NDMI011: Combinatorics and Graph Theory 1

Lecture #13 Linear codes

Irena Penev

1 Some Linear Algebra preliminaries

In what follows, for a field \mathbb{F} and a positive integer n, we denote by \mathbb{F}^n the set of all row vectors of length n whose entries are all in \mathbb{F} . For vectors $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_n)$ in \mathbb{F}^n , we define $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i$, where the summation and multiplication denote the operations from the field \mathbb{F} ; note that $\langle \mathbf{x}, \mathbf{y} \rangle \in \mathbb{F}$. If $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, then \mathbf{x} and \mathbf{y} are said to be *orthogonal*.

Instead of multiplying matrices by column vectors on the right $(A\mathbf{x})$, we will multiply matrices by row vectors on the left $(\mathbf{x}A)$. If A is an $n \times m$ matrix with entries in \mathbb{F} , and $\mathbf{x} \in \mathbb{F}^n$, then we can think of \mathbf{x} as a $1 \times n$ matrix, and we can compute $\mathbf{x}A$ according to the usual rules of matrix multiplication.²

Note that if
$$\mathbf{x} = (x_1, \dots, x_n)$$
 and $A = \begin{bmatrix} \mathbf{r}_1 \\ \vdots \\ \mathbf{r}_n \end{bmatrix}$ (i.e. $\mathbf{r}_1, \dots, \mathbf{r}_n$ are the rows

of A, from top to bottom), then $\mathbf{x}A = \sum_{i=1}^{n} x_i \mathbf{r}_i$. Furthermore, if \mathbf{e}_i is the *i*-th standard basis vector of \mathbb{F}^n , i.e. the row vector whose *i*-th entry is 1, and all of whose other entries are 0, then $\mathbf{e}_i A$ is equal to the *i*-th row of A.

With these adjustments, all familiar theorems of Linear Algebra still hold, but with rows and columns reversed. For instance, Gaussian elimination is performed on columns, not rows.³

¹So, A has n rows and m columns, and **x** is a row vector of length n.

²Indeed, we multiply a $1 \times n$ matrix by an $n \times m$ matrix, and we obtain a $1 \times m$ matrix, i.e. a row vector of length m.

³Alternatively, given a matrix A, we can perform Gaussian elimination as follows: we first form the transpose A^T , then we perform the familial Gaussian elimination on rows to obtain a matrix B, and then we take the transpose of B. The result is the same as if we performed Gaussian elimination on the columns of A directly.

For a field \mathbb{F} and a subspace C of \mathbb{F}^n , we define $C^{\perp} = \{\mathbf{y} \in \mathbb{F}^n \mid \langle \mathbf{x}, \mathbf{y} \rangle = 0 \text{ for all } \mathbf{x} \in C\}$. It is easy to check that C^{\perp} is a subspace of $\mathbb{F}^{n,4}$

Theorem 1.1. Let \mathbb{F} be a field, and let C be a subspace of \mathbb{F}^n . Then $\dim C + \dim C^{\perp} = n$.

Proof. Set $k = \dim C$; we must show that $\dim C^{\perp} = n - k$. If k = 0, then $C = \{0\}$ and $C^{\perp} = \mathbb{F}^n$, and it follows that $\dim C^{\perp} = n = n - k$. From now on, we assume that $k \geq 1$. Let $\{\mathbf{c}_1, \ldots, \mathbf{c}_k\}$ be some basis for C, and

let
$$G = \begin{bmatrix} \mathbf{c}_1 \\ \vdots \\ \mathbf{c}_k \end{bmatrix}$$
. Then $C^{\perp} = \{ \mathbf{y} \in \mathbb{F}^n \mid \mathbf{y}G^T = \mathbf{0} \} = \mathrm{Ker}(G^T).^5$ By the

Rank-nullity theorem, we have that $\operatorname{rank}(G^T) + \dim \operatorname{Ker}(G^T) = n$. But $\operatorname{rank}(G^T) = \operatorname{rank}(G) = k$ (because G has k rows, and they are linearly independent), and as we saw $C^{\perp} = \operatorname{Ker}(G^T)$. It follows that $k + \dim C^{\perp} = n$, i.e. $\dim C^{\perp} = n - k$.

Proposition 1.2. Let \mathbb{F} be a field, and let C be a subspace of \mathbb{F}^n . Then $(C^{\perp})^{\perp} = C$.

Proof. Obviously, $C \subseteq (C^{\perp})^{\perp}$; 6 since C and $(C^{\perp})^{\perp}$ are both subspaces of \mathbb{F}^{n} , it follows that C is a subspace of $(C^{\perp})^{\perp}$. On the other hand, by Theorem 1.1, we have that

$$\dim(C^\perp)^\perp = n - \dim C^\perp = n - (n - \dim C) = \dim C,$$
 and we deduce that $C = (C^\perp)^\perp$. \Box

2 Linear codes

A linear code is a subspace C of a vector space \mathbb{F}_q^n , where \mathbb{F}_q is a finite field of size q (here, q is a prime power).⁷ Note that every linear code contains the zero vector.

Notationally, if a linear code C is an $(n, k, d)_q$ -code, then we write that C is an $[n, k, d]_q$ -code (here, square brackets indicate that C is a linear code). Clearly, an $[n, k, d]_q$ -code is a subspace of \mathbb{F}_q^n . Furthermore, as our next proposition shows, the (vector space) dimension of an $[n, k, d]_q$ -code is k.

⁴Check this!

 $^{^5\}mathrm{Ker}(G^T) = \{\mathbf{y} \in \mathbb{F}^n \mid \mathbf{y}G^T = \mathbf{0}\} \text{ is simply the definition of } \mathrm{Ker}(G^T).$

⁶Indeed, every vector in C is orthogonal to every vector in C^{\perp} . On the other hand, $(C^{\perp})^{\perp}$ is the set of all vectors in \mathbb{F} that are orthogonal to every vector in C^{\perp} . It follows that $C \subseteq (C^{\perp})^{\perp}$.

⁷So, elements of \mathbb{F}_q are row vectors of length n, all of whose entries are in the field \mathbb{F}_q .

⁸This is because the alphabet over which C is a code must be of size q, and since C is a linear code, it is a subspace of \mathbb{F}^n , where \mathbb{F} is some finite field. So, \mathbb{F} is a field of size q, and so it is equal (technically, isomorphic) to \mathbb{F}_q (because all finite fields of the same size are isomorphic).

Proposition 2.1. Let C be an $[n, k, d]_q$ -code. Then dim C = k, i.e. the dimension of C as a vector space is k.

Proof. Since C is an $[n, k, d]_q$ -code, we know that C is a subspace of \mathbb{F}_q^n ; set $\ell = \dim C$. We must show that $\ell = k$. Let $\{\mathbf{c}_1, \dots, \mathbf{c}_\ell\}$ be a basis for C. Then C is the set of all vectors of the form $\sum_{i=1}^{\ell} \alpha_i \mathbf{c}_i$, where $\alpha_1, \ldots, \alpha_\ell \in \mathbb{F}_q$. There are q choices for each α_i , and so there are q^ℓ choices for the ℓ -tuple $(\alpha_1, \ldots, \alpha_\ell)$. On the other hand, since $\{\mathbf{c}_1, \ldots, \mathbf{c}_\ell\}$ is linearly independent (because it is a basis), we know that $\sum_{i=1}^{\ell} \alpha_i \mathbf{c}_i = \sum_{i=1}^{\ell} \beta_i \mathbf{c}_i$ (where $\alpha_1, \ldots, \alpha_\ell, \beta_1, \ldots, \beta_\ell \in \mathbb{F}_q$) if and only if $(\alpha_1, \ldots, \alpha_\ell) = (\beta_1, \ldots, \beta_\ell)$. It follows that $|C| = q^{\ell}$, and consequently, $\ell = \log_q |C|$. Since $k = \log_q |C|$ (by definition), it follows that $\ell = k$, which is what we needed to show. \square

Now, suppose that $C \subseteq \mathbb{F}_q^n$ be an $[n,k,d]_q$ -code, with 0 < k < n. By Proposition 2.1, we have that $\dim C = k$, and so C is a non-null proper subspace of \mathbb{F}_q^n . Let G be any matrix whose rows form a basis for C (in particular, $G \in \mathbb{F}_q^{k \times n}$); then G is called the *generator matrix* of the linear code C. Note that this implies that $C^{\perp} = \{ \mathbf{y} \in \mathbb{F}_q^n \mid \mathbf{y}G^T = \mathbf{0} \}$. Next, suppose H is any matrix such that the rows of H^T form a basis for C^{\perp} (so, H^T is a generator matrix for C^{\perp}). The matrix H is called a parity check matrix for C, and by Proposition 1.2, it satisfies $C = \{ \mathbf{x} \in \mathbb{F}_q^n \mid \mathbf{x}H = \mathbf{0} \},^{10}$ i.e. C = Ker(H). Note that the parity check matrix H can be used to check whether a vector $\mathbf{x} \in \mathbb{F}_q^n$ is a codeword of C. Indeed, if $\mathbf{x}H = \mathbf{0}$, then $\mathbf{x} \in C$, and otherwise, $\mathbf{x} \notin C$. Note that, given a generator matrix for C, one can easily compute a parity check matrix for C, and vice versa.

Given a vector $\mathbf{x} \in \mathbb{F}_q^n$, the Hamming weight of \mathbf{x} , denoted by $\mathrm{wt}(\mathbf{x})$, is the number of non-zero coordinates in \mathbf{x} .

Proposition 2.2. Let $C \subsetneq \mathbb{F}_q^n$ be an $[n, k, d]_q$ -code, with 0 < k < n. Then $d = \min\{wt(\mathbf{x}) \mid \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\}.$

Proof. Fix $\mathbf{x} \in C \setminus \{\mathbf{0}\}$ with minimum Hamming weight. We must show that $d = \operatorname{wt}(\mathbf{x}).$

First, since C is a linear code, we know that $\mathbf{0} \in C$, and so (since x and **0** are distinct codewords in C) we have that $d(\mathbf{x}, \mathbf{0}) \geq d$. But obviously, $d(\mathbf{x}, \mathbf{0}) = \text{wt}(\mathbf{x})$, and it follows that $\text{wt}(\mathbf{x}) \geq d$.

It remains to show that $wt(\mathbf{x}) \leq d$. Fix distinct $\mathbf{y}, \mathbf{z} \in C$ such that $d(\mathbf{y}, \mathbf{z}) = d$. Since C is a vector space, we know that $\mathbf{y} - \mathbf{z} \in C$, and so by the choice of \mathbf{x} , we have that $\operatorname{wt}(\mathbf{x}) \leq \operatorname{wt}(\mathbf{y} - \mathbf{z})$. But now

$$d = d(\mathbf{y}, \mathbf{z}) = \text{wt}(\mathbf{y} - \mathbf{z}) \ge \text{wt}(\mathbf{x}),$$

This is because $|\mathbb{F}_q| = q$.

10 Let us check this. Clearly, $(C^{\perp})^{\perp} = \{\mathbf{x} \in \mathbb{F}_q^n \mid \mathbf{x}(H^T)^T = \mathbf{0}\} = \{\mathbf{x} \in \mathbb{F}_q^n \mid \mathbf{x}H = \mathbf{0}\}.$ Since $(C^{\perp})^{\perp} = C$ (by Proposition 1.2), it follows that $C = \{\mathbf{x} \in \mathbb{F}_q^n \mid \mathbf{x}H = \mathbf{0}\}.$

¹¹The minimum distance between codewords in C is d. So, there exists distinct vectors in C (say, \mathbf{y} and \mathbf{z}) whose distance is precisely d.

¹²We are also using the fact that $\mathbf{y} \neq \mathbf{z}$, and so $\mathbf{y} - \mathbf{z} \neq \mathbf{0}$.

3 Hamming codes

Fix an integer $\ell \geq 2$, and set $n = 2^{\ell} - 1$, $k = 2^{\ell} - \ell - 1$, and d = 3. Our goal in this section is to construct an $[n, k, d]_2$ -code, called a *Hamming code*.¹³ We do this by constructing its parity check matrix H; then the code in question will simply be the subspace $C = \{\mathbf{x} \in \mathbb{F}_2^n \mid \mathbf{x}H = \mathbf{0}\}$.

Note that the binary representation of the integer $n = 2^{\ell} - 1$ is $1 \dots 1$.

More generally, the binary representation of any integer in $\{1,\ldots,n\}$ has at most ℓ digits. Now, for all $i \in \{1,\ldots,n\}$, let $\mathbf{h}_i \in \mathbb{F}_2^{\ell}$ be the vector giving the binary representation of i, with zeros added to the front if necessary (so that the length of the representation is ℓ).¹⁴ Let

$$H = \begin{bmatrix} \mathbf{h}_1 \\ \vdots \\ \mathbf{h}_n \end{bmatrix}.$$

Note that $H \in \mathbb{F}_2^{n \times \ell}$. We now define the code C by setting

$$C = \{ \mathbf{x} \in \mathbb{F}_2^n \mid \mathbf{x}H = \mathbf{0} \}.$$

Let us show that C is an $[n,k,d]_2$ -code. Obviously, C is a subspace of $\mathbb{F}_2^{n.15}$ Let us show that $\dim C = k.^{16}$ As usual, for all $i \in \{1,\ldots,\ell\}$, let \mathbf{e}_i^ℓ be the vector in \mathbb{F}_2^ℓ whose i-th coordinate is 1, and all of whose other coordinates are 0. Then each of $\mathbf{e}_1^\ell,\ldots,\mathbf{e}_\ell^\ell$ is a row of H, and furthermore, the set $\{\mathbf{e}_1^\ell,\ldots,\mathbf{e}_\ell^\ell\}$ is a basis for \mathbb{F}_2^ℓ ; so, $\operatorname{rank}(H) = \ell$. The Rank-nullity theorem guarantees that $\operatorname{rank}(H) + \dim \operatorname{Ker}(H) = n$, and we deduce that $\dim \operatorname{Ker}(H) = n - \ell = k$. But $C = \operatorname{Ker}(H)$, and so $\dim C = k$.

It remains to show that the minimum distance of words in C is d=3. We will use Proposition 2.2. As usual, for all $i \in \{1, ..., n\}$, let \mathbf{e}_i^n be the vector in \mathbb{F}_2^n whose i-th coordinate is 1, and all of whose other coordinates are 0. Note that the vectors of \mathbb{F}_2^n of Hamming weight 1 are precisely the vectors $\mathbf{e}_1^n, \ldots, \mathbf{e}_n^n$. But note that, for all $i \in \{1, \ldots, n\}$, we have that $\mathbf{e}_i^n H = \mathbf{h}_i \neq \mathbf{0}$, and so $\mathbf{e}_i^n \notin C$. Next, vectors of \mathbb{F}_2^n of Hamming weight 2 are precisely the

¹³It is also possible to construct "q-ary Hamming codes," which are over the (more general) field \mathbb{F}_q . For the sake of simplicity, though, we consider only binary Hamming codes, i.e. those over the field \mathbb{F}_2 .

¹⁴For example, if $\ell = 2$, then n = 3, and we have that $\mathbf{h}_1 = (0,1)$, $\mathbf{h}_2 = (1,0)$, and $\mathbf{h}_3 = (1,1)$.

¹⁵So, C is a linear code, and furthermore, the first coordinate (i.e. the n-part) and the subscript (i.e. 2) of $[n, k, d]_2$ are correct.

¹⁶In view of Proposition 2.1, this will guarantee that second coordinate (i.e. the k-part) of $[n, k, d]_2$ is correct.

vectors of the form $\mathbf{e}_i^n + \mathbf{e}_j^n$, with $i \neq j$. Now, for distinct $i, j \in \{1, \dots, n\}$, we have that $(\mathbf{e}_i^n + \mathbf{e}_j^n)H = \mathbf{h}_i + \mathbf{h}_j$; since $\mathbf{h}_i \neq \mathbf{h}_j$ (and our field is \mathbb{F}_2), we have that $\mathbf{h}_i + \mathbf{h}_j \neq \mathbf{0}$, and it follows that $\mathbf{e}_i^n + \mathbf{e}_j^n \notin C$. We have now shown that C does not contain any non-zero vectors of Hamming weight at most two. On the other hand, C does contain a vector of Hamming weight at most three, e.g. the vector $\mathbf{e}_1^n + \mathbf{e}_2^n + \mathbf{e}_3^n$. So, $\min\{\mathbf{wt}(\mathbf{x}) \mid \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\} = 3 = d$, and so by Proposition 2.2, we see that the minimum distance in C is d.

We have now shown that C is indeed an $[n, k, d]_2$ -code, that is, C is a $[2^{\ell} - 1, 2^{\ell} - \ell - 1, 3]_2$ -code. The code that we just constructed is called a *Hamming code*.

Finally, let us explain how error checking works for the Hamming code C that we just constructed. Suppose $\mathbf{w} \in \mathbb{F}_2^n$. Then by construction, $\mathbf{w} \in C$ if and only if $\mathbf{w}H = \mathbf{0}$. Suppose now that \mathbf{w} differs in exactly one coordinate from some codeword in C, that is, that \mathbf{w} can be obtained from a codeword in C by introducing one error (i.e. by changing exactly one 1 into 0, or vice versa, in some codeword of C). This means that there exist some $\mathbf{x} \in C$ and $i \in \{1, \ldots, n\}$ such that $\mathbf{w} = \mathbf{x} + \mathbf{e}_i^n$, and so

$$\mathbf{w}H = (\mathbf{x} + \mathbf{e}_i^n)H$$

$$= \underbrace{\mathbf{x}H}_{=\mathbf{0}} + \underbrace{\mathbf{e}_i^n H}_{=\mathbf{h}_i}$$

$$= \mathbf{h}_i.$$

But \mathbf{h}_i is simply the integer i written in binary code! This means that if \mathbf{w} was obtained from a codeword in C by introducing exactly one error, then the coordinate of that error is the integer whose binary representation is given by the vector $\mathbf{w}H$; we can correct the error by altering the entry (from 1 to 0, or vice versa) in that one coordinate of \mathbf{w} .

$$(\mathbf{e}_{1}^{n} + \mathbf{e}_{2}^{n} + \mathbf{e}_{3}^{n})H = \mathbf{h}_{1} + \mathbf{h}_{2} + \mathbf{h}_{3}$$

$$= \underbrace{(0, \dots, 0, 0, 1) + (0, \dots, 0, 1) + (0, \dots, 0, 1, 1)}_{n-2}$$

and so $\mathbf{e}_1^n + \mathbf{e}_2^n + \mathbf{e}_3^n \in C$.

¹⁷Indeed,