NDMI011: Combinatorics and Graph Theory 1

Lecture #9

Triangle-free graphs and graphs without a C_4 subgraph. Cayley's formula

Irena Penev

December 1, 2021

This lecture has two parts:

This lecture has two parts:

bounding the number of edges in graphs without certain subgraphs;

This lecture has two parts:

- bounding the number of edges in graphs without certain subgraphs;
- **2** the number of spanning trees of K_n (Cayley's formula).

Definition

A graph is said to be *triangle-free* if it does not contain K_3 as a subgraph. Equivalently, a graph G is triangle-free if $\omega(G) \leq 2$.

Definition

A graph is said to be *triangle-free* if it does not contain K_3 as a subgraph. Equivalently, a graph G is triangle-free if $\omega(G) \leq 2$.

• Remark: All bipartite graphs are triangle-free.

Definition

A graph is said to be *triangle-free* if it does not contain K_3 as a subgraph. Equivalently, a graph G is triangle-free if $\omega(G) \leq 2$.

- Remark: All bipartite graphs are triangle-free.
- However, there are plenty of triangle-free graphs that are not bipartite! (Example: odd cycles of length ≥ 5.)

Let n be a positive integer. Then

(a) any triangle-free graph on *n* vertices has at most
$$\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$$
 edges;

(b) there exists a triangle-free graph on *n* vertices that has precisely $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges.

Proof (outline).

Let n be a positive integer. Then

(a) any triangle-free graph on *n* vertices has at most $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges;

(b) there exists a triangle-free graph on *n* vertices that has precisely $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges.

Proof (outline). Via algebra, we get that $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ (details: Lecture Notes).

Let n be a positive integer. Then

(a) any triangle-free graph on *n* vertices has at most $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges;

(b) there exists a triangle-free graph on *n* vertices that has precisely $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges.

Proof (outline). Via algebra, we get that $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ (details: Lecture Notes).

For (b), we observe that the complete bipartite graph $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$ is triangle-free and has precisely *n* vertices and $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$ edges.

Let n be a positive integer. Then

(a) any triangle-free graph on *n* vertices has at most $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges;

(b) there exists a triangle-free graph on *n* vertices that has precisely $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges.

Proof (outline). Via algebra, we get that $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ (details: Lecture Notes).

For (b), we observe that the complete bipartite graph $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$ is triangle-free and has precisely *n* vertices and $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$ edges.

Assume inductively that (a) holds for all n' < n; we must prove it for n.

Let n be a positive integer. Then

(a) any triangle-free graph on *n* vertices has at most $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges;

(b) there exists a triangle-free graph on *n* vertices that has precisely $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges.

Proof (outline). Via algebra, we get that $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ (details: Lecture Notes).

For (b), we observe that the complete bipartite graph $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$ is triangle-free and has precisely *n* vertices and $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$ edges.

Assume inductively that (a) holds for all n' < n; we must prove it for n. For n = 1 and n = 2, this is obvious. So, suppose $n \ge 3$, and let G be a triangle-free graph on n vertices.

Let n be a positive integer. Then

(a) any triangle-free graph on *n* vertices has at most $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges;

(b) there exists a triangle-free graph on *n* vertices that has precisely $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges.

Proof (outline, continued). WMA *G* has at least one edge (say, uv), for otherwise we are done. No vertex in $V(G) \setminus \{u, v\}$ is adjacent to both u and v (otherwise, we'd get a triangle).

Let n be a positive integer. Then

(a) any triangle-free graph on *n* vertices has at most $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges;

(b) there exists a triangle-free graph on *n* vertices that has precisely $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges.

Proof (outline, continued). WMA *G* has at least one edge (say, uv), for otherwise we are done. No vertex in $V(G) \setminus \{u, v\}$ is adjacent to both u and v (otherwise, we'd get a triangle).

By the induction hypothesis, $|E(G \setminus \{u, v\})| \le \lfloor \frac{(n-2)^2}{4} \rfloor$.

Proof (outline, continued). Reminder: $|E(G \setminus \{u, v\})| \leq \lfloor \frac{(n-2)^2}{4} \rfloor$.

Proof (outline, continued). Reminder: $|E(G \setminus \{u, v\})| \leq \lfloor \frac{(n-2)^2}{4} \rfloor$. Since the edges of *G* are precisely the edges of $G \setminus \{u, v\}$, plus the edges between $\{u, v\}$ and $V(G) \setminus \{u, v\}$, plus the edge *uv*, we see that

$$|E(G)| \leq \lfloor \frac{(n-2)^2}{4} \rfloor + (n-2) + 1$$

$$= \lfloor \frac{n^2 - 4n + 4}{4} \rfloor + n - 1$$

$$= \lfloor \frac{n^2}{4} \rfloor,$$

which is what we needed to show.

The Cauchy-Schwarz inequality

All real numbers $a_1, \ldots, a_n, b_1, \ldots, b_n$ satisfy

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \leq \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right).$$

Proof. Omitted.

The Cauchy-Schwarz inequality

All real numbers $a_1, \ldots, a_n, b_1, \ldots, b_n$ satisfy

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \leq \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right).$$

Proof. Omitted.

Theorem 2.1

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

 C_4

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline).

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline). Let G be a graph on n vertices, and assume that G does not contain C_4 as a subgraph.

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline). Let G be a graph on n vertices, and assume that G does not contain C_4 as a subgraph. Clearly, we may assume that G has no isolated vertices.

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline). Let G be a graph on n vertices, and assume that G does not contain C_4 as a subgraph. Clearly, we may assume that G has no isolated vertices. Let d_1, \ldots, d_n be the degrees of the vertices of G; since G is has no isolated veetices, we see that $d_1, \ldots, d_n \ge 1$.

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline). Let G be a graph on n vertices, and assume that G does not contain C_4 as a subgraph. Clearly, we may assume that G has no isolated vertices. Let d_1, \ldots, d_n be the degrees of the vertices of G; since G is has no isolated veetices, we see that $d_1, \ldots, d_n \ge 1$. Let $M = \{(v, A) \mid v \in V(G), A \in \binom{N_G(v)}{2}\}$.

Now, we will count the number of elements of M in two ways.

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline, continued). Reminder: $M = \{ (v, A) \mid v \in V(G), A \in \binom{N_G(v)}{2} \}.$

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline, continued). Reminder: $M = \{(v, A) \mid v \in V(G), A \in \binom{N_G(v)}{2}\}.$

First, for each $v \in V(G)$, there are precisely $\binom{d_G(v)}{2}$ choices of A such that $(v, A) \in M$. So, $|M| = \sum_{v \in V(G)} \binom{d_G(v)}{2} = \sum_{i=1}^n \binom{d_i}{2}$.

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline, continued). Reminder:

$$M = \{ (v, A) \mid v \in V(G), A \in \binom{N_G(v)}{2} \};$$

$$|M| = \sum_{v \in V(G)} \binom{d_G(v)}{2} = \sum_{i=1}^n \binom{d_i}{2}.$$

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline, continued). Reminder:

$$M = \{(v, A) \mid v \in V(G), A \in \binom{N_G(v)}{2}\};$$

$$|M| = \sum_{v \in V(G)} \binom{d_G(v)}{2} = \sum_{i=1}^n \binom{d_i}{2}.$$

We now bound |M| above, as follows. Since *G* contains no C_4 as a subgraph, we see that no two distinct elements of *M* have the same second coordinate. So, $|M| \leq {n \choose 2}$.

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline, continued). Reminder:

$$M = \{(v, A) \mid v \in V(G), A \in \binom{N_G(v)}{2}\};$$

$$|M| = \sum_{v \in V(G)} \binom{d_G(v)}{2} = \sum_{i=1}^n \binom{d_i}{2}.$$

We now bound |M| above, as follows. Since *G* contains no C_4 as a subgraph, we see that no two distinct elements of *M* have the same second coordinate. So, $|M| \leq {n \choose 2}$.

It follows that $\sum_{i=1}^{n} {d_i \choose 2} \leq {n \choose 2}$.

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline, continued). Reminder: $\sum_{i=1}^{n} {d_i \choose 2} \leq {n \choose 2}$.

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline, continued). Reminder: $\sum_{i=1}^{n} {d_i \choose 2} \leq {n \choose 2}.$ Obviously, ${n \choose 2} \leq \frac{n^2}{2}$, and since $d_1, \ldots, d_n \geq 1$, we see that ${d_i \choose 2} \geq \frac{(d_i-1)^2}{2}$ for all $i \in \{1, \ldots, n\}$; consequently, $\sum_{i=1}^{n} \frac{(d_i-1)^2}{2} \leq \sum_{i=1}^{n} {d_i \choose 2} \leq {n \choose 2} \leq \frac{n^2}{2},$

and it follows that

$$\sum_{i=1}^n (d_i-1)^2 \leq n^2.$$

• Cauchy-Schwarz:
$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \leq \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right).$$

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline, continued). Reminder: $\sum_{i=1}^{n} (d_i - 1)^2 \le n^2$.

• Cauchy-Schwarz:
$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \leq \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right).$$

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline, continued). Reminder: $\sum_{i=1}^{n} (d_i - 1)^2 \le n^2$.

$$\begin{array}{lll} \sum\limits_{i=1}^{n} (d_{i}-1) & = & \sum\limits_{i=1}^{n} (d_{i}-1) \cdot 1 \\ & \leq & \sqrt{\sum\limits_{i=1}^{n} (d_{i}-1)^{2}} \sqrt{\sum\limits_{i=1}^{n} 1^{2}} & \text{ by C-S} \leq \\ & = & \sqrt{\sum\limits_{i=1}^{n} (d_{i}-1)^{2}} \sqrt{n} \\ & \leq & \sqrt{n^{2}} \sqrt{n} & \text{ because } \sum\limits_{i=1}^{n} (d_{i}-1)^{2} \leq n^{2} \\ & = & n^{3/2}. \end{array}$$

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline, continued). Reminder: $\sum_{i=1}^{n} (d_i - 1) \le n^{3/2}$.

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline, continued). Reminder:
$$\sum_{i=1}^{n} (d_i - 1) \le n^{3/2}$$
.
It now follows that

$$|E(G)| = \frac{1}{2} \sum_{i=1}^{n} d_i = \frac{1}{2} \Big(n + \sum_{i=1}^{n} (d_i - 1) \Big) \leq \frac{1}{2} (n + n^{3/2}),$$

which is what we needed to show.

Part II: Cayley's formula

Definition

A *forest* is an acyclic graph (i.e. a graph that has no cycles), and a *tree* is a connected forest.

Definition

A *leaf* in a graph G is a vertex of degree one, i.e. a vertex that has exactly one neighbor.

Fact

Every tree on at least two vertices has at least two leaves.

Fact

If v is a leaf of a tree T, then $T \setminus v$ is a tree.

- We would like to count the number of (labeled) spanning trees of the complete graph K_n .
- In other words, we would like to count the number of trees on the vertex set {1,...,n}.

- We would like to count the number of (labeled) spanning trees of the complete graph K_n .
- In other words, we would like to count the number of trees on the vertex set {1,...,n}.
- For n = 2, there is one such tree.

- We would like to count the number of (labeled) spanning trees of the complete graph K_n .
- In other words, we would like to count the number of trees on the vertex set {1,...,n}.
- For n = 2, there is one such tree.
- For n = 3, there are three such trees.

- We would like to count the number of (labeled) spanning trees of the complete graph K_n .
- In other words, we would like to count the number of trees on the vertex set {1,...,n}.
- For n = 2, there is one such tree.
- For n = 3, there are three such trees.
- For n = 4, there are 16 such trees.

For all $n \ge 2$, the number of spanning trees of K_n is n^{n-2} .

For all $n \ge 2$, the number of spanning trees of K_n is n^{n-2} .

• Equivalently: there are precisely n^{n-2} trees on the vertex set $\{1, \ldots, n\}$, for $n \ge 2$.

For all $n \ge 2$, the number of spanning trees of K_n is n^{n-2} .

- Equivalently: there are precisely n^{n-2} trees on the vertex set $\{1, \ldots, n\}$, for $n \ge 2$.
- There are a number of proofs of Cayley's formula. We give the one that uses "Prüfer codes."

For all $n \ge 2$, the number of spanning trees of K_n is n^{n-2} .

- Equivalently: there are precisely n^{n-2} trees on the vertex set $\{1, \ldots, n\}$, for $n \ge 2$.
- There are a number of proofs of Cayley's formula. We give the one that uses "Prüfer codes."
- We will give (an outline of) the proof of the following lemma, which immediately implies Cayley's formula.

For all $n \ge 2$, the number of spanning trees of K_n is n^{n-2} .

- Equivalently: there are precisely n^{n-2} trees on the vertex set $\{1, \ldots, n\}$, for $n \ge 2$.
- There are a number of proofs of Cayley's formula. We give the one that uses "Prüfer codes."
- We will give (an outline of) the proof of the following lemma, which immediately implies Cayley's formula.

Lemma 3.4

Let $n \ge 2$ be an integer, and let $S \subseteq \mathbb{N}$ be such that |S| = n. Then the number of trees on the vertex set S is n^{n-2} .

- To simplify terminology, we will say that a tree is an *integer tree* if all its vertices are positive integers.
 - However, this is **not** standard terminology. We simply use it as a convenient shorthand in this lecture.

- To simplify terminology, we will say that a tree is an *integer tree* if all its vertices are positive integers.
 - However, this is **not** standard terminology. We simply use it as a convenient shorthand in this lecture.

We define the *Prüfer code* of integer trees on at least two vertices recursively, as follows:

- for any integer tree T on exactly two vertices, the Prüfer code of T, denoted by P(T), is the empty sequence;
- for any integer tree T on at least three vertices, we define the Prüfer code of T to be $P(T) := a_i, P(T \setminus i)$, where i is the smallest leaf of T, and a_i is the unique neighbor of i in T.^a

^aSo, P(T) is obtained by adding a_i to the front of $P(T \setminus i)$.

• For example, the Prüfer code of the tree in the top left corner is 7, 4, 4, 7, 5, as shown below:

• It is also possible to "decode" Prüfer codes, i.e. to reconstruct trees that correspond to them.

- It is also possible to "decode" Prüfer codes, i.e. to reconstruct trees that correspond to them.
- For an integer $n \ge 2$, an *n*-element set $S \subseteq \mathbb{N}$, and an (n-2)-term sequence *P*, with terms in *S*, we proceed as follows.
 - If n ≥ 3, then we let i be the smallest element of S that is not in P, and we let a_i be the first term of P. We make i and a_i adjacent, we delete i from S, and we delete the first term of P.
 - We repeat the process until S only has two elements left, and P is the empty sequence. At this point, we make the last two remaining elements of S adjacent.

For example, the tree on the vertex set S = {1,2,3,4,5,6,7} whose Prüfer code is 7,4,4,7,5 is the tree on the bottom of the picture (e is the empty sequence).

Let $n \ge 2$ be an integer, and let $S \subseteq \mathbb{N}$ be such that |S| = n. Then the number of trees on the vertex set S is n^{n-2} .

Proof (outline).

Let $n \ge 2$ be an integer, and let $S \subseteq \mathbb{N}$ be such that |S| = n. Then the number of trees on the vertex set S is n^{n-2} .

Proof (outline). The mapping $T \mapsto P(T)$ is a bijection from the set of all integer trees on the vertex set S to the set of (n-2)-term sequences, all of whose terms are elements of S (details: Lecture Notes).

Let $n \ge 2$ be an integer, and let $S \subseteq \mathbb{N}$ be such that |S| = n. Then the number of trees on the vertex set S is n^{n-2} .

Proof (outline). The mapping $T \mapsto P(T)$ is a bijection from the set of all integer trees on the vertex set S to the set of (n-2)-term sequences, all of whose terms are elements of S (details: Lecture Notes). There are precisely n^{n-2} sequences of length n-2, with terms in S, and it follows that there are precisely n^{n-2} trees on the vertex set S.

Let $n \ge 2$ be an integer, and let $S \subseteq \mathbb{N}$ be such that |S| = n. Then the number of trees on the vertex set S is n^{n-2} .

Proof (outline). The mapping $T \mapsto P(T)$ is a bijection from the set of all integer trees on the vertex set S to the set of (n-2)-term sequences, all of whose terms are elements of S (details: Lecture Notes). There are precisely n^{n-2} sequences of length n-2, with terms in S, and it follows that there are precisely n^{n-2} trees on the vertex set S.

Cayley's formula

For all $n \ge 2$, the number of spanning trees of K_n is n^{n-2} .

Proof. This follows immediately from Lemma 3.4, for $S = \{1, \ldots, n\}$.

• There are a number of other proofs of Cayley's formula.

- There are a number of other proofs of Cayley's formula.
- One proof uses the "Laplacians" (matrices).

- There are a number of other proofs of Cayley's formula.
- One proof uses the "Laplacians" (matrices).
- In fact, one can use the "Laplacian" of an arbitrary graph (on vertex set {1,..., n}) to compute the number of spanning trees of that graph.

- There are a number of other proofs of Cayley's formula.
- One proof uses the "Laplacians" (matrices).
- In fact, one can use the "Laplacian" of an arbitrary graph (on vertex set {1,..., n}) to compute the number of spanning trees of that graph.
- We give the formula without proof.

Suppose that $n \ge 2$ is an integer, and that G is a graph on the vertex set $\{1, \ldots, n\}$. Then the Laplacian of G is the matrix $Q = [q_{i,j}]_{n \times n}$ given by

$$q_{i,j} = \begin{cases} d_G(i) & \text{if } i = j \\ -1 & \text{if } i \neq j \text{ and } ij \in E(G) \\ 0 & \text{if } i \neq j \text{ and } ij \notin E(G) \end{cases}$$

Theorem 3.5

Let $n \ge 2$ be an integer, let G be any graph on the vertex set $\{1, \ldots, n\}$, and let Q be the Laplacian of G. Then the number of spanning trees of G is precisely det $(Q_{1,1})$.^a

 ${}^{a}Q_{1,1}$ is the matrix obtained from Q by deleting the first row and first column.

Using Theorem 3.5, prove Cayley's formula.

Using Theorem 3.5, prove Cayley's formula.

Solution. Fix an integer $n \ge 2$, and consider the complete graph on the vertex set $\{1, \ldots, n\}$. Then the Laplacian of this graph is the $n \times n$ matrix

$$Q = \begin{bmatrix} n-1 & -1 & -1 & \dots & -1 \\ -1 & n-1 & -1 & \dots & -1 \\ -1 & -1 & n-1 & \dots & -1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & -1 & \dots & n-1 \end{bmatrix}_{n \times n}$$

Using Theorem 3.5, prove Cayley's formula.

Solution. Fix an integer $n \ge 2$, and consider the complete graph on the vertex set $\{1, \ldots, n\}$. Then the Laplacian of this graph is the $n \times n$ matrix

$$Q = \begin{bmatrix} n-1 & -1 & -1 & \dots & -1 \\ -1 & n-1 & -1 & \dots & -1 \\ -1 & -1 & n-1 & \dots & -1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & -1 & \dots & n-1 \end{bmatrix}_{n \times n}$$

The matrix $Q_{1,1}$ has exactly the same form, only it is of size $(n-1) \times (n-1)$.

Using Theorem 3.5, prove Cayley's formula.

Solution. Fix an integer $n \ge 2$, and consider the complete graph on the vertex set $\{1, \ldots, n\}$. Then the Laplacian of this graph is the $n \times n$ matrix

$$Q = \begin{bmatrix} n-1 & -1 & -1 & \dots & -1 \\ -1 & n-1 & -1 & \dots & -1 \\ -1 & -1 & n-1 & \dots & -1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & -1 & \dots & n-1 \end{bmatrix}_{n \times n}$$

The matrix $Q_{1,1}$ has exactly the same form, only it is of size $(n-1) \times (n-1)$. Since det $(Q_{1,1}) = n^{n-2}$ (details: Lecture Notes), Theorem 3.5 guarantees that the number of spanning trees of K_n is n^{n-2} . This proves Cayley's formula.