NDMI011: Combinatorics and Graph Theory 1

Lecture #10 Sperner's theorem. Ramsey numbers

Irena Penev

1 Sperner's theorem

For a partially ordered set (X, \leq) ,

- a *chain* in (X, \leq) is any set $\mathcal{C} \subseteq X$ such that for all $x_1, x_2 \in \mathcal{C}$, we have that either $x_1 \leq x_2$ or $x_2 \leq x_1$.
- a maximal chain in (X, \leq) is a chain \mathcal{C} in (X, \leq) such that there is no chain \mathcal{C}' in (X, \leq) with the property that $\mathcal{C} \subsetneq \mathcal{C}'$;
- an antichain in (X, \leq) is any set $A \subseteq X$ such that for all distinct $x_1, x_2 \in A$, we have that $x_1 \nleq x_2$ and $x_2 \nleq x_1$.

Note that a chain and an antichain in (X, \leq) can have at most one element in common.²

Here, we are interested in a special case of the above. As usual, for a set X, we denote by $\mathscr{P}(X)$ the power set (i.e. the set of all subsets) of X. Clearly, for any set X, $\subseteq_{\mathscr{P}(X)} := \{(A,B) \mid A,B \in \mathscr{P}(X), A \subseteq B\}$ is a partial order on X. To simplify notation, in what follows, we write $(\mathscr{P}(X),\subseteq)$ instead of $(\mathscr{P}(X),\subseteq_{\mathscr{P}(X)})$. We apply the above definitions to $(\mathscr{P}(X),\subseteq)$, as follows.

For a set X,

¹This definition works both for finite and for infinite X. Note also that \emptyset is a chain in (X, \leq) . However, if X is finite and \mathcal{C} is a non-empty chain in (X, \leq) , then \mathcal{C} can be ordered as $\mathcal{C} = \{x_1, \ldots, x_t\}$ so that $x_1 \leq \cdots \leq x_t$.

²Indeed, if distinct elements x_1, x_2 belong to a chain of (X, \leq) , then $x_1 \leq x_2$ or $x_2 \leq x_1$. On the other hand, if they belong to an antichain of (X, \leq) , then $x_1 \not\leq x_2$ and $x_2 \not\leq x_1$. So, distinct elements x_1 and x_2 cannot simultaneously belong to a chain and an antichain of (X, \leq) .

- a chain in $(\mathscr{P}(X), \subseteq)$ is any set \mathscr{C} of subsets of X such that for all $C_1, C_2 \in \mathscr{C}$, we have that either $C_1 \subseteq C_2$ or $C_2 \subseteq C_1$.³
- a maximal chain in $(\mathscr{P}(X),\subseteq)$ is a chain in $(\mathscr{P}(X),\subseteq)$ such that there is no chain \mathcal{C}' in $(\mathscr{P}(X),\subseteq)$ with the property that $\mathcal{C}\subsetneq\mathcal{C}'$;
- an antichain in $(\mathscr{P}(X), \subseteq)$ is any set \mathcal{A} of subsets of X such that for all distinct $A_1, A_2 \in \mathcal{A}$, we have that $A_1 \not\subseteq A_2$ and $A_2 \not\subseteq A_1$.⁴

As before, note that a chain and an antichain in $(\mathscr{P}(X),\subseteq)$ can have at most one element in common.

Example 1.1. Let $X = \{1, 2, 3, 4\}$. The following are chains in $(\mathscr{P}(X), \subseteq)$:

- $\{\{2,4\},\{1,2,4\}\};^6$
- $\{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 3\}, X\}.^7$
- $\{\emptyset, \{4\}, \{2,4\}, \{1,2,4\}, X\};^8$

Further, the following are all antichains in $(\mathscr{P}(X),\subseteq)$:

- {Ø};
- {*X*};
- {{1,2},{2,3},{1,3,4}};
- {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}.

Sperner's theorem. Let n be a non-negative integer, and let X be an n-element set. Then any antichain in $(\mathscr{P}(X),\subseteq)$ has at most $\binom{n}{\lfloor n/2\rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X),\subseteq)$ that has precisely $\binom{n}{\lfloor n/2\rfloor}$ elements.

Proof. First, we note that the set of all $\lfloor n/2 \rfloor$ -element subsets of X is an antichain in $(\mathscr{P}(X), \subseteq)$, and this antichain has precisely $\binom{n}{\lfloor n/2 \rfloor}$ elements. It remains to show that any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n/2 \rfloor}$ elements.

³This definition works both for finite and for infinite X. Note also that \emptyset is a chain in $(\mathscr{P}(X), \subseteq)$. However, if X is finite and \mathcal{C} is a non-empty chain in $(\mathscr{P}(X), \subseteq)$, then \mathcal{C} can be ordered as $\mathcal{C} = \{C_1, \ldots, C_t\}$ so that $C_1 \subseteq \cdots \subseteq C_t$.

⁴Equivalently: $A_1 \setminus A_2$ and $A_2 \setminus A_1$ are both non-empty.

⁵There are many other chains in $(\mathscr{P}(X),\subseteq)$ as well.

 $^{^6}$ Note that this chain is **not** maximal, since we can add (for example) the set $\{2\}$ to it and obtain a larger chain.

⁷This chain is maximal.

 $^{^8{\}rm This}$ chain is maximal.

⁹There are many other antichains in $(\mathscr{P}(X),\subseteq)$ as well.

Claim 1. There are precisely n! maximal chains in $(\mathscr{P}(X),\subseteq)$.

Proof of Claim 1. Clearly, any maximal chain in $(\mathscr{P}(X), \subseteq)$ is of the form $\{\emptyset, \{x_1\}, \{x_1, x_2\}, \dots, \{x_1, x_2, \dots, x_n\}\}$, where x_1, \dots, x_n is some ordering of the elements of X. There are precisely n! such orderings, and so the number of maximal chains in $(\mathscr{P}(X), \subseteq)$ is n!.

Claim 2. For every set $A \subseteq X$, the number of maximal chains of $(\mathscr{P}(X), \subseteq)$ containing A is precisely |A|!(n-|A|)!.

Proof of Claim 2. Set k = |A|. As in the proof of Claim 1, we have that any maximal chain in $(\mathscr{P}(X), \subseteq)$ is of the form $\{\emptyset, \{x_1\}, \{x_1, x_2\}, \dots, \{x_1, x_2, \dots, x_n\}\}$, where x_1, \dots, x_n is some ordering of the elements of X; this chain contains A if and only if $A = \{x_1, \dots, x_k\}$ (and therefore, $X \setminus A = \{x_{k+1}, \dots, x_n\}$). The number of ways of ordering A is k!, and the number of ways of ordering $X \setminus A$ is (n-k)!. So, the total number of chains of $(\mathscr{P}(X), \subseteq)$ containing A is precisely k!(n-k)!.

Now, fix an antichain \mathcal{A} in $(\mathscr{P}(X),\subseteq)$. We form the matrix M whose rows are indexed by the elements of \mathcal{A} , and whose columns are indexed by the maximal chains of $(\mathscr{P}(X),\subseteq)$, and in which the (A,\mathcal{C}) -th entry is 1 if $A \in \mathcal{C}$ and is 0 otherwise. Our goal is to count the number of 1's in the matrix M in two ways.

First, by Claim 2, for any $A \in \mathcal{A}$, the number of maximal chains of $(\mathscr{P}(X), \subseteq)$ containing A is precisely |A|!(n-|A|)!; so, the number of 1's in the row of M indexed by A is precisely |A|!(n-|A|)!. Thus, the number of 1's in the matrix M is precisely

$$\sum_{A \in \mathcal{A}} |A|!(n - |A|)!.$$

On the other hand, by Claim 1, the number of columns of M is precisely n!. Furthermore, no chain of $(\mathscr{P}(X),\subseteq)$ contains more than one element of the antichain \mathcal{A} , and so no column of M contains more than one 1. So, the total number of 1's in the matrix M is at most n!. We now have that

$$\sum_{A \in \mathcal{A}} |A|!(n - |A|)! \leq n!,$$

and consequently,

$$\sum_{A \in \mathcal{A}} \frac{|A|!(n-|A|)!}{n!} \le 1.$$

On the other hand, for all $A \subseteq X$ (and in particular, for all $A \in \mathcal{A}$), we have that

$$\frac{|A|!(n-|A|)!}{n!} = \frac{1}{\frac{n!}{|A|!(n-|A|)!}} = \frac{1}{\binom{n}{|A|}} \stackrel{(*)}{\geq} \frac{1}{\binom{n}{\lfloor n/2 \rfloor}},$$

where (*) follows from the fact that $\binom{n}{k} \leq \binom{n}{\lfloor n/2 \rfloor}$ for all $k \in \{0, \ldots, n\}$. 11

¹⁰Here, $A \in \mathcal{A}$, \mathcal{C} is a maximal chain in $(\mathscr{P}(X), \subseteq)$, and the (A, \mathcal{C}) -th entry of M is the entry in the row indexed by A and column indexed by \mathcal{C} .

 $^{^{11}\}mathrm{See}$ subsection 3.2 of Lecture Notes 1.

We now have that

$$1 \geq \sum_{A \in \mathcal{A}} \frac{|A|!(n-|A|)!}{n!} \geq \sum_{A \in \mathcal{A}} \frac{1}{\binom{n}{\lfloor n/2 \rfloor}} \geq |A| \frac{1}{\binom{n}{\lfloor n/2 \rfloor}},$$

which yields $|\mathcal{A}| \leq \binom{n}{\lfloor n/2 \rfloor}$. This completes the argument.

2 The Pigeonhole principle

The Pigeonhole Principle. Let n_1, \ldots, n_t $(t \ge 1)$ be non-negative integers, and let X be a set of size at least $1 + n_1 + \cdots + n_t$. If (X_1, \ldots, X_t) is any partition of X, 12 then there exists some $i \in \{1, \ldots, t\}$ such that $|X_i| > n_i$. 13

Proof. Suppose otherwise, and fix a partition (X_1, \ldots, X_t) such that $|X_i| \le n_i$ for all $i \in \{1, \ldots, t\}$. But then

$$1 + n_1 + \dots + n_t \le |X| = |X_1| + \dots + |X_t| \le n_1 + \dots + n_t,$$

a contradiction. \Box

As an immediate corollary, we obtain the following.

Corollary 2.1. Let n and t be positive integers. Let X be an n-element set, and let (X_1, \ldots, X_t) be any partition of X.¹⁴ Then there exists some $i \in \{1, \ldots, t\}$ such that $|X_i| \geq \lceil \frac{n}{t} \rceil$.

Proof. By the Pigeonhole Principle, we need only show that $n \ge 1 + t(\lceil \frac{n}{t} \rceil - 1)$. If $t \mid n, 15$ then $\lceil \frac{n}{t} \rceil = \frac{n}{t}$, and we have that

$$1 + t\left(\left\lceil \frac{n}{t} \right\rceil - 1\right) \le 1 + t\left(\frac{n}{t} - 1\right) = n - t + 1 \le n,$$

which is what we needed. Suppose now that $t \not| n$, so that $\lceil \frac{n}{t} \rceil - 1 = \lfloor \frac{n}{t} \rfloor$. Then let $m = \lfloor \frac{n}{t} \rfloor$ and $\ell = n - mt$; since $t \not| n$, we have that $\ell \ge 1$. But now

$$1 + t(\lceil \frac{n}{t} \rceil - 1) = 1 + t(\lceil \frac{n}{t} \rceil) = 1 + tm \leq \ell + tm \leq n,$$

and we are done. \Box

We remark that Corollary 2.1 is also often referred to as the Pigeonhole Principle.

¹²Here, we allow the sets X_1, \ldots, X_t to possibly be empty.

¹³If one thinks of elements of X as "pigeons" and sets X_1, \ldots, X_t as "pigeonholes," then the Pigeonhole Principle states that some pigeonhole X_i receives more than n_i pigeons.

¹⁴Here, we allow the sets X_1, \ldots, X_t to possibly be empty.

¹⁵ " $t \mid n$ " means that n is divisible by t.

3 Ramsey numbers

A *clique* in a graph G is any set of pairwise adjacent vertices of G. The *clique* number of G, denoted by $\omega(G)$, is the maximum size of a clique of G.

A stable set (or independent set) in a graph G is any set of pairwise non-adjacent vertices of G. The stability number (or independence number) of G, denoted by $\alpha(G)$, is the maximum size of a stable set in G.

Proposition 3.1. Let G be a graph on at least six vertices. Then either $\omega(G) \geq 3$ or $\alpha(G) \geq 3$.

Proof. Let u be any vertex of G. Then $|V(G) \setminus \{u\}| \ge 5$, and so (by the Pigeonhole Principle) either u has at least three neighbors or it has at least three non-neighbors.

Suppose first that u has at least three neighbors. If at least two of those neighbors, say u_1 and u_2 , are adjacent, then $\{u, u_1, u_2\}$ is a clique of G of size three, and we deduce that $\omega(G) \geq 3$. On the other hand, if no two neighbors of u are adjacent, then they together form a stable set of size at least three, and we deduce that $\alpha(G) \geq 3$.

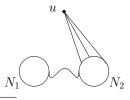
Suppose now that u has at least three non-neighbors. If at least two of those non-neighbors, say u_1 and u_2 , are non-adjacent, then $\{u, u_1, u_2\}$ is a stable set of G of size three, and we deduce that $\alpha(G) \geq 3$. On the other hand, if the non-neighbors of u are pairwise adjacent, then they together form a clique of size at least three, and we deduce that $\omega(G) \geq 3$.

For a graph G and a vertex u, $N_G(u)$ is the set of all neighbors of u in G, and $N_G[u] = \{u\} \cup N_G(u)$.

Theorem 3.2. Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. ¹⁶ Then either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Proof. We may assume inductively that for all positive integers k', ℓ' such that $k' + \ell' < k + \ell$, all graphs G' on at least $\binom{k' + \ell' - 2}{k' - 1}$ vertices satisfy either $\omega(G') \geq k'$ or $\alpha(G') \geq \ell'$.

If k=1 or $\ell=1$, then the result is immediate.¹⁷ So, we may assume that $k, \ell \geq 2$. Now, set $n=\binom{k+\ell-2}{k-1}$, $n_1=\binom{k+\ell-3}{k-1}$, and $n_2=\binom{k+\ell-3}{k-2}$; then $n=n_1+n_2$, and consequently, $n-1=1+(n_1-1)+(n_2-1)$. Fix any vertex $u \in V(G)$, and set $N_1=V(G)\setminus N_G[u]$ and $N_2=N_G(u)$.



Note that $\binom{k+\ell-2}{k-1} = \binom{k+\ell-2}{\ell-1}$.

¹⁷Indeed, it is clear that $\omega(G) \geq 1$ and $\alpha(G) \geq 1$. So, if k = 1, then $\omega(G) \geq k$; and if $\ell = 1$, then $\alpha(G) \geq \ell$.

Since (N_1, N_2) is a partition of $V(G) \setminus \{u\}$, and since $|V(G) \setminus \{u\}| \ge n - 1 = 1 + (n_1 - 1) + (n_2 - 1)$, the Pigeonhole Principle guarantees that either $|N_1| \ge n_1$ or $|N_2| \ge n_2$.

Suppose first that $|N_1| \geq n_1$, i.e. $|N_1| \geq {k+(\ell-1)-2 \choose k-1}$. Then by the induction hypothesis, either $\omega(G[N_1]) \geq k$ or $\alpha(G[N_1]) \geq \ell - 1$. In the former case, we have that $\omega(G) \geq \omega(G[N_1]) \geq k$, and we are done. So suppose that $\alpha(G[N_1]) \geq \ell - 1$. Then let S be a stable set of $G[N_1]$ of size $\ell - 1$. Then $\{u\} \cup S$ is a stable set of size ℓ in G, we deduce that $\alpha(G) \geq \ell$, and again we are done.

Suppose now that $|N_2| \geq n_2$, i.e. $|N_2| \geq {(k-1)+\ell-2 \choose k-2}$. Then by the induction hypothesis, either $\omega(G[N_2]) \geq k-1$ or $\alpha(G[N_2]) \geq \ell$. In the latter case, we have that $\alpha(G) \geq \alpha(G[N_2]) \geq \ell$, and we are done. So suppose that $\omega(G[N_2]) \geq k-1$. Then let C be a clique of $G[N_2]$ of size k-1. But then $\{u\} \cup C$ is a clique of size k in G, we deduce that $\omega(G) \geq k$, and again we are done.

For positive integers k and ℓ , we denote by $R(k,\ell)$ the smallest number n such that every graph G on at least n vertices satisfies either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$. The existence of $R(k,\ell)$ follows immediately from Theorem 3.2. Numbers $R(k,\ell)$ (with $k,\ell \geq 1$) are called Ramsey numbers.

It is easy to see that for all $k, \ell \geq 1$, we have that ¹⁸

$$R(1,\ell) = 1$$
 $R(k,1) = 1$

$$R(2,\ell) = \ell \qquad R(k,2) = k$$

Furthermore, we have R(3,3)=6. Indeed, by Proposition 3.1, $R(3,3) \le 6$. On the other hand, $\omega(C_5)=2$ and $\alpha(C_5)=2$, and so R(3,3)>5. Thus, R(3,3)=6. The exact values of a few other Ramsey numbers are known, ¹⁹ but no general formula for $R(k,\ell)$ is known. Note, however, that Theorem 3.2 gives an upper bound for Ramsey numbers, namely, $R(k,\ell) \le \binom{k+\ell-2}{k-1}$ for all $k,\ell \ge 1$.

We complete this section by giving a lower bound for the Ramsey number R(k,k).

Theorem 3.3. For all integers $k \geq 3$, we have that $R(k,k) > 2^{k/2}$.

Proof. We must show that for all integers $k \geq 3$, there exists a graph G such that $|V(G)| \geq 2^{k/2}$ and $\omega(G), \alpha(G) < k$; this will imply that $R(k,k) > 2^{k/2}$. Since $\omega(C_5) = 2$ and $\alpha(C_5) = 2$, we see that $R(3,3) > 5 > 2^{3/2}$ and $R(4,4) > 5 > 2^{4/2}$. Thus, the claim holds for k=3 and k=4. From now on, we assume that $k \geq 5$.

¹⁸Check this!

¹⁹For example, it is known that R(4,4) = 18. On the other hand, the exact value of R(5,5) is still unknown.

Let G be a graph on $n:=\lfloor 2^{k/2}\rfloor$ vertices, with adjacency as follows: between any two distinct vertices, we (independently) put an edge with probability $\frac{1}{2}$ (and a non-edge with probability $\frac{1}{2}$). For any set of k vertices of G, the probability that this set is a clique is

For any set of k vertices of G, the probability that this set is a clique is $(\frac{1}{2})^{\binom{k}{2}}$; there are $\binom{n}{k}$ subsets of V(G) of size k, and the probability that at least one of them is a clique is at most $\binom{n}{k}(\frac{1}{2})^{\binom{k}{2}}$. So, the probability that $\omega(G) \geq k$ is at most $\binom{n}{k}(\frac{1}{2})^{\binom{k}{2}}$. Similarly, the probability that $\alpha(G) \geq k$ is at most $\binom{n}{k}(\frac{1}{2})^{\binom{k}{2}}$. Thus, the probability that G satisfies at least one of $\omega(G) \geq k$ and $\alpha(G) \geq k$ is at most

$$2\binom{n}{k}(\frac{1}{2})^{\binom{k}{2}} \leq 2(\frac{en}{k})^k(\frac{1}{2})^{\binom{k}{2}} \quad \text{by Theorem 3.1}$$
 from Lecture Notes 1
$$\leq \frac{2(\frac{e2^{k/2}}{k})^k}{2^{k(k-1)/2}} \quad \text{because } n = \lfloor 2^{k/2} \rfloor$$

$$= 2(\frac{e2^{k/2}}{k^{2(k-1)/2}})^k$$

$$< 2(\frac{e\sqrt{2}}{k})^k$$

$$< 1 \quad \text{because } k \geq 5$$

Thus, the probability that G satisfies neither $\omega(G) \geq k$ nor $\alpha(G) \geq k$ is strictly positive. So, there must be at least one graph on $n = \lfloor 2^{k/2} \rfloor$ vertices whose clique number and stability number are both strictly less than k. This proves that $R(k,k) > \lfloor 2^{k/2} \rfloor$; since R(k,k) is an integer, we deduce that $R(k,k) > 2^{k/2}$.