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Lecture #11

Ramsey theory and Kőnig’s infinity lemma

Irena Penev

1 Ramsey’s theorem (hypergraph version)

First, we need some notation. We denote by N the set of all positive integers.1

For a positive integer n, we set [n] = {1, . . . , n}. For a set X and a non-
negative integer k, we denote by

(
X
k

)
the set of all subsets of X of size k.

In particular,
(
X
2

)
is the set of all subsets of X of size two. Note that this

means that if G is a (simple) graph, then E(G) ⊆
(
V (G)
2

)
.

Recall that for positive integers k and ℓ, R(k, ℓ) the smallest N ∈ N
such that every graph G on at least N vertices satisfies either ω(G) ≥ k or
α(G) ≥ ℓ. Numbers R(k, ℓ) (with k, ℓ ∈ N) are called Ramsey numbers, and
we proved that they exist in Lecture Notes 10.

Here is a slightly different way to think about Ramsey numbers. Clearly,
any graph G corresponds to a complete graph on the same vertex set, and
whose edges are colored black or white, with an edge colored black if it was
an edge of the graph G, and colored white otherwise. With this set-up, it is
easy to see that R(k, ℓ) (with k, ℓ ∈ N) is the smallest N ∈ N such that any
complete graph on at least N vertices, and whose edges are colored black or
white, has either a monochromatic2 black complete subgraph of size k, or a
monochromatic white complete subgraph of size ℓ. Now, let us suppose that
instead of colors black and white, we use colors 1 and 2. Then a coloring
of the complete graph on vertex set X is simply a function c :

(
X
2

)
→ [2].3

We now see that R(k, ℓ) (with k, ℓ ∈ N) is the smallest N ∈ N such that for
all finite sets X with |X| ≥ N , and all colorings c :

(
X
2

)
→ [2], either there

exists a set A1 ∈
(
X
k

)
such that c assigns color 1 to each set in

(
A1

2

)
, or there

exists a set A2 ∈
(
X
ℓ

)
such that c assigns color 2 to each set in

(
A2

2

)
.

1In some texts, N is used to denote the set of all non-negative integers. Here, it is the
set of all positive integers.

2Here, “monochromatic” simply means that all edges are colored with the same color.
3Note that the edge set of the complete graph on vertex set X is precisely the set

(
X
2

)
.
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This can be generalized!
A hypergraph is an ordered pair H = (V (H), E(H)), where V (H) is some

non-empty finite set,4 and E(H) ⊆ P(V (H)) \ {∅}. As in the graph case,
members of V (H) are called vertices and members of E(H) are called edges
of the hypergraph H. For a positive integer p, a hypergraph is p-uniform if all
its edges have precisely p vertices. A hypergraph is uniform if it is p-uniform
for some p. So, if H is a p-uniform hypergraph, then E(H) ⊆

(
V (H)

p

)
. Note

that this means that a graph is simply a 2-uniform hypergraph.
Given p, t, k1, . . . , kt ∈ N, the Ramsey number Rp(k1, . . . , kt) is the small-

est N ∈ N (if it exists) such that for all finite sets X with |X| ≥ N , and all
colorings (i.e. functions) c :

(
X
p

)
→ [t],5 there exist an index i ∈ [t] and a

set Ai ∈
(
X
ki

)
such that c assigns color i to each element of

(
Ai
p

)
.6 If no such

N exists, then Rp(k1, . . . , kt) is undefined. As the next theorem shows, the
Ramsey numbers Rp(k1, . . . , kt) are always defined. We will give two proofs
of this theorem. The first is more elementary (it proceeds by induction on p),
but also somewhat messy. The second one (given in section 3) relies on the
“infinite version” of Ramsey’s theorem; this second proof is more “advanced”
(i.e. it required more sophisticated mathematical results), but it is also more
elegant.

Ramsey’s theorem (hypergraph version). For all p, t, k1, . . . , kt ∈ N,
the number Rp(k1, . . . , kt) exists.

Proof. We fix t ∈ N, and we proceed by induction on p.
First, for p = 1, we fix k1, . . . , kt ∈ N, and we set N = (k1 − 1) + · · ·+

(kt−1)+1. Fix any finite set X with |X| ≥ N , and any coloring c :
(
X
p

)
→ [t].

Now, for all i ∈ [t], set Ci = {x ∈ X | c({x}) = i}. Then (C1, . . . , Ct) is
a partition of X, and |X| ≥ N = (k1 − 1) + · · · + (kt − 1) + 1. So, by the
Pigeonhole Principle, there is some i ∈ [t] such that |Ci| ≥ ki. Now, let
Ai be any subset of Ci such that |Ai| = ki; so, Ai ∈

(
X
ki

)
. Furthermore, by

construction, c assigns color i to each element of
(
Ai
p

)
. So, R1(k1, . . . , kt)

exists, and we see that the theorem holds for p = 1.
Now, fix p ∈ N, and assume inductively that the Ramsey number

Rp(k1, . . . , kt) is defined for all k1, . . . , kt ∈ N. We must show that the
number Rp+1(k1, . . . , kt) is defined for all k1, . . . , kt ∈ N.

Fix k1, . . . , kt ∈ N, and assume inductively that the numberRp+1(k′1, . . . , k
′
t)

is defined for all k′1, . . . , k
′
t ∈ N such that k′1 + · · ·+ k′t < k1 + · · ·+ kt.

To simplify notation, we set ri = Rp+1(k1, . . . , ki−1, ki − 1, ki+1, . . . , kt)
for all i ∈ [t] (this is defined by the induction hypothesis for k1 + · · ·+ kt).
Further, we set N = Rp(r1, . . . , rt) + 1 (this is defined by the induction
hypothesis for p).

4Occasionally, V (H) is allowed to be empty.
5So, c is an assignment of colors to the edges of the “complete” p-uniform hypergraph

on vertex set X.
6With this set-up, we have that R(k, ℓ) = R2(k, ℓ).
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Fix a finite setX such that |X| ≥ N , and fix a function c :
(

X
p+1

)
→ [t]. Set

n = |X|; we may assume that X = [n].7 We now define an auxiliary coloring
c̃ :

(
[n−1]

p

)
→ {t}, as follows: for all A ∈

(
[n−1]

p

)
, we set c̃(A) = c(A ∪ {n}).

Since n − 1 ≥ Rp(r1, . . . , rt), we know that there exists some i ∈ [t] and a
set Xi ∈

(
[n−1]
ri

)
such that c̃ assigns color i to each element of

(
Xi
p

)
. Finally,

since |Xi| = ri = Rp+1(k1, . . . , ki−1, ki − 1, ki+1, . . . , kt), we know that there
exists some j ∈ [t] and a set Yj ∈

(
Xi
k′j

)
, where k′j = kj − 1 if j = i and

k′j = kj otherwise, such that c assigns color j to each element of
( Yj

p+1

)
. If

j ≠ i, then we set Aj = Yj , and we observe that Aj ∈
([n]
kj

)
, and that (by

construction) c assigns color j to each element of
( Aj

p+1

)
. Suppose now that

j = i. Then we set Ai = Yi ∪ {n}. Once again by construction, we have that
|Ai| = ki, and that c assigns color i to each element of

(
Ai
p+1

)
.8 This proves

that Rp+1(k1, . . . , kt) is defined.

We now consider a geometric application (see the Erdős-Szekeres theorem
below). A set X of points in the plane is convex if for all distinct x1, x2 ∈ X,
the line segment between x1 and x2 lies in X.

convex non-convex

The convex hull of a non-empty set S of points in the plane is the smallest
convex set in the plane that includes S. If S is a non-empty, finite set of
points, then the convex hull of S is either a one-point set, a line interval, or
a convex polygon (with its interior).

If S is a finite set of points in the plane containing at least three non-
collinear points,9 then the convex hull of S is a convex polygon (with its
interior), and the vertices of this polygon are all in S;10 see the picture below
for an example.

7If not, we simply rename the elements of X (via a bijection).
8Indeed, fix any A ∈

(
Ai
p+1

)
. If n /∈ A, then A ∈

(
Yi
p+1

)
, and so c(A) = i. On the other

hand, if n ∈ A, then A \ {n} ∈
(
Xi
p

)
, and we see that c(A) = c̃(A \ {n}) = i.

9Three or more points are collinear if they lie on the same line.
10However, not every element of S need be a vertex of the polygon.
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Let us say that (pairwise distinct) points x1, . . . , xt (t ≥ 3) in the plane are in
convex position if they are the vertices of some convex polygon. Equivalently,
(pairwise distinct) points x1, . . . , xt (t ≥ 3) are in convex position if their
convex hull is a convex t-gon whose vertices are precisely x1, . . . , xt (not
necessarily in that order).

We now need a geometric lemma.

Lemma 1.1. Any set of five points in the plane, no three of which are
collinear, contains four points in convex position.

Proof. To simplify notation, for non-collinear points x, y, z in the plane, we
denote by ∆xyz the triangle with vertices x, y, z.

Let a1, . . . , a5 be five point in the plane, no three of which are collinear.
We now consider the convex hull of these five points. Since no three of these
points are collinear, their convex hull is a convex polygon, and each vertex
of the polygon is one of a1, . . . , a5.

11 If the polygon is a pentagon, then
clearly, any four of our five points are in convex position. If the polygon is
a quadrilateral, then its vertices (which are some four of a1, . . . , a5) are in
convex position. So assume that the polygon is a triangle. By symmetry,
we may assume that the vertices of this triangle are a1, a2, a3. Since no
three points of a1, . . . , a5 are collinear, we see that a4, a5 both lie in the
interior (and not on any edge) of the triangle ∆a1a2a3. Using the fact that
a4 is in the interior of ∆a1a2a3, we construct six regions in the interior of
∆a1a2a3, as in the picture below (the regions Ci,j are disjoint from the lines
represented in the picture).

11However, not all of a1, . . . , a5 need be vertices of the polygon.
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a1 a2

a3

a4

C3,1 C3,2

C2,1

C2,3 C1,3

C1,2

Since no three of a1, . . . , a5 are collinear, we see that a5 ∈ C1,2∪C1,3∪C2,1∪
C2,3∪C3,1∪C3,2. Now, fix i, j ∈ {1, 2, 3} with i ̸= j such that a5 ∈ Ci,j . Then
ai, a4, a5, aj are the vertices of a convex quadrilateral, and we are done.

The Erdős-Szekeres theorem. Let t ≥ 4 be an integer. Any set of at least
R4(5, t) points in the plane, no three of which are collinear, contains t points
in convex position.

Proof. We consider a set S of at least R4(5, t) points in the plane, and we
assume that no three of these points are collinear. We now consider a coloring
c :

(
S
4

)
→ [2] defined as follows: for all X ∈

(
S
4

)
, c(X) = 1 if the four points

of X are not in convex position, and c(X) = 2 if they are in convex position.
Since |S| ≥ R4(5, t), we know that either there exists some A1 ∈

(
S
5

)
such

that c assigns color 1 to all elements of
(
A1

4

)
, or there exists some A2 ∈

(
S
t

)
such that c assigns color 2 to all elements of

(
A2

4

)
.

Suppose that there exists some A1 ∈
(
S
5

)
such that c assigns color 1 to

all elements of
(
A1

4

)
. Then A1 is a set of five points in the plane, no three of

which are collinear, and no four of which are in convex position. But this
contradicts Lemma 1.1.

It now follows that there exists some A2 ∈
(
S
t

)
such that c assigns color

2 to all elements of
(
A2

4

)
. Then A2 is a set of t points in the plane, no three

of which are collinear, and any four of which are in convex position. Let us
show that the points in A2 are in fact in convex position. We now consider
the convex hull of A2; this convex hull is a convex polygon, and we let X2

be the set of vertices of this polygon. Clearly, X2 ⊆ A2. If X2 = A2, then
we are done. So assume that X2 ⫋ A2. Then all points in X2 \A2 are in the
interior of our polygon.12 We now choose any a ∈ A2 \X2. Clearly, there

12Since no three points in A2 are collinear, no point of X2 \ A2 is on an edge of the
polygon.
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exist three (pairwise distinct) points x1, x2, x3 ∈ X2 such that a is in the
interior of the triangle ∆x1x2x3.

13

x1

x2 x3

a

But then a, x1, x2, x3 are not in convex position, contrary to the fact that
{a, x1, x2, x3} ∈

(
A2

4

)
.

2 Ramsey’s theorem (infinite version)

For a function c : A → B and a set A′ ⊆ A, we denote by c ↾ A′ the restriction
of c to A′.14

Ramsey’s theorem (infinite version). For all t, p ∈ N, all infinite sets
X, and all colorings c :

(
X
p

)
→ [t], there exists an infinite set A ⊆ X such

that c ↾
(
A
p

)
is constant.15

Proof. We fix t ∈ N, and we proceed by induction on p.
For p = 1, we fix an infinite set X and a coloring c :

(
X
1

)
→ [t]. For all

i ∈ [t], we set Ci = {x ∈ X | c({x}) = i}. Then (C1, . . . , Ct) is a partition of
X, and consequently, at least one of the sets C1, . . . , Ct, say Ci, is infinite.
Furthermore, c ↾

(
Ci
1

)
is constant (indeed, it assigns color i to each element

of
(
Ci
1

)
). So, the theorem is true for p = 1.

Now, fix p ∈ N, and assume the theorem is true for p.16 We must show
that it is true for p+ 1. Fix an infinite set X and a coloring c :

(
X
p+1

)
→ [t].

Our goal is to recursively construct a sequence {Xn}∞n=1 of infinite subsets
of X and a sequence {xn}∞n=1 of elements of X with the following three
properties:

13Once again, we are using the fact that no three of our points are collinear.
14So, c ↾ A′ is a function from A′ to B, and for all a ∈ A′, we have (c ↾ A′)(a) = c(a).
15This means that c assigns the same color to all p-element subsets of A.
16So, we are assuming that for all infinite sets X, and all colorings c :

(
X
p

)
→ [t], there

exists an infinite set A ⊆ X such that c ↾
(
A
p

)
is constant.
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� xn ∈ Xn for all n ∈ N;

� Xn+1 ⊆ Xn \ {xn} for all n ∈ N;

� for all n ∈ N, c assigns the same color to all sets of the form {xn} ∪ Y ,
with Y ∈

(
Xn+1

p

)
.

First, we set X1 = X and we choose x1 ∈ X arbitrarily. Now, having
constructed X1, . . . , Xn and x1, . . . , xn, we construct Xn+1 and xn+1 as
follows. We define an auxiliary coloring cn :

(
Xn\{xn}

p

)
→ [t] by setting

cn(A) = c(A ∪ {xn}) for all A ∈
(
Xn\{xn}

p

)
.17 Since Xn \ {xn} is infinite, the

induction hypothesis guarantees that there exists some infinite set Xn+1 ⊆
Xn \ {xn} such that cn ↾

(
Xn+1

p

)
is constant. But now by construction, we

have that c assigns the same color to all sets of the form {xn} ∪ Y , with
Y ∈

(
Xn+1

p

)
. Finally, we choose xn+1 ∈ Xn+1 arbitrarily.

We have now constructed our sequences {Xn}∞n=1 and {xn}∞n=1. It follows
from the construction that for all n ∈ N, the coloring c assigns the same
color to all sets of the form {xn} ∪ {xj1 , . . . , xjp}, with n < j1 < · · · < jp;
let us say this color is associated with xn. Now, for all i ∈ [t], we let
Ai = {xn | n ∈ N, i is associated with xn}. Then (A1, . . . , At) is a partition
of the infinite set {x1, x2, x3, . . . }, and we deduce that at least one of the
sets A1, . . . , At, say Ai, is infinite. But now c ↾

(
Ai
p+1

)
is constant (it assigns i

to all elements of
(
Ai
p+1

)
). This completes the induction.

Note that, to form the sequence {xn}∞n=1 in the proof that we just
completed, we made infinitely many “arbitrary choices” (indeed, each xn was
chosen arbitrarily from some specified infinite set). So, we implicitly used
the “Axiom of Choice,” which allows us to make infinitely many arbitrary
choices in this way. It is actually possible to avoid the use of the Axiom of
Choice in the proof above, but then the proof would be slightly messier,18

and we omit the details.

3 Kőnig’s infinity lemma

An infinite graph (i.e. graph with an infinite vertex set) is locally finite if each
vertex has finite degree. As in the case of finite graphs, an infinite graph is
connected if there is a path19 between any two vertices. An infinite graph is
a forest if it contains no cycles,20 and it is a tree if it is a connected forest.

17Note that if A ∈
(
Xn\{xn}

p

)
, then A ∪ {xn} ∈

(
Xn
p+1

)
⊆

(
X

p+1

)
, and so c(A ∪ {xn}) is

defined.
18Essentially, we would start with an injection f : N → X, and then work with f [N]

instead of X. Then, instead of making an arbitary choice, we could choose the xn ∈ Xn

whose pre-image (via f) is minimum.
19The path is still finite.
20Again, cycles are finite.
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An infinite rooted tree is an ordered pair (T, r) such that T is an infinite tree,
and r is some vertex of T , called the root.

A ray in an infinite graph G is a sequence x0, x1, x2, x3, . . . of pairwise
distinct vertices such that for all integers n ≥ 0, xnxn+1 is an edge of G.

Kőnig’s infinity lemma. Every infinite, locally finite rooted tree (T, r)
contains a ray starting at r (i.e. a ray of the form r, x1, x2, . . . ).

Proof (outline). Since the tree T is infinite, there are infinitely many paths
in it with one endpoint r. Since r has only finitely many neighbors, infinitely
many of these paths have the second vertex (say, x1) in common as well.
Since x1 has only finitely many neighbors, among the infinitely many paths
starting with r, x1, infinitely many have the third vertex (say, x2) in common.
We proceed like this, and we obtain an infinite sequence r, x1, x2, x3, . . . . But
now r, x1, x2, x3, . . . is a ray starting at r.

We remark that the proof of Kőnig’s infinity lemma also uses the Axiom
of Choice (because at the n-th step, there may be more than one possible
choice for xn, and if so, we choose arbitrarily).

The infinite version of Ramsey’s theorem and Kőnig’s infinity lemma
together imply the hypergraph version of Ramsey’s theorem, as we now show.

Ramsey’s theorem (hypergraph version). For all p, t, k1, . . . , kt ∈ N,
the number Rp(k1, . . . , kt) exists.

Proof. Clearly, it suffices to show that for all p, t, k ∈ N, the Ramsey num-
ber Rp(k, . . . , k︸ ︷︷ ︸

t

) exists.21 Suppose that for some p, t, k ∈ N, the number

Rp(k, . . . , k︸ ︷︷ ︸
t

) does not exist. Now, for each integer n ≥ p, we say that a

coloring c :
(
[n]
p

)
→ [t] is n-bad if there is no set A ∈

([n]
k

)
such that c ↾

(
A
p

)
is constant; a coloring is bad if it is n-bad for some integer n ≥ p. Since
Rp(k, . . . , k︸ ︷︷ ︸

t

) does not exist, we see that for all integers n ≥ p, there is at

least one n-bad coloring.22

Now, let C be the set of all bad colorings, and let T be the graph on the
vertex set C ∪ {r} (where r /∈ C),23 with adjacency as follows:

� r is adjacent to all p-bad colorings, and to no other elements of C;

� for all integers n ≥ p, n-bad colorings are pairwise non-adjacent;

21Indeed, fix p, t, k1, . . . , kt ∈ N, and set k = max{k1, . . . , kt}. If Rp(k, . . . , k︸ ︷︷ ︸
t

) exists,

then so does Rp(k1, . . . , kt) (details?).
22Details?
23Here, r is simply an artificially added root, which we need in order to make a rooted

tree.
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� for all integers n ≥ p, an n-bad coloring cn is adjacent to an (n+1)-bad
coloring cn+1 if and only if cn+1 is an extension of cn;

24

� for all integers n1, n2 ≥ p such that |n1 − n2| ≥ 2, no n1-bad coloring
is adjacent to any n2-bad coloring.

Now (T, r) is a rooted tree. Furthermore, for each integer n ≥ p, the
number of n-bad colorings is finite, and it follows from the construction of
T that the T is locally finite. So, by Kőnig’s infinity lemma, there is a ray

r, cp, cp+1, cp+2, . . . in T . Set c =
∞⋃
n=p

cn; then c :
(N
p

)
→ [t],25 and so by the

infinite version of Ramsey’s theorem, there is an infinite set A such that
c ↾

(
A
p

)
is constant. We now choose any subset Ak ∈

(
A
k

)
, and we observe

that c ↾
(
Ak
p

)
is constant. Now, Ak is a finite subset of N, and consequently,

there exists some n ∈ N such that Ak ⊆ [n]; we may assume that n ≥ p.26

Now Ak ∈
([n]
k

)
, and cn ↾

(
Ak
p

)
= c ↾

(
Ak
p

)
is constant, contrary to the fact

that cn is bad.

24This means that cn+1 ↾
(
[n]
p

)
= cn.

25We are using the fact that each coloring in the sequence cp, cp+1, cp+2, . . . extends the
previous one, and so the union of this sequence is a function (coloring).

26Otherwise, we have that Ak ⊆ [p], and we consider p instead of n.
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