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Reminder: For positive integers k and ℓ, R(k, ℓ) the smallest
N ∈ N such that every graph G on at least N vertices satisfies
either ω(G) ≥ k or α(G) ≥ ℓ.

Numbers R(k, ℓ) (with k, ℓ ∈ N) are called Ramsey numbers,
and we proved that they exist in Lecture Notes 10.
There’s another way to think about Ramsey numbers!
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Any graph G corresponds to a complete graph on the same
vertex set, and whose edges are colored black or white, with
an edge colored black if it was an edge of the graph G , and
colored white otherwise.

Now R(k, ℓ) (with k, ℓ ∈ N) is the smallest N ∈ N such that
any complete graph on at least N vertices, and whose edges
are colored black or white, has either a monochromatic black
complete subgraph of size k, or a monochromatic white
complete subgraph of size ℓ.
If instead of black and white, we use colors 1 and 2, then a
coloring of the complete graph on vertex set X is simply a
function c :

(X
2
)

→ [2].(X
p
)

is the set of all p-element subsets of X .
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So, R(k, ℓ) (with k, ℓ ∈ N) is the smallest N ∈ N such that
for all finite sets X with |X | ≥ N, and all colorings
c :

(X
2
)

→ [2], either there exists a set A1 ∈
(X

k
)

such that c
assigns color 1 to each set in

(A1
2

)
, or there exists a set

A2 ∈
(X

ℓ

)
such that c assigns color 2 to each set in

(A2
2

)
.

This can be generalized!
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Definition
A hypergraph is an ordered pair H = (V (H), E (H)), where V (H)
is some non-empty finite set, and E (H) ⊆ P(V (H)) \ {∅}.
Members of V (H) are called vertices and members of E (H) are
called edges of the hypergraph H.

Definition
For a positive integer p, a hypergraph is p-uniform if all its edges
have precisely p vertices. A hypergraph is uniform if it is p-uniform
for some p.

So, if H is a p-uniform hypergraph, then E (H) ⊆
(V (H)

p
)
.

A graph is simply a 2-uniform hypergraph.
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Definition
Given p, t, k1, . . . , kt ∈ N, the Ramsey number Rp(k1, . . . , kt) is
the smallest N ∈ N (if it exists) such that for all finite sets X with
|X | ≥ N, and all colorings (i.e. functions) c :

(X
p

)
→ [t],a there

exist an index i ∈ [t] and a set Ai ∈
(X

ki

)
such that c assigns color i

to each element of
(Ai

p
)
.

aSo, c is an assignment of colors to the edges of the “complete” p-uniform
hypergraph on vertex set X .

With this set-up, we have that R(k, ℓ) = R2(k, ℓ).

Ramsey’s theorem (hypergraph version)
For all p, t, k1, . . . , kt ∈ N, the number Rp(k1, . . . , kt) exists.
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Ramsey’s theorem (hypergraph version)
For all p, t, k1, . . . , kt ∈ N, the number Rp(k1, . . . , kt) exists.

In the Lecture Notes, we give two different proofs of the
theorem above.

One proof is elementary, but a bit messy.
This proof proceeds by induction on p. In the induction step
(for p + 1), it proceeds by induction on k1 + · · · + kt .

The other one uses the “infinite version” of Ramsey’s
theorem.

This proof is more “advanced” (i.e. it uses more sophisticated
mathematical results), but it is more elegant.

Here, we will present only the second proof.
But first, let’s look at a geometric application!
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Definition
A set X of points in the plane is convex if for all distinct
x1, x2 ∈ X , the line segment between x1 and x2 lies in X . The
convex hull of a non-empty set S of points in the plane is the
smallest convex set in the plane that includes S.

convex non-convex



If S is a finite set of points in the plane containing at least
three non-collinear points, then the convex hull of S is a
convex polygon (with its interior), and the vertices of this
polygon are all in S.

Definition
(Pairwise distinct) points x1, . . . , xt (t ≥ 3) in the plane are in
convex position if they are the vertices of some convex polygon.

Equivalently, (pairwise distinct) points x1, . . . , xt (t ≥ 3) in
the plane are in convex position if their convex hull is a
convex t-gon whose vertices are precisely x1, . . . , xt (not
necessarily in that order).
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Lemma 1.1
Any set of five points in the plane, no three of which are collinear,
contains four points in convex position.

Proof (outline).

Let a1, . . . , a5 be five point in the plane, no three
of which are collinear. We now consider the convex hull of these
five points.

WMA the convex hull is a triangle, for otherwise we are done.
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Lemma 1.1
Any set of five points in the plane, no three of which are collinear,
contains four points in convex position.

Proof (outline, continued).

a1 a2

a3

a4

C3,1 C3,2

C2,1

C2,3 C1,3

C1,2

If a5 ∈ Ci ,j , then ai , a4, a5, aj are the vertices of a convex
quadrilateral, and we are done.



The Erdős-Szekeres theorem
Let t ≥ 4 be an integer. Any set of at least R4(5, t) points in the
plane, no three of which are collinear, contains t points in convex
position.

Proof (outline).

We consider a set S of at least R4(5, t) points in
the plane, and we assume that no three of these points are
collinear. We now consider a coloring c :

(S
4
)

→ [2] defined as
follows: for all X ∈

(S
4
)
, c(X ) = 1 if the four points of X are not

in convex position, and c(X ) = 2 if they are in convex position.
Since |S| ≥ R4(5, t), we know that either there exists some
A1 ∈

(S
5
)

such that c assigns color 1 to all elements of
(A1

4
)
, or

there exists some A2 ∈
(S

t
)

such that c assigns color 2 to all
elements of

(A2
4

)
.
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The Erdős-Szekeres theorem
Let t ≥ 4 be an integer. Any set of at least R4(5, t) points in the
plane, no three of which are collinear, contains t points in convex
position.

Proof (outline, continued).

Suppose that there exists some
A1 ∈

(S
5
)

such that c assigns color 1 to all elements of
(A1

4
)
. Then

A1 is a set of five points in the plane, no three of which are
collinear, and no four of which are in convex position. But this
contradicts Lemma 1.1.
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Proof (outline, continued).

It now follows that there exists some
A2 ∈

(S
t
)

such that c assigns color 2 to all elements of
(A2

4
)
. Then

A2 is a set of t points in the plane, no three of which are collinear,
and any four of which are in convex position. We now consider the
convex hull of A2.
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The Erdős-Szekeres theorem
Let t ≥ 4 be an integer. Any set of at least R4(5, t) points in the
plane, no three of which are collinear, contains t points in convex
position.

Proof (outline, continued).
x1

x2 x3

a

If some point of S is not a vertex of the polygon, then we get four
points of A4 that are not in convex position.



Ramsey’s theorem (infinite version)

For all t, p ∈ N, all infinite sets X , and all colorings c :
(X

p
)

→ [t],
there exists an infinite set A ⊆ X such that c ↾

(A
p
)

is constant.

Proof.

We fix t ∈ N, and we proceed by induction on p.

For p = 1, we fix an infinite set X and a coloring c :
(X

1
)

→ [t].
For all i ∈ [t], we set Ci = {x ∈ X | c({x}) = i}. Then
(C1, . . . , Ct) is a partition of X , and consequently, at least one of
the sets C1, . . . , Ct , say Ci , is infinite. Furthermore, c ↾

(Ci
1

)
is

constant (indeed, it assigns color i to each element of
(Ci

1
)
). So,

the theorem is true for p = 1.
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Proof (continued). Fix p ∈ N, and assume the theorem is true for
p. We must show that it is true for p + 1.

Fix an infinite set X
and a coloring c :

( X
p+1

)
→ [t]. Our goal is to recursively construct

a sequence {Xn}∞
n=1 of infinite subsets of X and a sequence

{xn}∞
n=1 of elements of X with the following three properties:
xn ∈ Xn for all n ∈ N;
Xn+1 ⊆ Xn \ {xn} for all n ∈ N;
for all n ∈ N, c assigns the same color to all sets of the form
{xn} ∪ Y , with Y ∈

(Xn+1
p

)
.
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with n < j1 < · · · < jp; let us say this color is associated with xn.
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Proof (continued). Reminder: For all n ∈ N, the coloring c assigns
the same color to all sets of the form {xn} ∪ {xj1 , . . . , xjp }, with
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For all i ∈ [t], we let Ai = {xn | n ∈ N, i is associated with xn}.
Then (A1, . . . , At) is a partition of the infinite set {x1, x2, x3, . . . },
and we deduce that at least one of the sets A1, . . . , At , say Ai , is
infinite. But now c ↾

( Ai
p+1

)
is constant (it assigns i to all elements

of
( Ai

p+1
)
). This completes the induction.
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Definition
An infinite graph (i.e. graph with an infinite vertex set) is locally
finite if each vertex has finite degree.

Definition
A ray in an infinite graph G is a sequence x0, x1, x2, x3, . . . of
pairwise distinct vertices such that for all integers n ≥ 0, xnxn+1 is
an edge of G .

Kőnig’s infinity lemma
Every infinite, locally finite rooted tree (T , r) contains a ray
starting at r (i.e. a ray of the form r , x1, x2, . . . ).
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Definition
Given p, t, k1, . . . , kt ∈ N, the Ramsey number Rp(k1, . . . , kt) is
the smallest N ∈ N (if it exists) such that for all finite sets X with
|X | ≥ N, and all colorings (i.e. functions) c :

(X
p

)
→ [t],a there

exist an index i ∈ [t] and a set Ai ∈
(X

ki

)
such that c assigns color i

to each element of
(Ai

p
)
.

aSo, c is an assignment of colors to the edges of the “complete” p-uniform
hypergraph on vertex set X .

Ramsey’s theorem (hypergraph version)
For all p, t, k1, . . . , kt ∈ N, the number Rp(k1, . . . , kt) exists.
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For all p, t, k1, . . . , kt ∈ N, the number Rp(k1, . . . , kt) exists.

Proof.

Clearly, it suffices to show that for all p, t, k ∈ N, the
Ramsey number Rp(k, . . . , k︸ ︷︷ ︸

t

) exists. Suppose that for some

p, t, k ∈ N, the number Rp(k, . . . , k︸ ︷︷ ︸
t

) does not exist. Now, for each

integer n ≥ p, we say that a coloring c :
([n]

p
)

→ [t] is n-bad if
there is no set A ∈

([n]
k

)
such that c ↾

(A
p
)

is constant; a coloring is
bad if it is n-bad for some integer n ≥ p. Since Rp(k, . . . , k︸ ︷︷ ︸

t

) does

not exist, we see that for all integers n ≥ p, there is at least one
n-bad coloring.
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Ramsey’s theorem (hypergraph version)
For all p, t, k1, . . . , kt ∈ N, the number Rp(k1, . . . , kt) exists.

Proof (continued). Now, let C be the set of all bad colorings, and
let T be the graph on the vertex set C ∪ {r} (where r /∈ C), with
adjacency as follows:

r is adjacent to all p-bad colorings, and to no other elements
of C ;
for all integers n ≥ p, n-bad colorings are pairwise
non-adjacent;
for all integers n ≥ p, an n-bad coloring cn is adjacent to an
(n + 1)-bad coloring cn+1 iff cn+1 is an extension of cn;
for all integers n1, n2 ≥ p such that |n1 − n2| ≥ 2, no n1-bad
coloring is adjacent to any n2-bad coloring.

Now (T , r) is a rooted tree. Furthermore, for each integer n ≥ p,
the number of n-bad colorings is finite, and it follows from the
construction of T that the T is locally finite. So, by Kőnig’s
infinity lemma, there is a ray r , cp, cp+1, cp+2, . . . in T .
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For all p, t, k1, . . . , kt ∈ N, the number Rp(k1, . . . , kt) exists.

Proof (continued). Set c =
∞⋃

n=p
cn; then c :

(N
p
)

→ [t], and so by

the infinite version of Ramsey’s theorem, there is an infinite set A
such that c ↾

(A
p
)

is constant.

We now choose any subset Ak ∈
(A

k
)
, and we observe that c ↾

(Ak
p

)
is constant. Now, Ak is a finite subset of N, and consequently,
there exists some n ∈ N such that Ak ⊆ [n]; we may assume that
n ≥ p. Now Ak ∈

([n]
k

)
, and cn ↾

(Ak
p

)
= c ↾

(Ak
p

)
is constant,

contrary to the fact that cn is bad.
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