
NDMI011: Combinatorics and Graph Theory 1

Lecture #13

Linear codes

Irena Penev

1 Some Linear Algebra preliminaries

In what follows, for a field F and a positive integer n, we denote by Fn the
set of all row vectors of length n whose entries are all in F. For vectors
x = (x1, . . . , xn) and y = (y1, . . . , yn) in Fn, we define ⟨x,y⟩ =

∑n
i=1 xiyi,

where the summation and multiplication denote the operations from the field
F; note that ⟨x,y⟩ ∈ F. If ⟨x,y⟩ = 0, then x and y are said to be orthogonal.

Instead of multiplying matrices by column vectors on the right (Ax), we
will multiply matrices by row vectors on the left (xA). If A is an n×m matrix
with entries in F, and x ∈ Fn,1 then we can think of x as a 1×n matrix, and
we can compute xA according to the usual rules of matrix multiplication.2

Note that if x = (x1, . . . , xn) and A =

 r1
...
rn

 (i.e. r1, . . . , rn are the rows

of A, from top to bottom), then xA =
n∑

i=1
xiri. Furthermore, if ei is the i-th

standard basis vector of Fn, i.e. the row vector whose i-th entry is 1, and all
of whose other entries are 0, then eiA is equal to the i-th row of A.

With these adjustments, all familiar theorems of Linear Algebra still hold,
but with rows and columns reversed. For instance, Gaussian elimination is
performed on columns, not rows.3

1So, A has n rows and m columns, and x is a row vector of length n.
2Indeed, we multiply a 1×n matrix by an n×m matrix, and we obtain a 1×m matrix,

i.e. a row vector of length m.
3Alternatively, given a matrix A, we can perform Gaussian elimination as follows: we

first form the transpose AT , then we perform the familial Gaussian elimination on rows to
obtain a matrix B, and then we take the transpose of B. The result is the same as if we
performed Gaussian elimination on the columns of A directly.
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For a field F and a subspace C of Fn, we define C⊥ = {y ∈ Fn |
⟨x,y⟩ = 0 for all x ∈ C}. It is easy to check that C⊥ is a subspace of Fn.4

Theorem 1.1. Let F be a field, and let C be a subspace of Fn. Then
dimC + dimC⊥ = n.

Proof. Set k = dimC; we must show that dimC⊥ = n− k. If k = 0, then
C = {0} and C⊥ = Fn, and it follows that dimC⊥ = n = n − k. From
now on, we assume that k ≥ 1. Let {c1, . . . , ck} be some basis for C, and

let G =

 c1
...
ck

. Then C⊥ = {y ∈ Fn | yGT = 0} = Ker(GT ).5 By the

Rank-nullity theorem, we have that rank(GT ) + dimKer(GT ) = n. But
rank(GT ) = rank(G) = k (because G has k rows, and they are linearly
independent), and as we saw C⊥ = Ker(GT ). It follows that k+dimC⊥ = n,
i.e. dimC⊥ = n− k.

Proposition 1.2. Let F be a field, and let C be a subspace of Fn. Then
(C⊥)⊥ = C.

Proof. Obviously, C ⊆ (C⊥)⊥;6 since C and (C⊥)⊥ are both subspaces of Fn,
it follows that C is a subspace of (C⊥)⊥. On the other hand, by Theorem 1.1,
we have that

dim(C⊥)⊥ = n− dimC⊥ = n− (n− dimC) = dimC,

and we deduce that C = (C⊥)⊥.

2 Linear codes

A linear code is a subspace C of a vector space Fn
q , where Fq is a finite field

of size q (here, q is a prime power).7 Note that every linear code contains
the zero vector.

Notationally, if a linear code C is an (n, k, d)q-code, then we write that
C is an [n, k, d]q-code (here, square brackets indicate that C is a linear code).
Clearly, an [n, k, d]q-code is a subspace of Fn

q .
8 Furthermore, as our next

proposition shows, the (vector space) dimension of an [n, k, d]q-code is k.

4Check this!
5Ker(GT ) = {y ∈ Fn | yGT = 0} is simply the definition of Ker(GT ).
6Indeed, every vector in C is orthogonal to every vector in C⊥. On the other hand,

(C⊥)⊥ is the set of all vectors in F that are orthogonal to every vector in C⊥. It follows
that C ⊆ (C⊥)⊥.

7So, elements of Fq are row vectors of length n, all of whose entries are in the field Fq.
8This is because the alphabet over which C is a code must be of size q, and since C is

a linear code, it is a subspace of Fn, where F is some finite field. So, F is a field of size q,
and so it is equal (technically, isomorphic) to Fq (because all finite fields of the same size
are isomorphic).
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Proposition 2.1. Let C be an [n, k, d]q-code. Then dimC = k, i.e. the
dimension of C as a vector space is k.

Proof. Since C is an [n, k, d]q-code, we know that C is a subspace of Fn
q ;

set ℓ = dimC. We must show that ℓ = k. Let {c1, . . . , cℓ} be a ba-
sis for C. Then C is the set of all vectors of the form

∑ℓ
i=1 αici, where

α1, . . . , αℓ ∈ Fq. There are q choices for each αi,
9 and so there are qℓ choices

for the ℓ-tuple (α1, . . . , αℓ). On the other hand, since {c1, . . . , cℓ} is linearly
independent (because it is a basis), we know that

∑ℓ
i=1 αici =

∑ℓ
i=1 βici

(where α1, . . . , αℓ, β1, . . . , βℓ ∈ Fq) if and only if (α1, . . . , αℓ) = (β1, . . . , βℓ).
It follows that |C| = qℓ, and consequently, ℓ = logq |C|. Since k = logq |C|
(by definition), it follows that ℓ = k, which is what we needed to show.

Now, suppose that C ⊆ Fn
q be an [n, k, d]q-code, with 0 < k < n. By

Proposition 2.1, we have that dimC = k, and so C is a non-null proper
subspace of Fn

q . Let G be any matrix whose rows form a basis for C (in

particular, G ∈ Fk×n
q ); then G is called the generator matrix of the linear

code C. Note that this implies that C⊥ = {y ∈ Fn
q | yGT = 0}. Next,

suppose H is any matrix such that the rows of HT form a basis for C⊥ (so,
HT is a generator matrix for C⊥). The matrix H is called a parity check
matrix for C, and by Proposition 1.2, it satisfies C = {x ∈ Fn

q | xH = 0},10
i.e. C = Ker(H). Note that the parity check matrix H can be used to check
whether a vector x ∈ Fn

q is a codeword of C. Indeed, if xH = 0, then x ∈ C,
and otherwise, x /∈ C. Note that, given a generator matrix for C, one can
easily compute a parity check matrix for C, and vice versa.

Given a vector x ∈ Fn
q , the Hamming weight of x, denoted by wt(x), is

the number of non-zero coordinates in x.

Proposition 2.2. Let C ⫋ Fn
q be an [n, k, d]q-code, with 0 < k < n. Then

d = min{wt(x) | x ∈ C,x ̸= 0}.
Proof. Fix x ∈ C \ {0} with minimum Hamming weight. We must show that
d = wt(x).

First, since C is a linear code, we know that 0 ∈ C, and so (since x and
0 are distinct codewords in C) we have that d(x,0) ≥ d. But obviously,
d(x,0) = wt(x), and it follows that wt(x) ≥ d.

It remains to show that wt(x) ≤ d. Fix distinct y, z ∈ C such that
d(y, z) = d.11 Since C is a vector space, we know that y − z ∈ C, and so by
the choice of x, we have that wt(x) ≤ wt(y − z).12 But now

d = d(y, z) = wt(y − z) ≥ wt(x),

9This is because |Fq| = q.
10Let us check this. Clearly, (C⊥)⊥ = {x ∈ Fn

q | x(HT )T = 0} = {x ∈ Fn
q | xH = 0}.

Since (C⊥)⊥ = C (by Proposition 1.2), it follows that C = {x ∈ Fn
q | xH = 0}.

11The minimum distance between codewords in C is d. So, there exists distinct vectors
in C (say, y and z) whose distance is precisely d.

12We are also using the fact that y ̸= z, and so y − z ̸= 0.
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which is what we needed to show.

3 Hamming codes

Fix an integer ℓ ≥ 2, and set n = 2ℓ − 1, k = 2ℓ − ℓ− 1, and d = 3. Our goal
in this section is to construct an [n, k, d]2-code, called a Hamming code.13 We
do this by constructing its parity check matrix H; then the code in question
will simply be the subspace C = {x ∈ Fn

2 | xH = 0}.
Note that the binary representation of the integer n = 2ℓ − 1 is 1 . . . 1︸ ︷︷ ︸

ℓ

.

More generally, the binary representation of any integer in {1, . . . , n} has at
most ℓ digits. Now, for all i ∈ {1, . . . , n}, let hi ∈ Fℓ

2 be the vector giving
the binary representation of i, with zeros added to the front if necessary (so
that the length of the representation is ℓ).14 Let

H =

 h1
...
hn

 .

Note that H ∈ Fn×ℓ
2 . We now define the code C by setting

C = {x ∈ Fn
2 | xH = 0}.

Let us show that C is an [n, k, d]2-code. Obviously, C is a subspace of
Fn
2 .

15 Let us show that dimC = k.16 As usual, for all i ∈ {1, . . . , ℓ}, let
eℓi be the vector in Fℓ

2 whose i-th coordinate is 1, and all of whose other
coordinates are 0. Then each of eℓ1, . . . , e

ℓ
ℓ is a row of H, and furthermore,

the set {eℓ1, . . . , eℓℓ} is a basis for Fℓ
2; so, rank(H) = ℓ. The Rank-nullity

theorem guarantees that rank(H) + dimKer(H) = n, and we deduce that
dimKer(H) = n− ℓ = k. But C = Ker(H), and so dimC = k.

It remains to show that the minimum distance of words in C is d = 3. We
will use Proposition 2.2. As usual, for all i ∈ {1, . . . , n}, let eni be the vector
in Fn

2 whose i-th coordinate is 1, and all of whose other coordinates are 0.
Note that the vectors of Fn

2 of Hamming weight 1 are precisely the vectors
en1 , . . . , e

n
n. But note that, for all i ∈ {1, . . . , n}, we have that eni H = hi ≠ 0,

and so eni /∈ C. Next, vectors of Fn
2 of Hamming weight 2 are precisely the

13It is also possible to construct “q-ary Hamming codes,” which are over the (more
general) field Fq. For the sake of simplicity, though, we consider only binary Hamming
codes, i.e. those over the field F2.

14For example, if ℓ = 2, then n = 3, and we have that h1 = (0, 1), h2 = (1, 0), and
h3 = (1, 1).

15So, C is a linear code, and furthermore, the first coordinate (i.e. the n-part) and the
subscript (i.e. 2) of [n, k, d]2 are correct.

16In view of Proposition 2.1, this will guarantee that second coordinate (i.e. the k-part)
of [n, k, d]2 is correct.
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vectors of the form eni + enj , with i ̸= j. Now, for distinct i, j ∈ {1, . . . , n},
we have that (eni + enj )H = hi + hj ; since hi ̸= hj (and our field is F2), we
have that hi + hj ̸= 0, and it follows that eni + enj /∈ C. We have now shown
that C does not contain any non-zero vectors of Hamming weight at most
two. On the other hand, C does contain a vector of Hamming weight at most
three, e.g. the vector en1 + en2 + en3 .

17 So, min{wt(x) | x ∈ C,x ̸= 0} = 3 = d,
and so by Proposition 2.2, we see that the minimum distance in C is d.

We have now shown that C is indeed an [n, k, d]2-code, that is, C is a
[2ℓ − 1, 2ℓ − ℓ − 1, 3]2-code. The code that we just constructed is called a
Hamming code.

Finally, let us explain how error checking works for the Hamming code C
that we just constructed. Suppose w ∈ Fn

2 . Then by construction, w ∈ C if
and only if wH = 0. Suppose now that w differs in exactly one coordinate
from some codeword in C, that is, that w can be obtained from a codeword
in C by introducing one error (i.e. by changing exactly one 1 into 0, or vice
versa, in some codeword of C). This means that there exist some x ∈ C and
i ∈ {1, . . . , n} such that w = x+ eni , and so

wH = (x+ eni )H

= xH︸︷︷︸
=0

+ eni H︸︷︷︸
=hi

= hi.

But hi is simply the integer i written in binary code! This means that if w
was obtained from a codeword in C by introducing exactly one error, then
the coordinate of that error is the integer whose binary representation is
given by the vector wH; we can correct the error by altering the entry (from
1 to 0, or vice versa) in that one coordinate of w.

17Indeed,

(en
1 + en

2 + en
3 )H = h1 + h2 + h3

= (0, . . . , 0︸ ︷︷ ︸
n−2

, 0, 1) + (0, . . . , 0︸ ︷︷ ︸
n−2

, 0, 1) + (0, . . . , 0︸ ︷︷ ︸
n−2

, 1, 1)

= 0,

and so en
1 + en

2 + en
3 ∈ C.
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