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Lecture #12

Error correcting codes

Irena Penev

1 A motivating example

Let us suppose a sender wishes to send a message (say, a sequence of 1’s and
0’s) to a receiver. If the communication channel is unreliable or noisy, the
message may get corrupted. For instance, the sender may send 1011, and the
receiver may get 1001.1 In this case, the receiver has no chance of spotting
and fixing the error.

One way to address this problem might be to agree to triple each bit (i.e.
each 1 or 0); so, instead of 1011, we would send 111000111111. Suppose just
one error occurred, and the receiver received 111000110111. Because the
receiver knows he was supposed to get a sequence of tripled 1’s and 0’s, he can
confidently say that there was an error in the boxed triple: 111000 110 111.
The receiver knows that the boxed triple should have been either 000 or 111,
and the latter (i.e. 111) is more likely because it is more likely that only one
error occurred than that two errors did. So, the receiver guesses that the
message sent was 111000111111, which corresponds to 1011. On the other
hand, if more than one error occurs in a triple corresponding to one bit, then
the receiver will either fail to detect the error or will correct it incorrectly.
For instance, if the receiver receives 111000100111, then he will incorrectly
guess that the sender sent 111000000111, which corresponds to 1001.

Here is another way to address the same problem. Consider the Fano
plane, represented below.2

1Here, errors are shown in red, to facilitate reading. However, the receiver does not see
this: he simply receives a string of 1’s and 0’s, uncolored.

2We saw the Fano plane in Lecture 3. Here, points are relabeled (relative to what we
had in Lecture 3), and the names of lines are omitted. We still have seven lines, represented
by the six line segments and the circle. (Each line has exactly three points.)
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We now form 16 row vectors of length seven as follows: we take all possible
incidence vectors of lines of the Fano plane,3 the incidence vectors of the
complements of the lines of the Fano plane,4 plus the vectors (0, 0, 0, 0, 0, 0, 0)
and (1, 1, 1, 1, 1, 1, 1). Let H be the set of these 16 vectors. Now, these
vectors have the following two properties:

� any two distinct vectors in H differ in at least three places/coordinates;

� for any vector w of 1’s and 0’s of length 7, there exists a unique vector
h ∈ H such that w and h differ in at most one place/coordinate.

This means that if a sender sends a vector from H, and at most one error is
made during transmission, the receiver can correctly guess which vector was
sent.5

How do we use H? First, note that there are precisely 16 strings of
1’s and 0’s of length four (indeed, these are simply the integers 0, 1, . . . , 15
written in binary code). So, we can set up a bijection π between the set of
these 16 strings and the set H. Now, suppose we wish to transmit a string of
1’s and 0’s of length 4n, for some positive integer n. We divide such a string
into n consecutive blocks of length four, and instead of sending these blocks,
we send (consecutively) the n vectors from H that correspond to them. The
advantage of this is that if, during transmission, at most one error is made
in each vector, the receiver will be able to spot it and correct it, and then to
read off (using π−1) the sender’s original 4n-bit message.

Note that, if we use H, then instead of sending 4n bits (the number of
bits in our original message), we send 7n bits. If data is expensive, then
this is clearly an improvement over tripling each bit (where we would send
3n bits for each n-bit message). We remark that H is a type of “Hamming
code,” sometimes called the Hamming(7,4) code (because the original 4 bits
are converted into 7 bits).

3For example, the incidence vector of the line {1, 2, 4} is (1, 1, 0, 1, 0, 0, 0).
4For example, the incidence vector of the complement of the line {1, 2, 4} is

(0, 0, 1, 0, 1, 1, 1).
5Indeed, the receiver simply chooses the unique vector from H that differs in at most

one coordinate from the vector that the receiver received.
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2 Basic notions

An alphabet is some finite set of symbols Σ = {s0, . . . , sm}. Often, our
alphabet is a finite field Fq, where q is prime power;6 particularly often, our
alphabet is F2 = Z2, which is simply the binary code (and we can do addition
and multiplication modulo 2). A word of length n is a string (or row vector)
of length n of symbols from our alphabet; Σn is the set of all words of length n
using symbols from the alphabet Σ. A code is a subset C of Σn.7 Elements of
the code are codewords. Given words x = x1 . . . xn and y = y1 . . . yn in Σn,8

the Hamming distance between x and y, denoted by d(x,y), is the number
of places in which x and y differ, i.e. d(x,y) = |{i ∈ {1, . . . , n} | xi ̸= yi}|.
It is straightforward to check that the Hamming distance d(·, ·) is a “metric”
on Σn, that is, that is satisfies the following three properties:9

� d(x, y) = 0 ⇔ x = y;

� d(x, y) = d(y, x);

� d(x, z) ≤ d(x, y) + d(y, z).

The inequality from the third bullet point is referred to as the triangle
inequality.

Codes are used as follows. A sender would like to send a message to a
receiver, and for this, he uses some code C ⊆ Σn, where Σ is some alphabet.
There is a bijection π (known both to the sender and the receiver) between
all possible messages and the code C. Now, the sender encodes his message
(i.e. turns it into a codeword in a code via the bijection) and sends it to
the receiver. The receiver receives this codeword, but possibly with some
errors. (If the sender sends the codeword x and the receiver receives the
word x̃, then d(x, x̃) is the number of errors created during transmission.)
The receiver corrects the errors (this is possible if the number of errors is
small enough, where “small enough” depends on the code used), and then
recovers the original message using π−1.

In general, there are two competing goals for codes. On the one hand,
we wish to send as many different messages as possible, using as few bits as

6Recall that, for a positive integer q, there is a field of size q if and only if q is a prime
power (i.e. q = pn, where p is a prime number and n is a positive integer). Furthermore,
all finite fields of the same size are isomorphic. If q a prime power, then Fq is the unique
(up to isomorphism) field of size q. Note that if p is a prime number, then Fp = Zp (but
this is only true if p is prime!).

7So, in the example from section 1, we have Σ = F2, n = 12 (the original message had
four bits, and so after we tripled each bit, we got 12 bits), and C = {w1 . . . w12 ∈ Σ12 |
w3k−2 = w3k−1 = w3k∀k ∈ {1, 2, 3, 4}}.

8Here, we treat a string or length n and a row vector of length n as interchangeable.
We use one or the other depending on convenience.

9Check this!
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possible. On the other hand, we wish to maximize the number of errors that
we can successfully correct.

Now, suppose Σ is an alphabet of size at least two, and C ⊆ Σn is a code
containing at least two codewords. Here are some parameters for the code C:

� the codeword length is n;

� the size of the alphabet is q = |Σ|;

� the dimension of C is |C|, instead of which we often consider the
logarithm k = logq |C|;

� the minimum distance in C is d = min{d(x, y) | x, y ∈ C, x ̸= y}.

A code with these parameters is an (n, k, d)q-code. Note that if at most ⌊d−1
2 ⌋

errors are made during the transmission of a codeword, then the receiver
can correctly spot and correct the errors by selecting the (unique) codeword
with minimum Hamming distance from the word that he received.

2.1 Some simple codes

The simplest code is the total code Σn, where Σ is an alphabet with q = |Σ| ≥ 2
and n is a positive integer. The total code Σn is an (n, n, 1)q code.10 If we
use this code, we send little data, but we cannot correct even a single error!

The repetition code Repn of length n over the alphabet Σ (with q = |Σ| ≥
2) is the code C = {x . . . x︸ ︷︷ ︸

n

| x ∈ Σ}. It is an (n, 1, n)q-code.
11 This code

allows us to correct as many as ⌊n−1
2 ⌋ errors, but it uses a lot of data.

Another simple example is the parity code C of length n (with n ≥ 2)
over the alphabet F2; it consists of all words of the form w1 . . . wn with
w1, . . . , wn ∈ F2 and

∑n
i=1wi = 0. Let us check that this is an (n, n− 1, 2)2-

code. Obviously, the codeword length is n and the size of the alphabet is
q = 2. Next, |C| = 2n−1; this is because the first n−1 symbols of a codeword
can be chosen arbitrarily (and there are 2n−1 ways of doing this), but the
n-th symbol is uniquely determined by the previous n− 1 ones (because the
sum must be 0). So, k = logq |C| = log2 2

n−1 = n− 1. Finally, it is obvious
that two different words cannot have distance 1, for otherwise, the sum of
symbols in one of them would be 1, a contradiction. On the other hand,
both 0 . . . 0︸ ︷︷ ︸

n−2

00 and 0 . . . 0︸ ︷︷ ︸
n−2

11 are in our code, and the distance between them

is 2. So, the minimum distance in our code is d = 2.

10Indeed, the size of the alphabet is q, the codeword length is n, and k = logq |Σn| =
logq q

n = n. The minimum distance is ∆(Σn) = 1 (indeed, recall that |Σ| ≥ 2, and take
two symbols s1, s2 ∈ Σ; then the distance between s1 s1 . . . s1︸ ︷︷ ︸

n−1

and s2 s1 . . . s1︸ ︷︷ ︸
n−1

is 1).

11Indeed, the size of the alphabet is q, and the codeword length is n. Further, |C| =
|Σ| = q, and so k = logq |C| = logq q = 1. Finally, the distance between any two distinct
words is precisely n.
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2.2 The Hadamard code

Given vectors a = (a1, . . . , an)
T and b = (b1, . . . , bn)

T in Rn, the standard
inner product (or dot product) of a and b is a · b =

∑n
i=1 aibi. Two vectors

in Rn are orthogonal with respect to the dot product if their dot product is
zero.

A Hadamard matrix of order n is an n× n matrix whose entries are all 1
or −1, and whose columns are pairwise orthogonal (with respect to the dot
product). For example, the matrix

H2 =

[
1 1
1 −1

]
is Hadamard matrix of order 2. Furthermore, if H is an n× n Hadamard
matrix, then [

H H
H −H

]
is a Hadamard matrix of order 2n.12

Proposition 2.1. Let H be a Hadamard matrix of order n. Then HHT =
nIn.

13 Furthermore, HT is also a Hadamard matrix of order n.

Proof. Let us show that HTH = nIn. To simplify notation, set H =[
h1 . . . hn

]
. For each i ∈ {1, . . . , n}, the (i, i)-th entry of HTH is

hi · hi, which is equal to n because all entries of a Hadamard matrix are ±1.
On the other hand, for distinct i, j ∈ {1, . . . , n}, the (i, j)-th entry of HTH
is hi · hj , which is equal to 0 since any two distinct columns of a Hadamard
matrix are orthogonal. This proves that HTH = nIn.

Now, since HTH = nIn, we have that ( 1nH
T )H = In; since

1
nH

T and
H are square matrices whose product is the identity matrix, we know from
Linear Algebra that 1

nH
T and H are both invertible and are each other’s

inverses. Consequently, H( 1nH
T ) = In, and we deduce that HHT = nIn.

It remains to show thatHT is a Hadamard matrix. SinceH is a Hadamard
matrix of order n, we know that HT is an n× n matrix, and that all entries
of HT are ±1. It remains to show that the columns of HT are pairwise
orthogonal. To simplify notation, we set HT =

[
a1 . . . an

]
; note that

this means that aT1 , . . . ,a
T
n are the rows of H (listed from top to bottom).

Now, fix distinct i, j ∈ {1, . . . , n}. Then the (i, j)-th entry of HHT is ai · aj .
But we we already showed that HHT = nIn, and so (since i ̸= j) the (i, j)-th
entry of HHT is 0. Thus, ai · aj = 0. So, the columns of HT are pairwise
orthogonal, i.e. HT is a Hadamard matrix.

We now construct the Hadamard code as follows. Fix any Hadamard
matrix H of order n. Then the Hadamard code associated with H consists

12Check this!
13As usual, In is the n× n identity matrix.
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of all rows of H and all rows of −H. This code has 2n codewords.14 It is
easy to check that this is an (n, 1 + log2 n,

n
2 )2-code.

15

3 The Singleton, Hamming, and Gilbert-Varshamov
bounds

For positive integers n, d, q with n ≥ d and q ≥ 2, let Aq(n, d) be the
maximum size of a code (i.e. the maximum possible number of codewords in
a code) C with the following parameters:

� the size of the alphabet is q;

� the codeword length is n;

� the minimum distance is at least d.

The Singleton bound. For all positive integers n, d, q such that n ≥ d and
q ≥ 2, we have that Aq(n, d) ≤ qn−d+1.

Proof. We prove this by induction on n, keeping q fixed and allowing d to
vary. More precisely, we fix positive integers n, d, q such that n ≥ d and
q ≥ 2, and we assume inductively that for all positive integers n′, d′ with
n′ ≥ d′ and n′ < n, we have that Aq(n

′, d′) ≤ qn
′−d′+1. We must show that

Aq(n, d) ≤ qn−d+1.
Fix a code C over an alphabet Σ with |Σ| = q, and assume that the

codeword length in C is n and that the minimum distance between codewords
in C is at least d. We must show that |C| ≤ qn−d+1. If d = 1, then

|C| ≤ |Σn| = qn = qn−d+1,

and we are done. So from now on, we assume that d ≥ 2.16

We now construct the code C̃ ⊆ Σn−d+1 as follows: C̃ is the set of all
words w1 . . . wn−d+1 in Σn−d+1 for which there exist some wn−d+2, . . . , wn ∈
Σ such that w1 . . . wn−d+1wn−d+2 . . . wn ∈ C.17 Let us check that |C̃| = |C|.
We define the function f : C → C̃ by setting f(w1 . . . wn−d+1wn−d+2 . . . wn) =
w1 . . . wn−d+1 for all w1 . . . wn−d+1wn−d+2 . . . wn ∈ C; we will show that f
is a bijection. By the construction of C̃ and f , we have that f is onto
C̃. Now, fix codewords w = w1 . . . wn and w′ = w′

1 . . . w
′
n in C such that

f(w) = f(w′); then w1 . . . wn−d+1 = w′
1 . . . w

′
n−d+1, and it follows that the

14For this, we must check that no two rows of H are the same, and that no row of H is
equal to any row of −H. But this follows from the fact that, by Proposition 2.1, HT is a
Hadamard matrix (details?).

15Details?
16This implies that n− d+ 1 < n; we will apply the induction hypothesis to n− d+ 1.
17So, C̃ is the set of all words that can be obtained by deleting the last d− 1 symbols of

a codeword in C.
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Hamming distance between w and w′ is at most d− 1.18 Since the minimum
distance in C is at least d, we conclude that w = w′, and it follows that f is
one-to-one. Thus, f : C → C̃ is a bijection, and we deduce that |C̃| = |C|.

Now, C̃ is a code over Σ, with |Σ| = q, the length of codewords in C̃ is
n− d+ 1 < n,19 and obviously, the minimum distance in C̃ is at least 1. So,
by the induction hypothesis, we have that

|C̃| ≤ Aq(n− d+ 1, 1) ≤ q(n−d+1)−1+1 = qn−d+1.

Since |C̃| = |C|, we deduce that |C| ≤ qn−d+1, which is what we needed to
show.

We now need some notation. Suppose n, t, q are positive integers and Σ is
an alphabet of size q. For all w ∈ Σn, we let BΣn

t (w) be the “combinatorial
ball” of radius t around w, i.e. BΣn

t (w) is the set of all words in Σn whose
Hamming distance from w is at most t. When no confusion is possible, we
write Bt(w) instead of BΣn

t (w).

Proposition 3.1. Let n, t, q be positive integers such that n ≥ t and q ≥ 2,

and let Σ be an alphabet of size q. Then |Bt(w)| =
t∑

k=0

(
n
k

)
(q − 1)k for all

w ∈ Σn.

Proof. Fix a word w ∈ Σn. We must show that the number of words in Σn

at distance at most t from w is precisely
∑t

k=0

(
n
k

)
(q−1)k. Clearly, it suffices

to show that for all k ∈ {0, . . . , t}, the number of words in Σn at distance k
from w is precisely

(
n
k

)
(q− 1)k. So, fix k ∈ {0, . . . , t}. There are

(
n
k

)
ways to

choose the k places in which a word at Hamming distance k from w differs
from w. For each such choice, and for each of the k selected placed, we have
q − 1 ways of altering w in that place;20 so, for all k places together, we get
(q − 1)k ways of altering w. So, there are precisely

(
n
k

)
(q − 1)k words in Σn

at distance k from w.

The Hamming bound. Let n, d, q be positive integers such that n ≥ d and
q ≥ 2, and let t = ⌊d−1

2 ⌋. Then Aq(n, d) ≤ qn∑t
k=0 (

n
k)(q−1)k

.

Proof. Fix a code C ⊆ Σn, where Σ is an alphabet of size q, and assume
that the minimum distance between codewords in C is at least d. We must
show that |C| ≤ qn∑t

k=0 (
n
k)(q−1)k

. Set m = |C| and C = {c1, . . . , cm}. Since

the minimum Hamming distance between codewords in C is at least d, and

18Indeed, w and w′ are both of length n, and they coincide in their first n− d+1 places.
So, they differ in at most d− 1 places, i.e. their Hamming distance is at most d− 1.

19We are using the fact that d ≥ 2.
20Indeed, we can select any symbol from Σ, except the one that appears in the selected

place in the word w itself. Since |Σ| = q, we have q − 1 choices.
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since t = ⌊d−1
2 ⌋, we see that the combinatorial balls Bt(c1), . . . , Bt(cm) are

pairwise disjoint.21 We now compute:

qn = |Σn| because |Σ| = q

≥ |
m⋃
i=1

Bt(ci)|

=
m∑
i=1

|Bt(ci)| because Bt(c1), . . . , Bt(cm)

are pairwise disjoint

= m
t∑

k=0

(
n
k

)
(q − 1)k by Proposition 3.1

= |C|
t∑

k=0

(
n
k

)
(q − 1)k because m = |C|

This implies that |C| ≤ qn∑t
k=0 (

n
k)(q−1)k

, which is what we needed to show.

The Gilbert-Varshamov bound. Let n, d, q be positive integers such that
n ≥ d and q ≥ 2. Then Aq(n, d) ≥ qn∑d−1

k=0 (
n
k)(q−1)k

.

Proof. Fix a code C ⊆ Σn, where Σ is some alphabet of size q, with minimum
distance between codewords in C at least d, and with |C| = Aq(n, d).

22 We
must show that |C| ≥ qn∑d−1

k=0 (
n
k)(q−1)k

.

Set m = |C| and C = {c1, . . . , cm}.

Claim. Σn =
⋃m

i=1Bd−1(ci).

Proof of the Claim. It is clear that
⋃m

i=1Bd−1(ci) ⊆ Σn. Suppose that⋃m
i=1Bd−1(ci) ⫋ Σn, and fix some w ∈ Σn \

(⋃m
i=1Bd−1(ci)

)
. Then

d(w, ci) ≥ d for all i ∈ {1, . . . ,m}. We now form a new code C̃ := C ∪ {w};
obviously, C̃ ⊆ Σn, with |Σ| = q, and by construction, the minimum distance
in C̃ is at least d. But now the fact that |C̃| = |C| + 1 = Aq(n, d) + 1
contradicts the definition of Aq(n, d). This proves the Claim. ■

21Note that we are using the triangle inequality for the Hamming distance here.
22Such a code C exists by the definition of Aq(n, d).
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We now compute:

qn = |Σn| because |Σ| = q

= |
m⋃
i=1

Bd−1(ci)| by the Claim

≤
m∑
i=1

|Bd−1(ci)|

= m
d−1∑
k=0

(
n
k

)
(q − 1)k by Proposition 3.1

= |C|
d−1∑
k=0

(
n
k

)
(q − 1)k because m = |C|

It follows that |C| ≥ qn∑d−1
k=0 (

n
k)(q−1)k

, which is what we needed to show.
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