from the field \mathbb{F} .
 - So, $\langle \mathbf{x}, \mathbf{y} \rangle \in \mathbb{F}$.
 - If $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, then \mathbf{x} and \mathbf{y} are said to be *orthogonal*.

• Instead of multiplying matrices by column vectors on the right $(A\mathbf{x})$, we will multiply matrices by row vectors on the left $(\mathbf{x}A)$.

- Instead of multiplying matrices by column vectors on the right $(A\mathbf{x})$, we will multiply matrices by row vectors on the left $(\mathbf{x}A)$.
- If A is an $n \times m$ matrix with entries in \mathbb{F} , and $\mathbf{x} \in \mathbb{F}^n$, then we can think of \mathbf{x} as a $1 \times n$ matrix, and we can compute $\mathbf{x}A$ according to the usual rules of matrix multiplication.
 - We obtain a row vector of length m.

- Instead of multiplying matrices by column vectors on the right $(A\mathbf{x})$, we will multiply matrices by row vectors on the left $(\mathbf{x}A)$.
- If A is an $n \times m$ matrix with entries in \mathbb{F} , and $\mathbf{x} \in \mathbb{F}^n$, then we can think of \mathbf{x} as a $1 \times n$ matrix, and we can compute $\mathbf{x}A$ according to the usual rules of matrix multiplication.
 - We obtain a row vector of length *m*.
- If $\mathbf{x} = (x_1, \dots, x_n)$ and $A = \begin{bmatrix} \mathbf{r}_1 \\ \vdots \\ \mathbf{r}_n \end{bmatrix}$ (i.e. $\mathbf{r}_1, \dots, \mathbf{r}_n$ are the

rows of A, from top to bottom), then $\mathbf{x}A = \sum_{i=1}^{n} x_i \mathbf{r}_i$.

- Instead of multiplying matrices by column vectors on the right $(A\mathbf{x})$, we will multiply matrices by row vectors on the left $(\mathbf{x}A)$.
- If A is an $n \times m$ matrix with entries in \mathbb{F} , and $\mathbf{x} \in \mathbb{F}^n$, then we can think of \mathbf{x} as a $1 \times n$ matrix, and we can compute $\mathbf{x}A$ according to the usual rules of matrix multiplication.
 - We obtain a row vector of length m.
- If $\mathbf{x} = (x_1, \dots, x_n)$ and $A = \begin{bmatrix} \mathbf{r}_1 \\ \vdots \\ \mathbf{r}_n \end{bmatrix}$ (i.e. $\mathbf{r}_1, \dots, \mathbf{r}_n$ are the

rows of A, from top to bottom), then $\mathbf{x}A = \sum_{i=1}^{n} x_i \mathbf{r}_i$.

• If \mathbf{e}_i is the *i*-th standard basis vector of \mathbb{F}^n , i.e. the row vector whose *i*-th entry is 1, and all of whose other entries are 0, then $\mathbf{e}_i A$ is equal to the *i*-th row of A.

- Instead of multiplying matrices by column vectors on the right $(A\mathbf{x})$, we will multiply matrices by row vectors on the left $(\mathbf{x}A)$.
- If A is an $n \times m$ matrix with entries in \mathbb{F} , and $\mathbf{x} \in \mathbb{F}^n$, then we can think of \mathbf{x} as a $1 \times n$ matrix, and we can compute $\mathbf{x}A$ according to the usual rules of matrix multiplication.
 - ullet We obtain a row vector of length m.

• If
$$\mathbf{x} = (x_1, \dots, x_n)$$
 and $A = \begin{bmatrix} \mathbf{r}_1 \\ \vdots \\ \mathbf{r}_n \end{bmatrix}$ (i.e. $\mathbf{r}_1, \dots, \mathbf{r}_n$ are the

rows of A, from top to bottom), then $\mathbf{x}A = \sum_{i=1}^{n} x_i \mathbf{r}_i$.

- If \mathbf{e}_i is the *i*-th standard basis vector of \mathbb{F}^n , i.e. the row vector whose *i*-th entry is 1, and all of whose other entries are 0, then $\mathbf{e}_i A$ is equal to the *i*-th row of A.
- With these adjustments, all familiar theorems of Linear Algebra still hold, but with rows and columns reversed.

For a field \mathbb{F} and a subspace C of \mathbb{F}^n , we define $C^{\perp} = \{ \mathbf{y} \in \mathbb{F}^n \mid \langle \mathbf{x}, \mathbf{y} \rangle = 0 \text{ for all } \mathbf{x} \in C \}.$

For a field \mathbb{F} and a subspace C of \mathbb{F}^n , we define $C^{\perp} = \{ \mathbf{y} \in \mathbb{F}^n \mid \langle \mathbf{x}, \mathbf{y} \rangle = 0 \text{ for all } \mathbf{x} \in C \}.$

• It is easy to see that C^{\perp} is a subspace of \mathbb{F}^n .

For a field \mathbb{F} and a subspace C of \mathbb{F}^n , we define $C^{\perp} = \{ \mathbf{y} \in \mathbb{F}^n \mid \langle \mathbf{x}, \mathbf{y} \rangle = 0 \text{ for all } \mathbf{x} \in C \}.$

• It is easy to see that C^{\perp} is a subspace of \mathbb{F}^n .

Theorem 1.1

Let \mathbb{F} be a field, and let C be a subspace of \mathbb{F}^n . Then $\dim C + \dim C^{\perp} = n$.

Proof.

For a field \mathbb{F} and a subspace C of \mathbb{F}^n , we define $C^{\perp} = \{ \mathbf{y} \in \mathbb{F}^n \mid \langle \mathbf{x}, \mathbf{y} \rangle = 0 \text{ for all } \mathbf{x} \in C \}.$

• It is easy to see that C^{\perp} is a subspace of \mathbb{F}^n .

Theorem 1.1

Let \mathbb{F} be a field, and let C be a subspace of \mathbb{F}^n . Then $\dim C + \dim C^{\perp} = n$.

Proof. Set $k = \dim C$. WTS dim $C^{\perp} = n - k$.

For a field \mathbb{F} and a subspace C of \mathbb{F}^n , we define $C^{\perp} = \{ \mathbf{y} \in \mathbb{F}^n \mid \langle \mathbf{x}, \mathbf{y} \rangle = 0 \text{ for all } \mathbf{x} \in C \}.$

• It is easy to see that C^{\perp} is a subspace of \mathbb{F}^n .

Theorem 1.1

Let \mathbb{F} be a field, and let C be a subspace of \mathbb{F}^n . Then $\dim C + \dim C^{\perp} = n$.

Proof. Set $k = \dim C$. WTS dim $C^{\perp} = n - k$. If k = 0, then $C = \{0\}$ and $C^{\perp} = \mathbb{F}^n$, and so dim $C^{\perp} = n = n - k$.

For a field \mathbb{F} and a subspace C of \mathbb{F}^n , we define $C^{\perp} = \{ \mathbf{y} \in \mathbb{F}^n \mid \langle \mathbf{x}, \mathbf{y} \rangle = 0 \text{ for all } \mathbf{x} \in C \}.$

• It is easy to see that C^{\perp} is a subspace of \mathbb{F}^n .

Theorem 1.1

Let \mathbb{F} be a field, and let C be a subspace of \mathbb{F}^n . Then $\dim C + \dim C^{\perp} = n$.

Proof. Set $k = \dim C$. WTS dim $C^{\perp} = n - k$. If k = 0, then $C = \{0\}$ and $C^{\perp} = \mathbb{F}^n$, and so dim $C^{\perp} = n = n - k$. From now on, we assume that $k \geq 1$.

For a field \mathbb{F} and a subspace C of \mathbb{F}^n , we define $C^{\perp} = \{ \mathbf{y} \in \mathbb{F}^n \mid \langle \mathbf{x}, \mathbf{y} \rangle = 0 \text{ for all } \mathbf{x} \in C \}.$

• It is easy to see that C^{\perp} is a subspace of \mathbb{F}^n .

Theorem 1.1

Let \mathbb{F} be a field, and let C be a subspace of \mathbb{F}^n . Then $\dim C + \dim C^{\perp} = n$.

Proof. Set $k = \dim C$. WTS $\dim C^{\perp} = n - k$. If k = 0, then $C = \{\mathbf{0}\}$ and $C^{\perp} = \mathbb{F}^n$, and so $\dim C^{\perp} = n = n - k$. From now on, we assume that $k \geq 1$. Let $\{\mathbf{c}_1, \ldots, \mathbf{c}_k\}$ be a basis for C, and

let
$$G = \begin{bmatrix} \mathbf{c}_1 \\ \vdots \\ \mathbf{c}_t \end{bmatrix}$$
.

For a field \mathbb{F} and a subspace C of \mathbb{F}^n , we define $C^{\perp} = \{ \mathbf{y} \in \mathbb{F}^n \mid \langle \mathbf{x}, \mathbf{y} \rangle = 0 \text{ for all } \mathbf{x} \in C \}.$

• It is easy to see that C^{\perp} is a subspace of \mathbb{F}^n .

Theorem 1.1

Let \mathbb{F} be a field, and let C be a subspace of \mathbb{F}^n . Then $\dim C + \dim C^{\perp} = n$.

Proof. Set $k = \dim C$. WTS $\dim C^{\perp} = n - k$. If k = 0, then $C = \{0\}$ and $C^{\perp} = \mathbb{F}^n$, and so $\dim C^{\perp} = n = n - k$. From now on, we assume that $k \geq 1$. Let $\{\mathbf{c}_1, \ldots, \mathbf{c}_k\}$ be a basis for C, and

let
$$G = \begin{bmatrix} \mathbf{c}_1 \\ \vdots \\ \mathbf{c}_n \end{bmatrix}$$
. Then $C^{\perp} = \{ \mathbf{y} \in \mathbb{F}^n \mid \mathbf{y}G^T = \mathbf{0} \} = \mathsf{Ker}(G^T)$.

For a field \mathbb{F} and a subspace C of \mathbb{F}^n , we define $C^{\perp} = \{ \mathbf{y} \in \mathbb{F}^n \mid \langle \mathbf{x}, \mathbf{y} \rangle = 0 \text{ for all } \mathbf{x} \in C \}.$

• It is easy to see that C^{\perp} is a subspace of \mathbb{F}^n .

Theorem 1.1

Let $\mathbb F$ be a field, and let C be a subspace of $\mathbb F^n$. Then $\dim C + \dim C^\perp = n$.

Proof. Set $k = \dim C$. WTS $\dim C^{\perp} = n - k$. If k = 0, then $C = \{\mathbf{0}\}$ and $C^{\perp} = \mathbb{F}^n$, and so $\dim C^{\perp} = n = n - k$. From now on, we assume that $k \geq 1$. Let $\{\mathbf{c}_1, \ldots, \mathbf{c}_k\}$ be a basis for C, and

let
$$G = \begin{bmatrix} \mathbf{c}_1 \\ \vdots \\ \mathbf{c}_k \end{bmatrix}$$
. Then $C^{\perp} = \{ \mathbf{y} \in \mathbb{F}^n \mid \mathbf{y}G^{\mathcal{T}} = \mathbf{0} \} = \mathsf{Ker}(G^{\mathcal{T}})$. By

the Rank-nullity theorem, $rank(G^T) + dim Ker(G^T) = n$.

For a field \mathbb{F} and a subspace C of \mathbb{F}^n , we define $C^{\perp} = \{ \mathbf{y} \in \mathbb{F}^n \mid \langle \mathbf{x}, \mathbf{y} \rangle = 0 \text{ for all } \mathbf{x} \in C \}.$

• It is easy to see that C^{\perp} is a subspace of \mathbb{F}^n .

Theorem 1.1

Let \mathbb{F} be a field, and let C be a subspace of \mathbb{F}^n . Then $\dim C + \dim C^{\perp} = n$.

Proof. Set $k = \dim C$. WTS $\dim C^{\perp} = n - k$. If k = 0, then $C = \{\mathbf{0}\}$ and $C^{\perp} = \mathbb{F}^n$, and so $\dim C^{\perp} = n = n - k$. From now on, we assume that $k \geq 1$. Let $\{\mathbf{c}_1, \ldots, \mathbf{c}_k\}$ be a basis for C, and

let
$$G = \begin{bmatrix} \mathbf{c}_1 \\ \vdots \\ \mathbf{c}_L \end{bmatrix}$$
. Then $C^{\perp} = \{ \mathbf{y} \in \mathbb{F}^n \mid \mathbf{y}G^{\mathsf{T}} = \mathbf{0} \} = \mathsf{Ker}(G^{\mathsf{T}})$. By

the Rank-nullity theorem, $\operatorname{rank}(G^T) + \dim \operatorname{Ker}(G^T) = n$. But $\operatorname{rank}(G^T) = \operatorname{rank}(G) = k$, and it follows that $k + \dim C^{\perp} = n$, i.e. $\dim C^{\perp} = n - k$.

For a field \mathbb{F} and a subspace C of \mathbb{F}^n , we define $C^{\perp} = \{ \mathbf{y} \in \mathbb{F}^n \mid \langle \mathbf{x}, \mathbf{y} \rangle = 0 \text{ for all } \mathbf{x} \in C \}.$

Theorem 1.1

Let \mathbb{F} be a field, and let C be a subspace of \mathbb{F}^n . Then $\dim C + \dim C^{\perp} = n$.

For a field \mathbb{F} and a subspace C of \mathbb{F}^n , we define $C^{\perp} = \{ \mathbf{y} \in \mathbb{F}^n \mid \langle \mathbf{x}, \mathbf{y} \rangle = 0 \text{ for all } \mathbf{x} \in C \}.$

Theorem 1.1

Let \mathbb{F} be a field, and let C be a subspace of \mathbb{F}^n . Then $\dim C + \dim C^{\perp} = n$.

Proposition 1.2

Let $\mathbb F$ be a field, and let C be a subspace of $\mathbb F^n$. Then $(C^\perp)^\perp=C$.

Proof.

For a field \mathbb{F} and a subspace C of \mathbb{F}^n , we define $C^{\perp} = \{ \mathbf{y} \in \mathbb{F}^n \mid \langle \mathbf{x}, \mathbf{y} \rangle = 0 \text{ for all } \mathbf{x} \in C \}.$

Theorem 1.1

Let \mathbb{F} be a field, and let C be a subspace of \mathbb{F}^n . Then $\dim C + \dim C^{\perp} = n$.

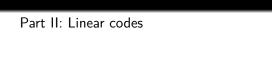
Proposition 1.2

Let \mathbb{F} be a field, and let C be a subspace of \mathbb{F}^n . Then $(C^{\perp})^{\perp} = C$.

Proof. Obviously, $C \subseteq (C^{\perp})^{\perp}$; since C and $(C^{\perp})^{\perp}$ are both subspaces of \mathbb{F}^n , it follows that C is a subspace of $(C^{\perp})^{\perp}$. On the other hand, by Theorem 1.1, we have that

$$\dim(C^{\perp})^{\perp} = n - \dim C^{\perp} = n - (n - \dim C) = \dim C,$$

and we deduce that $C = (C^{\perp})^{\perp}$.



Definition

Definition

A *linear code* is a subspace C of a vector space \mathbb{F}_q^n , where \mathbb{F}_q is a finite field of size q (here, q is a prime power).

Note that every linear code contains the zero vector.

Definition

- Note that every linear code contains the zero vector.
- If a linear code C is an $(n, k, d)_q$ -code, then we write that C is an $[n, k, d]_q$ -code.

Definition

- Note that every linear code contains the zero vector.
- If a linear code C is an $(n, k, d)_q$ -code, then we write that C is an $[n, k, d]_q$ -code.
 - Reminder:
 - q = size of alphabet;
 - n = length of codewords;
 - $k = \log_a |C|$;
 - $d = \min_{i=1}^{n} d_{i}$ distance between codewords.
 - The square brackets indicate that C is a linear code.

Definition

- Note that every linear code contains the zero vector.
- If a linear code C is an $(n, k, d)_q$ -code, then we write that C is an $[n, k, d]_q$ -code.
 - Reminder:
 - q = size of alphabet;
 - n = length of codewords;
 - $k = \log_a |C|$;
 - d = minimum distance between codewords.
 - The square brackets indicate that C is a linear code.
- An $[n, k, d]_q$ -code is a subspace of \mathbb{F}_q^n .

Definition

A *linear code* is a subspace C of a vector space \mathbb{F}_q^n , where \mathbb{F}_q is a finite field of size q (here, q is a prime power).

- Note that every linear code contains the zero vector.
- If a linear code C is an $(n, k, d)_q$ -code, then we write that C is an $[n, k, d]_q$ -code.
 - Reminder
 - q = size of alphabet;
 - n = length of codewords;
 - $k = \log_a |C|$;
 - $d = \min_{i=1}^{n} d_i$ distance between codewords.
 - The square brackets indicate that C is a linear code.
- An $[n, k, d]_q$ -code is a subspace of \mathbb{F}_q^n .

Proposition 2.1

Let C be an $[n,k,d]_q$ -code. Then dim C=k, i.e. the dimension of C as a vector space is k.

Proposition 2.1

Let C be an $[n, k, d]_q$ -code. Then dim C = k, i.e. the dimension of C as a vector space is k.

Proof.

Proposition 2.1

Let C be an $[n, k, d]_q$ -code. Then dim C = k, i.e. the dimension of C as a vector space is k.

Proof. Since C is an $[n, k, d]_q$ -code, we know that C is a subspace of \mathbb{F}_q^n ; set $\ell = \dim C$. WTS $\ell = k$.

Let C be an $[n, k, d]_q$ -code. Then dim C = k, i.e. the dimension of C as a vector space is k.

Proof. Since C is an $[n, k, d]_q$ -code, we know that C is a subspace of \mathbb{F}_q^n ; set $\ell = \dim C$. WTS $\ell = k$.

Let $\{\mathbf{c}_1, \dots, \mathbf{c}_\ell\}$ be a basis for C.

Let C be an $[n, k, d]_q$ -code. Then dim C = k, i.e. the dimension of C as a vector space is k.

Proof. Since C is an $[n, k, d]_q$ -code, we know that C is a subspace of \mathbb{F}_q^n ; set $\ell = \dim C$. WTS $\ell = k$.

Let $\{\mathbf{c}_1,\ldots,\mathbf{c}_\ell\}$ be a basis for C. Then C is the set of all vectors of the form $\sum_{i=1}^\ell \alpha_i \mathbf{c}_i$, where $\alpha_1,\ldots,\alpha_\ell \in \mathbb{F}_q$. There are q choices for each α_i , and so there are q^ℓ choices for the ℓ -tuple $(\alpha_1,\ldots,\alpha_\ell)$.

Let C be an $[n, k, d]_q$ -code. Then dim C = k, i.e. the dimension of C as a vector space is k.

Proof. Since C is an $[n, k, d]_q$ -code, we know that C is a subspace of \mathbb{F}_q^n ; set $\ell = \dim C$. WTS $\ell = k$.

Let $\{\mathbf{c}_1,\ldots,\mathbf{c}_\ell\}$ be a basis for C. Then C is the set of all vectors of the form $\sum_{i=1}^\ell \alpha_i \mathbf{c}_i$, where $\alpha_1,\ldots,\alpha_\ell \in \mathbb{F}_q$. There are q choices for each α_i , and so there are q^ℓ choices for the ℓ -tuple $(\alpha_1,\ldots,\alpha_\ell)$. On the other hand, since $\{\mathbf{c}_1,\ldots,\mathbf{c}_\ell\}$ is linearly independent (because it is a basis), we know that $\sum_{i=1}^\ell \alpha_i \mathbf{c}_i = \sum_{i=1}^\ell \beta_i \mathbf{c}_i$ iff $(\alpha_1,\ldots,\alpha_\ell) = (\beta_1,\ldots,\beta_\ell)$.

Let C be an $[n,k,d]_q$ -code. Then dim C=k, i.e. the dimension of C as a vector space is k.

Proof. Since C is an $[n, k, d]_q$ -code, we know that C is a subspace of \mathbb{F}_q^n ; set $\ell = \dim C$. WTS $\ell = k$.

Let $\{\mathbf{c}_1,\ldots,\mathbf{c}_\ell\}$ be a basis for C. Then C is the set of all vectors of the form $\sum_{i=1}^\ell \alpha_i \mathbf{c}_i$, where $\alpha_1,\ldots,\alpha_\ell \in \mathbb{F}_q$. There are q choices for each α_i , and so there are q^ℓ choices for the ℓ -tuple $(\alpha_1,\ldots,\alpha_\ell)$. On the other hand, since $\{\mathbf{c}_1,\ldots,\mathbf{c}_\ell\}$ is linearly independent (because it is a basis), we know that $\sum_{i=1}^\ell \alpha_i \mathbf{c}_i = \sum_{i=1}^\ell \beta_i \mathbf{c}_i$ iff $(\alpha_1,\ldots,\alpha_\ell) = (\beta_1,\ldots,\beta_\ell)$. It follows that $|C| = q^\ell$, and consequently, $\ell = \log_q |C|$.

Let C be an $[n,k,d]_q$ -code. Then $\dim C=k$, i.e. the dimension of C as a vector space is k.

Proof. Since C is an $[n, k, d]_q$ -code, we know that C is a subspace of \mathbb{F}_q^n ; set $\ell = \dim C$. WTS $\ell = k$.

Let $\{\mathbf{c}_1,\ldots,\mathbf{c}_\ell\}$ be a basis for C. Then C is the set of all vectors of the form $\sum_{i=1}^\ell \alpha_i \mathbf{c}_i$, where $\alpha_1,\ldots,\alpha_\ell \in \mathbb{F}_q$. There are q choices for each α_i , and so there are q^ℓ choices for the ℓ -tuple $(\alpha_1,\ldots,\alpha_\ell)$. On the other hand, since $\{\mathbf{c}_1,\ldots,\mathbf{c}_\ell\}$ is linearly independent (because it is a basis), we know that $\sum_{i=1}^\ell \alpha_i \mathbf{c}_i = \sum_{i=1}^\ell \beta_i \mathbf{c}_i$ iff $(\alpha_1,\ldots,\alpha_\ell) = (\beta_1,\ldots,\beta_\ell)$. It follows that $|C| = q^\ell$, and consequently, $\ell = \log_q |C|$.

Since $k = \log_q |C|$ (by definition), it follows that $\ell = k$, which is what we needed to show.

• Suppose that $C \subseteq \mathbb{F}_q^n$ be an $[n,k,d]_q$ -code, with 0 < k < n.

- Suppose that $C \subseteq \mathbb{F}_q^n$ be an $[n,k,d]_q$ -code, with 0 < k < n.
- By Proposition 2.1, dim C = k.

- Suppose that $C \subseteq \mathbb{F}_q^n$ be an $[n, k, d]_q$ -code, with 0 < k < n.
- By Proposition 2.1, dim C = k.
- Let G be any matrix whose rows form a basis for C (in particular, $G \in \mathbb{F}_a^{k \times n}$).

- Suppose that $C \subseteq \mathbb{F}_q^n$ be an $[n, k, d]_q$ -code, with 0 < k < n.
- By Proposition 2.1, dim C = k.
- Let G be any matrix whose rows form a basis for C (in particular, $G \in \mathbb{F}_q^{k \times n}$).
 - ullet G is called the *generator matrix* of the linear code C.

- Suppose that $C \subseteq \mathbb{F}_q^n$ be an $[n, k, d]_q$ -code, with 0 < k < n.
- By Proposition 2.1, dim C = k.
- Let G be any matrix whose rows form a basis for C (in particular, $G \in \mathbb{F}_q^{k \times n}$).
 - ullet G is called the *generator matrix* of the linear code C.
 - We have $C^{\perp} = \{ \mathbf{y} \in \mathbb{F}_a^n \mid \mathbf{y}G^T = \mathbf{0} \}.$

- Suppose that $C \subseteq \mathbb{F}_q^n$ be an $[n, k, d]_q$ -code, with 0 < k < n.
- By Proposition 2.1, dim C = k.
- Let G be any matrix whose rows form a basis for C (in particular, $G \in \mathbb{F}_q^{k \times n}$).
 - G is called the generator matrix of the linear code C.
 - We have $C^{\perp} = \{ \mathbf{y} \in \mathbb{F}_{a}^{n} \mid \mathbf{y}G^{T} = \mathbf{0} \}.$
- Suppose H is any matrix such that the rows of H^T form a basis for C^{\perp} .

- Suppose that $C \subseteq \mathbb{F}_q^n$ be an $[n, k, d]_q$ -code, with 0 < k < n.
- By Proposition 2.1, dim C = k.
- Let G be any matrix whose rows form a basis for C (in particular, $G \in \mathbb{F}_q^{k \times n}$).
 - G is called the generator matrix of the linear code C.
 - We have $C^{\perp} = \{ \mathbf{y} \in \mathbb{F}_{a}^{n} \mid \mathbf{y}G^{T} = \mathbf{0} \}.$
- Suppose H is any matrix such that the rows of H^T form a basis for C^{\perp} .

 - So, H^T is a generator matrix for C^{\perp} .
 - H is called a parity check matrix for C, and by Proposition 1.2, it satisfies $C = \{ \mathbf{x} \in \mathbb{F}_q^n \mid \mathbf{x}H = \mathbf{0} \}$, i.e. C = Ker(H).

- Suppose that $C \subseteq \mathbb{F}_q^n$ be an $[n, k, d]_q$ -code, with 0 < k < n.
- By Proposition 2.1, dim C = k.
- Let G be any matrix whose rows form a basis for C (in particular, $G \in \mathbb{F}_{q}^{k \times n}$).
 - G is called the generator matrix of the linear code C.
 - We have $C^{\perp} = \{ \mathbf{y} \in \mathbb{F}_{a}^{n} \mid \mathbf{y}G^{T} = \mathbf{0} \}.$
- Suppose H is any matrix such that the rows of H^T form a basis for C^{\perp} .
 - So, H^T is a generator matrix for C^{\perp} .
 - H is called a parity check matrix for C, and by Proposition 1.2,
 - it satisfies $C = \{ \mathbf{x} \in \mathbb{F}_q^n \mid \mathbf{x}H = \mathbf{0} \}$, i.e. C = Ker(H).
 - The parity check matrix H can be used to check whether a vector $\mathbf{x} \in \mathbb{F}_q^n$ is a codeword of C.

- Suppose that $C \subseteq \mathbb{F}_q^n$ be an $[n, k, d]_q$ -code, with 0 < k < n.
- By Proposition 2.1, dim C = k.
- Let G be any matrix whose rows form a basis for C (in particular, $G \in \mathbb{F}_a^{k \times n}$).
 - G is called the generator matrix of the linear code C.
 - We have $C^{\perp} = \{ \mathbf{y} \in \mathbb{F}_q^n \mid \mathbf{y}G^T = \mathbf{0} \}.$
- Suppose H is any matrix such that the rows of H^T form a basis for C^{\perp} .
 - So, H^T is a generator matrix for C^{\perp} .
 - *H* is called a *parity check matrix* for *C*, and by Proposition 1.2, it satisfies $C = \{ \mathbf{x} \in \mathbb{F}_a^n \mid \mathbf{x}H = \mathbf{0} \}$, i.e. C = Ker(H).
- The parity check matrix H can be used to check whether a vector $\mathbf{x} \in \mathbb{F}_q^n$ is a codeword of C.
 - Indeed, if xH = 0, then $x \in C$, and otherwise, $x \notin C$.

- Suppose that $C \subseteq \mathbb{F}_q^n$ be an $[n, k, d]_q$ -code, with 0 < k < n.
- By Proposition 2.1, dim C = k.
- Let G be any matrix whose rows form a basis for C (in particular, $G \in \mathbb{F}_a^{k \times n}$).
 - G is called the generator matrix of the linear code C.
 - We have $C^{\perp} = \{\mathbf{y} \in \mathbb{F}_q^n \mid \mathbf{y}G^T = \mathbf{0}\}.$
- Suppose H is any matrix such that the rows of H^T form a basis for C^{\perp} .
 - So, H^T is a generator matrix for C^{\perp} .
 - *H* is called a *parity check matrix* for *C*, and by Proposition 1.2, it satisfies $C = \{ \mathbf{x} \in \mathbb{F}_q^n \mid \mathbf{x}H = \mathbf{0} \}$, i.e. C = Ker(H).
- The parity check matrix H can be used to check whether a vector $\mathbf{x} \in \mathbb{F}_a^n$ is a codeword of C.
 - Indeed, if xH = 0, then $x \in C$, and otherwise, $x \notin C$.
- Note that, given a generator matrix for C, one can easily compute a parity check matrix for C, and vice versa.

Given a vector $\mathbf{x} \in \mathbb{F}_q^n$, the *Hamming weight* of \mathbf{x} , denoted by $\mathrm{wt}(\mathbf{x})$, is the number of non-zero coordinates in \mathbf{x} .

Given a vector $\mathbf{x} \in \mathbb{F}_q^n$, the *Hamming weight* of \mathbf{x} , denoted by $\mathrm{wt}(\mathbf{x})$, is the number of non-zero coordinates in \mathbf{x} .

Proposition 2.2

Let $C \subsetneq \mathbb{F}_q^n$ be an $[n, k, d]_q$ -code, with 0 < k < n. Then $d = \min\{\text{wt}(\mathbf{x}) \mid \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\}.$

Proof.

Given a vector $\mathbf{x} \in \mathbb{F}_q^n$, the *Hamming weight* of \mathbf{x} , denoted by $\mathrm{wt}(\mathbf{x})$, is the number of non-zero coordinates in \mathbf{x} .

Proposition 2.2

Let $C \subsetneq \mathbb{F}_q^n$ be an $[n, k, d]_q$ -code, with 0 < k < n. Then $d = \min\{\text{wt}(\mathbf{x}) \mid \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\}.$

Proof. Fix $\mathbf{x} \in C \setminus \{\mathbf{0}\}$ with minimum Hamming weight. WTS $d = \text{wt}(\mathbf{x})$.

Given a vector $\mathbf{x} \in \mathbb{F}_q^n$, the *Hamming weight* of \mathbf{x} , denoted by $\mathrm{wt}(\mathbf{x})$, is the number of non-zero coordinates in \mathbf{x} .

Proposition 2.2

Let $C \subsetneq \mathbb{F}_q^n$ be an $[n, k, d]_q$ -code, with 0 < k < n. Then $d = \min\{\text{wt}(\mathbf{x}) \mid \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\}.$

Proof. Fix $\mathbf{x} \in C \setminus \{\mathbf{0}\}$ with minimum Hamming weight. WTS $d = \text{wt}(\mathbf{x})$.

Since C is a linear code, we know that $\mathbf{0} \in C$, and so (since \mathbf{x} and $\mathbf{0}$ are distinct codewords in C) we have that $d(\mathbf{x},\mathbf{0}) \geq d$. But obviously, $d(\mathbf{x},\mathbf{0}) = \operatorname{wt}(\mathbf{x})$, and it follows that $\operatorname{wt}(\mathbf{x}) \geq d$.

Given a vector $\mathbf{x} \in \mathbb{F}_q^n$, the *Hamming weight* of \mathbf{x} , denoted by $\mathrm{wt}(\mathbf{x})$, is the number of non-zero coordinates in \mathbf{x} .

Proposition 2.2

Let $C \subsetneq \mathbb{F}_q^n$ be an $[n, k, d]_q$ -code, with 0 < k < n. Then $d = \min\{\text{wt}(\mathbf{x}) \mid \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\}.$

Proof. Fix $\mathbf{x} \in C \setminus \{\mathbf{0}\}$ with minimum Hamming weight. WTS $d = \text{wt}(\mathbf{x})$.

Since C is a linear code, we know that $\mathbf{0} \in C$, and so (since \mathbf{x} and $\mathbf{0}$ are distinct codewords in C) we have that $d(\mathbf{x},\mathbf{0}) \geq d$. But obviously, $d(\mathbf{x},\mathbf{0}) = \mathrm{wt}(\mathbf{x})$, and it follows that $\mathrm{wt}(\mathbf{x}) \geq d$.

WTS wt(\mathbf{x}) $\leq d$.

Given a vector $\mathbf{x} \in \mathbb{F}_q^n$, the *Hamming weight* of \mathbf{x} , denoted by $\mathrm{wt}(\mathbf{x})$, is the number of non-zero coordinates in \mathbf{x} .

Proposition 2.2

Let $C \subsetneq \mathbb{F}_q^n$ be an $[n, k, d]_q$ -code, with 0 < k < n. Then $d = \min\{\text{wt}(\mathbf{x}) \mid \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\}.$

Proof. Fix $\mathbf{x} \in C \setminus \{\mathbf{0}\}$ with minimum Hamming weight. WTS $d = \text{wt}(\mathbf{x})$.

Since C is a linear code, we know that $\mathbf{0} \in C$, and so (since \mathbf{x} and $\mathbf{0}$ are distinct codewords in C) we have that $d(\mathbf{x}, \mathbf{0}) \geq d$. But obviously, $d(\mathbf{x}, \mathbf{0}) = \mathrm{wt}(\mathbf{x})$, and it follows that $\mathrm{wt}(\mathbf{x}) \geq d$.

WTS wt(\mathbf{x}) $\leq d$. Fix distinct \mathbf{y} , $\mathbf{z} \in C$ such that $d(\mathbf{y}, \mathbf{z}) = d$.

Given a vector $\mathbf{x} \in \mathbb{F}_q^n$, the *Hamming weight* of \mathbf{x} , denoted by $\mathrm{wt}(\mathbf{x})$, is the number of non-zero coordinates in \mathbf{x} .

Proposition 2.2

Let $C \subsetneq \mathbb{F}_q^n$ be an $[n, k, d]_q$ -code, with 0 < k < n. Then $d = \min\{\text{wt}(\mathbf{x}) \mid \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\}.$

Proof. Fix $\mathbf{x} \in C \setminus \{\mathbf{0}\}$ with minimum Hamming weight. WTS $d = \text{wt}(\mathbf{x})$.

Since C is a linear code, we know that $\mathbf{0} \in C$, and so (since \mathbf{x} and $\mathbf{0}$ are distinct codewords in C) we have that $d(\mathbf{x}, \mathbf{0}) \geq d$. But obviously, $d(\mathbf{x}, \mathbf{0}) = \mathrm{wt}(\mathbf{x})$, and it follows that $\mathrm{wt}(\mathbf{x}) \geq d$.

WTS wt(x) $\leq d$. Fix distinct $\mathbf{y}, \mathbf{z} \in C$ such that $d(\mathbf{y}, \mathbf{z}) = d$. Since C is a vector space, we know that $\mathbf{y} - \mathbf{z} \in C$, and so by the choice of \mathbf{x} , we have that wt(x) \leq wt($\mathbf{y} - \mathbf{z}$).

Given a vector $\mathbf{x} \in \mathbb{F}_q^n$, the *Hamming weight* of \mathbf{x} , denoted by $\mathrm{wt}(\mathbf{x})$, is the number of non-zero coordinates in \mathbf{x} .

Proposition 2.2

Let $C \subsetneq \mathbb{F}_q^n$ be an $[n, k, d]_q$ -code, with 0 < k < n. Then $d = \min\{\text{wt}(\mathbf{x}) \mid \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\}.$

Proof. Fix $\mathbf{x} \in C \setminus \{\mathbf{0}\}$ with minimum Hamming weight. WTS $d = \mathsf{wt}(\mathbf{x})$.

Since C is a linear code, we know that $\mathbf{0} \in C$, and so (since \mathbf{x} and $\mathbf{0}$ are distinct codewords in C) we have that $d(\mathbf{x}, \mathbf{0}) \geq d$. But obviously, $d(\mathbf{x}, \mathbf{0}) = \mathrm{wt}(\mathbf{x})$, and it follows that $\mathrm{wt}(\mathbf{x}) \geq d$.

WTS $\operatorname{wt}(\mathbf{x}) \leq d$. Fix distinct $\mathbf{y}, \mathbf{z} \in C$ such that $d(\mathbf{y}, \mathbf{z}) = d$. Since C is a vector space, we know that $\mathbf{y} - \mathbf{z} \in C$, and so by the choice of \mathbf{x} , we have that $\operatorname{wt}(\mathbf{x}) \leq \operatorname{wt}(\mathbf{y} - \mathbf{z})$. But now $d = d(\mathbf{y}, \mathbf{z}) = \operatorname{wt}(\mathbf{y} - \mathbf{z}) \geq \operatorname{wt}(\mathbf{x})$.

• Fix an integer $\ell \geq 2$, and set $n=2^{\ell}-1$, $k=2^{\ell}-\ell-1$, and d=3.

- Fix an integer $\ell \geq 2$, and set $n=2^\ell-1$, $k=2^\ell-\ell-1$, and d=3.
- Our goal in this section is to construct an $[n, k, d]_2$ -code, called a *Hamming code*.

- Fix an integer $\ell \geq 2$, and set $n=2^{\ell}-1$, $k=2^{\ell}-\ell-1$, and d=3.
- Our goal in this section is to construct an $[n, k, d]_2$ -code, called a *Hamming code*.
 - It is also possible to construct "q-ary Hamming codes," which are over the (more general) field \mathbb{F}_q .
 - For the sake of simplicity, though, we consider only binary Hamming codes, i.e. those over the field \mathbb{F}_2 .

- Fix an integer $\ell \geq 2$, and set $n=2^{\ell}-1$, $k=2^{\ell}-\ell-1$, and d=3.
- Our goal in this section is to construct an $[n, k, d]_2$ -code, called a *Hamming code*.
 - It is also possible to construct "q-ary Hamming codes," which are over the (more general) field \mathbb{F}_q .
 - For the sake of simplicity, though, we consider only binary Hamming codes, i.e. those over the field \mathbb{F}_2 .
- We do this by constructing its parity check matrix H; then the code in question will simply be the subspace

$$C = \{ \mathbf{x} \in \mathbb{F}_2^n \mid \mathbf{x}H = \mathbf{0} \}.$$

 $\bullet \ \ \mathsf{Reminder} \colon \ \ell \geq \mathsf{2}, \ n = 2^\ell - \mathsf{1}, \ k = 2^\ell - \ell - \mathsf{1}, \ \mathsf{and} \ \ d = \mathsf{3}.$

- Reminder: $\ell \ge 2$, $n = 2^{\ell} 1$, $k = 2^{\ell} \ell 1$, and d = 3.
- For all $i \in \{1, ..., n\}$, let $\mathbf{h} \in \mathbb{F}_2^{\ell}$ be the vector giving the binary representation of i, with zeros added to the front if necessary (so that the length of the representation is ℓ).

- Reminder: $\ell \ge 2$, $n = 2^{\ell} 1$, $k = 2^{\ell} \ell 1$, and d = 3.
 - For all $i \in \{1, \ldots, n\}$, let $\mathbf{h} \in \mathbb{F}_2^{\ell}$ be the vector giving the binary representation of i, with zeros added to the front if necessary (so that the length of the representation is ℓ).
 - necessary (so that the length of the representation is ℓ). • Let $H=\left[\begin{array}{c} \mathbf{h}_1 \\ \vdots \\ \mathbf{h} \end{array}\right]$. Note that $H\in\mathbb{F}_2^{n\times\ell}$.

- Reminder: $\ell > 2$. $n = 2^{\ell} 1$. $k = 2^{\ell} \ell 1$. and d = 3.
 - For all $i \in \{1, ..., n\}$, let $\mathbf{h} \in \mathbb{F}_2^{\ell}$ be the vector giving the binary representation of i, with zeros added to the front if necessary (so that the length of the representation is ℓ).

 - Let $H = \begin{bmatrix} \mathbf{n}_1 \\ \vdots \\ \mathbf{n}_n \end{bmatrix}$. Note that $H \in \mathbb{F}_2^{n \times \ell}$.

• Let $C = \{ \mathbf{x} \in \mathbb{F}_2^n \mid \mathbf{x}H = \mathbf{0} \}$. WTS $[n, k, d]_2$ -code.

- Reminder: $\ell > 2$, $n = 2^{\ell} 1$, $k = 2^{\ell} \ell 1$, and d = 3.
- For all $i \in \{1, ..., n\}$, let $\mathbf{h} \in \mathbb{F}_2^{\ell}$ be the vector giving the binary representation of i, with zeros added to the front if necessary (so that the length of the representation is ℓ).
- Let $H = \begin{bmatrix} \mathbf{n}_1 \\ \vdots \\ \mathbf{n}_n \end{bmatrix}$. Note that $H \in \mathbb{F}_2^{n \times \ell}$.
 - Let $C = \{ \mathbf{x} \in \mathbb{F}_2^n \mid \mathbf{x}H = \mathbf{0} \}$. WTS $[n, k, d]_2$ -code.
 - Obviously, C is a subspace of \mathbb{F}_2^n .
 - So, C is a linear code, and furthermore, n and the subscript 2 in $[n, k, d]_2$ are correct.

- Reminder: $\ell \ge 2$, $n = 2^{\ell} 1$, $k = 2^{\ell} \ell 1$, and d = 3.
- For all $i \in \{1, ..., n\}$, let $\mathbf{h} \in \mathbb{F}_2^{\ell}$ be the vector giving the binary representation of i, with zeros added to the front if necessary (so that the length of the representation is ℓ).
- Let $H = \begin{bmatrix} \mathbf{n}_1 \\ \vdots \\ \mathbf{n}_n \end{bmatrix}$. Note that $H \in \mathbb{F}_2^{n \times \ell}$.
- Let $C = \{ \mathbf{x} \in \mathbb{F}_2^n \mid \mathbf{x}H = \mathbf{0} \}$. WTS $[n, k, d]_2$ -code.
- Obviously, C is a subspace of \mathbb{F}_2^n .
 - So, C is a subspace of \mathbb{F}_2 . • So, C is a linear code, and furthermore, n and the subscript 2 in $[n, k, d]_2$ are correct.
- Each of $\mathbf{e}_1^\ell,\ldots,\mathbf{e}_\ell^\ell$ is a row of H, and $\{\mathbf{e}_1^\ell,\ldots,\mathbf{e}_\ell^\ell\}$ is a basis for \mathbb{F}_2^ℓ ; so, rank $(H)=\ell$.

- Reminder: $\ell \ge 2$, $n = 2^{\ell} 1$, $k = 2^{\ell} \ell 1$, and d = 3.
- For all $i \in \{1, ..., n\}$, let $\mathbf{h} \in \mathbb{F}_2^{\ell}$ be the vector giving the binary representation of i, with zeros added to the front if necessary (so that the length of the representation is ℓ).
- Let $H = \begin{bmatrix} \mathbf{n}_1 \\ \vdots \\ \mathbf{n}_n \end{bmatrix}$. Note that $H \in \mathbb{F}_2^{n \times \ell}$.
- Let $C = \{ \mathbf{x} \in \mathbb{F}_2^n \mid \mathbf{x}H = \mathbf{0} \}$. WTS $[n, k, d]_2$ -code.
- Obviously, C is a subspace of \mathbb{F}_2^n .
- in $[n, k, d]_2$ are correct. • Each of $\mathbf{e}_1^\ell, \dots, \mathbf{e}_\ell^\ell$ is a row of H, and $\{\mathbf{e}_1^\ell, \dots, \mathbf{e}_\ell^\ell\}$ is a basis

• So, C is a linear code, and furthermore, n and the subscript 2

- Each of $\mathbf{e}_1^c, \dots, \mathbf{e}_\ell^c$ is a row of H, and $\{\mathbf{e}_1^c, \dots, \mathbf{e}_\ell^c\}$ is a basis for \mathbb{F}_2^ℓ ; so, rank $(H) = \ell$.
- By the Rank-nullity theorem, rank(H) + dim Ker(H) = n.

- Reminder: $\ell \ge 2$, $n = 2^{\ell} 1$, $k = 2^{\ell} \ell 1$, and d = 3.
- For all $i \in \{1, ..., n\}$, let $\mathbf{h} \in \mathbb{F}_2^{\ell}$ be the vector giving the binary representation of i, with zeros added to the front if necessary (so that the length of the representation is ℓ).
- Let $H = \begin{bmatrix} \mathbf{n}_1 \\ \vdots \\ \mathbf{n}_n \end{bmatrix}$. Note that $H \in \mathbb{F}_2^{n \times \ell}$.
- Let $C = \{ \mathbf{x} \in \mathbb{F}_2^n \mid \mathbf{x}H = \mathbf{0} \}$. WTS $[n, k, d]_2$ -code.
- Obviously, C is a subspace of F₂ⁿ.
 So, C is a linear code, and furthermore, n and the subscript 2
- in $[n,k,d]_2$ are correct. • Each of $\mathbf{e}_1^\ell,\ldots,\mathbf{e}_\ell^\ell$ is a row of H, and $\{\mathbf{e}_1^\ell,\ldots,\mathbf{e}_\ell^\ell\}$ is a basis
- Each of $\mathbf{e}_1^{\ell}, \dots, \mathbf{e}_{\ell}^{\ell}$ is a row of H, and $\{\mathbf{e}_1^{\ell}, \dots, \mathbf{e}_{\ell}^{\ell}\}$ is a basis for \mathbb{F}_2^{ℓ} ; so, rank $(H) = \ell$.
- By the Rank-nullity theorem, rank(H) + dim Ker(H) = n.
- So, dim Ker $(H) = n \ell = k$.

- Reminder: $\ell > 2$, $n = 2^{\ell} 1$, $k = 2^{\ell} \ell 1$, and d = 3.
- For all $i \in \{1, ..., n\}$, let $\mathbf{h} \in \mathbb{F}_2^{\ell}$ be the vector giving the binary representation of i, with zeros added to the front if
- necessary (so that the length of the representation is ℓ). • Let $H = \begin{bmatrix} \cdots \\ \vdots \\ \cdot \end{bmatrix}$. Note that $H \in \mathbb{F}_2^{n \times \ell}$.
- Let $C = \{ \mathbf{x} \in \mathbb{F}_2^n \mid \mathbf{x}H = \mathbf{0} \}$. WTS $[n, k, d]_2$ -code. • Obviously, C is a subspace of \mathbb{F}_2^n .
 - So, C is a linear code, and furthermore, n and the subscript 2 in $[n, k, d]_2$ are correct.
- Each of $\mathbf{e}_1^\ell, \dots, \mathbf{e}_\ell^\ell$ is a row of H, and $\{\mathbf{e}_1^\ell, \dots, \mathbf{e}_\ell^\ell\}$ is a basis for \mathbb{F}_2^{ℓ} ; so, rank $(H) = \ell$.
- By the Rank-nullity theorem, rank(H) + dim Ker(H) = n.
- So, dim Ker(H) = $n \ell = k$. • But C = Ker(H), and so dim C = k.
 - So, k in $[n, k, d]_2$ is correct.

 $\bullet \ \, \mathsf{Reminder} \colon \ \, C = \{\mathbf{x} \in \mathbb{F}_2^n \mid \mathbf{x}H = \mathbf{0}\}. \ \, \mathsf{WTS} \,\, [n,k,d]_2\text{-code}.$

- Reminder: $C = \{ \mathbf{x} \in \mathbb{F}_2^n \mid \mathbf{x}H = \mathbf{0} \}$. WTS $[n, k, d]_2$ -code.
- It remains to show that the d in $[n, k, d]_2$ is correct, i.e. that the minimum distance in C is d = 3.

- Reminder: $C = \{ \mathbf{x} \in \mathbb{F}_2^n \mid \mathbf{x}H = \mathbf{0} \}$. WTS $[n, k, d]_2$ -code.
- It remains to show that the d in $[n, k, d]_2$ is correct, i.e. that the minimum distance in C is d = 3.
- By Proposition 2.2, it suffices to show that the minimum Hamming weight of a non-zero vector in C is d=3.

- Reminder: $C = \{ \mathbf{x} \in \mathbb{F}_2^n \mid \mathbf{x}H = \mathbf{0} \}$. WTS $[n, k, d]_2$ -code.
- It remains to show that the d in $[n, k, d]_2$ is correct, i.e. that the minimum distance in C is d=3.
- By Proposition 2.2, it suffices to show that the minimum Hamming weight of a non-zero vector in C is d=3.
- Vectors of \mathbb{F}_2^n of Hamming weight 1 are precisely the vectors $\mathbf{e}_1^n,\ldots,\mathbf{e}_n^n$.

- Reminder: $C = \{ \mathbf{x} \in \mathbb{F}_2^n \mid \mathbf{x}H = \mathbf{0} \}$. WTS $[n, k, d]_2$ -code.
 - It remains to show that the d in $[n, k, d]_2$ is correct, i.e. that the minimum distance in C is d=3.
 - By Proposition 2.2, it suffices to show that the minimum Hamming weight of a non-zero vector in C is d = 3.

 - Vectors of \mathbb{F}_2^n of Hamming weight 1 are precisely the vectors $\mathbf{e}_1^n,\ldots,\mathbf{e}_n^n$.

• For all $i \in \{1, ..., n\}$, $\mathbf{e}_i^n H = \mathbf{h}_i \neq \mathbf{0}$, and so $\mathbf{e}_i^n \notin C$.

- Reminder: $C = \{ \mathbf{x} \in \mathbb{F}_2^n \mid \mathbf{x}H = \mathbf{0} \}$. WTS $[n, k, d]_2$ -code.
 - It remains to show that the d in [n, k, d]₂ is correct, i.e. that the minimum distance in C is d = 3.
 By Proposition 2.2 it suffices to show that the minimum
 - By Proposition 2.2, it suffices to show that the minimum Hamming weight of a non-zero vector in C is d=3.
 - Hamming weight of a non-zero vector in C is d=3. • Vectors of \mathbb{F}_2^n of Hamming weight 1 are precisely the vectors
 - $\mathbf{e}_1^n, \dots, \mathbf{e}_n^n$. • For all $i \in \{1, \dots, n\}$, $\mathbf{e}_i^n H = \mathbf{h}_i \neq \mathbf{0}$, and so $\mathbf{e}_i^n \notin C$.
 - For all $i \in \{1, ..., n\}$, $\mathbf{e}_i^* H = \mathbf{h}_i \neq \mathbf{U}$, and so $\mathbf{e}_i^* \notin \mathbf{C}$.
 Vectors of \mathbb{F}^n of Hamming weight 2 are precisely the vectors.
 - Vectors of \mathbb{F}_2^n of Hamming weight 2 are precisely the vectors of the form $\mathbf{e}_i^n + \mathbf{e}_j^n$, with $i \neq j$.

- Reminder: $C = \{ \mathbf{x} \in \mathbb{F}_2^n \mid \mathbf{x}H = \mathbf{0} \}$. WTS $[n, k, d]_2$ -code.
 - It remains to show that the d in $[n, k, d]_2$ is correct, i.e. that the minimum distance in C is d=3.
 - By Proposition 2.2, it suffices to show that the minimum Hamming weight of a non-zero vector in C is d = 3.
 - Vectors of \mathbb{F}_2^n of Hamming weight 1 are precisely the vectors $\mathbf{e}_1^n,\ldots,\mathbf{e}_n^n$.
 - For all $i \in \{1, ..., n\}$, $\mathbf{e}_i^n H = \mathbf{h}_i \neq \mathbf{0}$, and so $\mathbf{e}_i^n \notin C$.

 - Vectors of \mathbb{F}_2^n of Hamming weight 2 are precisely the vectors

 $\mathbf{e}_{i}^{n}+\mathbf{e}_{i}^{n}\notin\mathcal{C}.$

of the form $\mathbf{e}_{i}^{n} + \mathbf{e}_{i}^{n}$, with $i \neq j$. • For distinct $i, j \in \{1, ..., n\}$, $(\mathbf{e}_i^n + \mathbf{e}_i^n)H = \mathbf{h}_i + \mathbf{h}_i \neq \mathbf{0}$, and so

- Reminder: $C = \{ \mathbf{x} \in \mathbb{F}_2^n \mid \mathbf{x}H = \mathbf{0} \}$. WTS $[n, k, d]_2$ -code. • It remains to show that the d in $[n, k, d]_2$ is correct, i.e. that
- the minimum distance in C is d=3. By Proposition 2.2, it suffices to show that the minimum
- Hamming weight of a non-zero vector in C is d = 3. • Vectors of \mathbb{F}_2^n of Hamming weight 1 are precisely the vectors
- $\mathbf{e}_1^n,\ldots,\mathbf{e}_n^n$
- For all $i \in \{1, ..., n\}$, $\mathbf{e}_i^n H = \mathbf{h}_i \neq \mathbf{0}$, and so $\mathbf{e}_i^n \notin C$.
- Vectors of \mathbb{F}_2^n of Hamming weight 2 are precisely the vectors of the form $\mathbf{e}_{i}^{n} + \mathbf{e}_{i}^{n}$, with $i \neq j$.

• For distinct $i, j \in \{1, ..., n\}$, $(\mathbf{e}_i^n + \mathbf{e}_i^n)H = \mathbf{h}_i + \mathbf{h}_i \neq \mathbf{0}$, and so

- $\mathbf{e}_{i}^{n}+\mathbf{e}_{i}^{n}\notin\mathcal{C}.$ • So, C does not contain any non-zero vectors of Hamming
- weight at most two.

- Reminder: $C = \{ \mathbf{x} \in \mathbb{F}_2^n \mid \mathbf{x}H = \mathbf{0} \}$. WTS $[n, k, d]_2$ -code.
- It remains to show that the d in $[n, k, d]_2$ is correct, i.e. that the minimum distance in C is d = 3.
- By Proposition 2.2, it suffices to show that the minimum Hamming weight of a non-zero vector in C is d = 3.
- Vectors of \mathbb{F}_2^n of Hamming weight 1 are precisely the vectors $\mathbf{e}_1^n, \dots, \mathbf{e}_n^n$.
 - For all $i \in \{1, ..., n\}$, $\mathbf{e}_i^n H = \mathbf{h}_i \neq \mathbf{0}$, and so $\mathbf{e}_i^n \notin C$.
- Vectors of F₂ⁿ of Hamming weight 2 are precisely the vectors of the form e_iⁿ + e_jⁿ, with i ≠ j.
 For distinct i, j ∈ {1,...,n}, (e_iⁿ + e_iⁿ)H = h_i + h_i ≠ 0, and so
- e_iⁿ + e_jⁿ ∉ C.
 So, C does not contain any non-zero vectors of Hamming weight at most two.
- *C* does contain a vector of Hamming weight at most three, e.g. the vector $\mathbf{e}_1^n + \mathbf{e}_2^n + \mathbf{e}_3^n$.
- Because: $(\mathbf{e}_1^n + \mathbf{e}_2^n + \mathbf{e}_3^n)H = \mathbf{h}_1 + \mathbf{h}_2 + \mathbf{h}_3 = \mathbf{0}$.

- Reminder: $C = \{\mathbf{x} \in \mathbb{F}_2^n \mid \mathbf{x}H = \mathbf{0}\}$. WTS $[n, k, d]_2$ -code.
- It remains to show that the d in $[n, k, d]_2$ is correct, i.e. that the minimum distance in C is d = 3.
- By Proposition 2.2, it suffices to show that the minimum Hamming weight of a non-zero vector in C is d = 3.
- Vectors of \mathbb{F}_2^n of Hamming weight 1 are precisely the vectors $\mathbf{e}_1^n, \dots, \mathbf{e}_n^n$.
 - For all $i \in \{1, ..., n\}$, $\mathbf{e}_i^n H = \mathbf{h}_i \neq \mathbf{0}$, and so $\mathbf{e}_i^n \notin C$.
- Vectors of F₂ⁿ of Hamming weight 2 are precisely the vectors of the form e_iⁿ + e_jⁿ, with i ≠ j.
 For distinct i, j ∈ {1,...,n}, (e_iⁿ + e_iⁿ)H = h_i + h_i ≠ 0, and so
- So, C does not contain any non-zero vectors of Hamming weight at most two.
 C does contain a vector of Hamming weight at most three
- *C* does contain a vector of Hamming weight at most three, e.g. the vector $\mathbf{e}_1^n + \mathbf{e}_2^n + \mathbf{e}_3^n$.
- Because: $(\mathbf{e}_1^n + \mathbf{e}_2^n + \mathbf{e}_3^n)H = \mathbf{h}_1 + \mathbf{h}_2 + \mathbf{h}_3 = \mathbf{0}$.
- So, min{wt(x) | $x \in C, x \neq 0$ } = 3 = d.

 $\mathbf{e}_{i}^{n}+\mathbf{e}_{i}^{n}\notin\mathcal{C}.$

- Reminder: $C = \{ \mathbf{x} \in \mathbb{F}_2^n \mid \mathbf{x}H = \mathbf{0} \}$. WTS $[n, k, d]_2$ -code. • It remains to show that the d in $[n, k, d]_2$ is correct, i.e. that
- the minimum distance in C is d=3. By Proposition 2.2, it suffices to show that the minimum
 - Hamming weight of a non-zero vector in C is d=3. • Vectors of \mathbb{F}_2^n of Hamming weight 1 are precisely the vectors
 - $\mathbf{e}_1^n,\ldots,\mathbf{e}_n^n$
 - For all $i \in \{1, \ldots, n\}$, $\mathbf{e}_i^n H = \mathbf{h}_i \neq \mathbf{0}$, and so $\mathbf{e}_i^n \notin C$. • Vectors of \mathbb{F}_2^n of Hamming weight 2 are precisely the vectors of the form $\mathbf{e}_{i}^{n} + \mathbf{e}_{i}^{n}$, with $i \neq j$.
 - For distinct $i, j \in \{1, ..., n\}$, $(\mathbf{e}_i^n + \mathbf{e}_i^n)H = \mathbf{h}_i + \mathbf{h}_i \neq \mathbf{0}$, and so $\mathbf{e}_{i}^{n}+\mathbf{e}_{i}^{n}\notin\mathcal{C}.$ • So, C does not contain any non-zero vectors of Hamming
 - weight at most two. • C does contain a vector of Hamming weight at most three,
 - e.g. the vector $\mathbf{e}_1^n + \mathbf{e}_2^n + \mathbf{e}_3^n$.
- Because: $(\mathbf{e}_1^n + \mathbf{e}_2^n + \mathbf{e}_3^n)H = \mathbf{h}_1 + \mathbf{h}_2 + \mathbf{h}_3 = \mathbf{0}$. • So, $\min\{\text{wt}(\mathbf{x}) \mid \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\} = 3 = d$.
- So, d from $[n, k, d]_2$ is correct.

•	What about error correction for the Hamming code just constructed?	C that we

- What about error correction for the Hamming code C that we just constructed?
- Suppose $\mathbf{w} \in \mathbb{F}_2^n$ differs in exactly one coordinate from some codeword in C, that is, that \mathbf{w} can be obtained from a codeword in C by introducing one error (i.e. by changing exactly one 1 into 0, or vice versa, in some codeword of C).

- What about error correction for the Hamming code C that we just constructed?
- Suppose $\mathbf{w} \in \mathbb{F}_2^n$ differs in exactly one coordinate from some codeword in C, that is, that w can be obtained from a codeword in C by introducing one error (i.e. by changing exactly one 1 into 0, or vice versa, in some codeword of C).
- Then there exist some $\mathbf{x} \in C$ and $i \in \{1, \dots, n\}$ such that
- $\mathbf{w} = \mathbf{x} + \mathbf{e}_i^n$, and so

$$\mathbf{w}H = (\mathbf{x} + \mathbf{e}_i^n)H = \underbrace{\mathbf{x}H}_{=\mathbf{0}} + \underbrace{\mathbf{e}_i^nH}_{=\mathbf{h}_i} = \mathbf{h}_i.$$

- What about error correction for the Hamming code C that we just constructed?
- Suppose $\mathbf{w} \in \mathbb{F}_2^n$ differs in exactly one coordinate from some codeword in C, that is, that w can be obtained from a codeword in C by introducing one error (i.e. by changing exactly one 1 into 0, or vice versa, in some codeword of C).
- Then there exist some $\mathbf{x} \in C$ and $i \in \{1, ..., n\}$ such that $\mathbf{w} = \mathbf{x} + \mathbf{e}_i^n$, and so

$$\mathbf{w}H = (\mathbf{x} + \mathbf{e}_i^n)H = \underbrace{\mathbf{x}H}_{=0} + \underbrace{\mathbf{e}_i^nH}_{=0} = \mathbf{h}_i.$$

$$=0$$

$$= h_i$$

But h_i is simply the integer i written in binary code!

- What about error correction for the Hamming code *C* that we just constructed?
- Suppose $\mathbf{w} \in \mathbb{F}_2^n$ differs in exactly one coordinate from some codeword in C, that is, that \mathbf{w} can be obtained from a codeword in C by introducing one error (i.e. by changing exactly one 1 into 0, or vice versa, in some codeword of C).
- Then there exist some $\mathbf{x} \in C$ and $i \in \{1, ..., n\}$ such that $\mathbf{w} = \mathbf{x} + \mathbf{e}_i^n$, and so

$$\mathbf{w}H = (\mathbf{x} + \mathbf{e}_i^n)H = \underbrace{\mathbf{x}H}_{=\mathbf{0}} + \underbrace{\mathbf{e}_i^nH}_{=\mathbf{h}_i} = \mathbf{h}_i.$$

- But \mathbf{h}_i is simply the integer i written in binary code!
- So, if w was obtained from a codeword in C by introducing exactly one error, then the coordinate of that error is the integer whose binary representation is given by the vector wH.

- ullet What about error correction for the Hamming code ${\cal C}$ that we just constructed?
- Suppose $\mathbf{w} \in \mathbb{F}_2^n$ differs in exactly one coordinate from some codeword in C, that is, that \mathbf{w} can be obtained from a codeword in C by introducing one error (i.e. by changing exactly one 1 into 0, or vice versa, in some codeword of C).
- Then there exist some $\mathbf{x} \in C$ and $i \in \{1, ..., n\}$ such that $\mathbf{w} = \mathbf{x} + \mathbf{e}_i^n$, and so

$$\mathbf{w}H = (\mathbf{x} + \mathbf{e}_i^n)H = \underbrace{\mathbf{x}H}_{=\mathbf{0}} + \underbrace{\mathbf{e}_i^nH}_{=\mathbf{h}_i} = \mathbf{h}_i.$$

- But \mathbf{h}_i is simply the integer i written in binary code!
- So, if w was obtained from a codeword in C by introducing exactly one error, then the coordinate of that error is the integer whose binary representation is given by the vector wH.
- ullet We can correct the error by altering the entry (from 1 to 0, or vice versa) in that one coordinate of ullet.