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This lecture has two parts:

1 bounding the number of edges in graphs without certain
subgraphs;

2 the number of spanning trees of Kn (Cayley’s formula).
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Part I: Bounding the number of edges in graphs without certain
subgraphs

Definition
A graph is said to be triangle-free if it does not contain K3 as a
subgraph. Equivalently, a graph G is triangle-free if ω(G) ≤ 2.

Remark: All bipartite graphs are triangle-free.
However, there are plenty of triangle-free graphs that are not
bipartite! (Example: odd cycles of length ≥ 5.)
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Mantel’s theorem
Let n be a positive integer. Then
(a) any triangle-free graph on n vertices has at most

⌊n
2⌋⌈n

2⌉ = ⌊n2

4 ⌋ edges;
(b) there exists a triangle-free graph on n vertices that has

precisely ⌊n
2⌋⌈n

2⌉ = ⌊n2

4 ⌋ edges.

Proof (outline).

Via algebra, we get that ⌊n
2⌋⌈n

2⌉ = ⌊n2

4 ⌋ (details:
Lecture Notes).
For (b), we observe that the complete bipartite graph K⌊n/2⌋,⌈n/2⌉
is triangle-free and has precisely n vertices and ⌊n

2⌋⌈n
2⌉ edges.

Assume inductively that (a) holds for all n′ < n; we must prove it
for n. For n = 1 and n = 2, this is obvious. So, suppose n ≥ 3,
and let G be a triangle-free graph on n vertices.
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Proof (outline, continued). WMA G has at least one edge (say,
uv), for otherwise we are done. No vertex in V (G) \ {u, v} is
adjacent to both u and v (otherwise, we’d get a triangle).

u v

By the induction hypothesis, |E (G \ {u, v})| ≤ ⌊ (n−2)2

4 ⌋.
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u v

Proof (outline, continued). Reminder: |E (G \ {u, v})| ≤ ⌊ (n−2)2

4 ⌋.

Since the edges of G are precisely the edges of G \ {u, v}, plus the
edges between {u, v} and V (G) \ {u, v}, plus the edge uv , we see
that

|E (G)| ≤ ⌊ (n−2)2

4 ⌋ + (n − 2) + 1

= ⌊n2−4n+4
4 ⌋ + n − 1

= ⌊n2

4 ⌋,

which is what we needed to show.
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The Cauchy-Schwarz inequality
All real numbers a1, . . . , an, b1, . . . , bn satisfy( n∑

i=1
aibi

)2
≤

( n∑
i=1

a2
i

)( n∑
i=1

b2
i

)
.

Proof. Omitted.

Theorem 2.1
Let n ∈ N. Any graph on n vertices that does not contain C4 as a
subgraph has at most 1

2(n + n3/2) edges.

C4
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Let n ∈ N. Any graph on n vertices that does not contain C4 as a
subgraph has at most 1

2(n + n3/2) edges.

Proof (outline).

Let G be a graph on n vertices, and assume that
G does not contain C4 as a subgraph. Clearly, we may assume that
G has no isolated vertices. Let d1, . . . , dn be the degrees of the
vertices of G ; since G is has no isolated veetices, we see that
d1, . . . , dn ≥ 1.
Let M = {(v , A) | v ∈ V (G), A ∈

(NG (v)
2

)
}.

u1

u2

v

A NG(v)

Now, we will count the number of elements of M in two ways.
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Part II: Cayley’s formula

Definition
A forest is an acyclic graph (i.e. a graph that has no cycles), and a
tree is a connected forest.

Definition
A leaf in a graph G is a vertex of degree one, i.e. a vertex that has
exactly one neighbor.



Fact
Every tree on at least two vertices has at least two leaves.

Fact
If v is a leaf of a tree T , then T \ v is a tree.



Definition
A spanning tree of a connected graph G is a tree T that is a
subgraph of G , and satisfies V (T ) = V (G).

We would like to count the number of (labeled) spanning
trees of the complete graph Kn.
In other words, we would like to count the number of trees on
the vertex set {1, . . . , n}.
For n = 2, there is one such tree.
For n = 3, there are three such trees.
For n = 4, there are 16 such trees.
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Cayley’s formula
For all n ≥ 2, the number of spanning trees of Kn is nn−2.

Equivalently: there are precisely nn−2 trees on the vertex set
{1, . . . , n}, for n ≥ 2.
There are a number of proofs of Cayley’s formula. We give
the one that uses “Prüfer codes.”
We will give (an outline of) the proof of the following lemma,
which immediately implies Cayley’s formula.

Lemma 3.4
Let n ≥ 2 be an integer, and let S ⊆ N be such that |S| = n. Then
the number of trees on the vertex set S is nn−2.
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We will give (an outline of) the proof of the following lemma,
which immediately implies Cayley’s formula.

Lemma 3.4
Let n ≥ 2 be an integer, and let S ⊆ N be such that |S| = n. Then
the number of trees on the vertex set S is nn−2.



Cayley’s formula
For all n ≥ 2, the number of spanning trees of Kn is nn−2.

Equivalently: there are precisely nn−2 trees on the vertex set
{1, . . . , n}, for n ≥ 2.
There are a number of proofs of Cayley’s formula. We give
the one that uses “Prüfer codes.”
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To simplify terminology, we will say that a tree is an integer
tree if all its vertices are positive integers.

However, this is not standard terminology. We simply use it as
a convenient shorthand in this lecture.

Definition
We define the Prüfer code of integer trees on at least two vertices
recursively, as follows:

for any integer tree T on exactly two vertices, the Prüfer code
of T , denoted by P(T ), is the empty sequence;
for any integer tree T on at least three vertices, we define the
Prüfer code of T to be P(T ) := ai , P(T \ i), where i is the
smallest leaf of T , and ai is the unique neighbor of i in T .a

aSo, P(T ) is obtained by adding ai to the front of P(T \ i).
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For example, the Prüfer code of the tree in the top left corner
is 7, 4, 4, 7, 5, as shown below:
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It is also possible to “decode” Prüfer codes, i.e. to reconstruct
trees that correspond to them.

For an integer n ≥ 2, an n-element set S ⊆ N, and an
(n − 2)-term sequence P, with terms in S, we proceed as
follows.

1 If n ≥ 3, then we let i be the smallest element of S that is not
in P, and we let ai be the first term of P. We make i and ai
adjacent, we delete i from S, and we delete the first term of P.

2 We repeat the process until S only has two elements left, and
P is the empty sequence. At this point, we make the last two
remaining elements of S adjacent.
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For example, the tree on the vertex set S = {1, 2, 3, 4, 5, 6, 7}
whose Prüfer code is 7, 4, 4, 7, 5 is the tree on the bottom of
the picture (e is the empty sequence).
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Lemma 3.4
Let n ≥ 2 be an integer, and let S ⊆ N be such that |S| = n. Then
the number of trees on the vertex set S is nn−2.

Proof (outline).

The mapping T 7→ P(T ) is a bijection from the
set of all integer trees on the vertex set S to the set of
(n − 2)-term sequences, all of whose terms are elements of S
(details: Lecture Notes). There are precisely nn−2 sequences of
length n − 2, with terms in S, and it follows that there are
precisely nn−2 trees on the vertex set S.

Cayley’s formula
For all n ≥ 2, the number of spanning trees of Kn is nn−2.

Proof. This follows immediately from Lemma 3.4, for
S = {1, . . . , n}.
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There are a number of other proofs of Cayley’s formula.

One proof uses the “Laplacians” (matrices).
In fact, one can use the “Laplacian” of an arbitrary graph (on
vertex set {1, . . . , n}) to compute the number of spanning
trees of that graph.
We give the formula without proof.
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Definition
Suppose that n ≥ 2 is an integer, and that G is a graph on the
vertex set {1, . . . , n}. Then the Laplacian of G is the matrix
Q = [qi ,j ]n×n given by

qi ,j =


dG(i) if i = j
−1 if i ̸= j and ij ∈ E (G)
0 if i ̸= j and ij /∈ E (G)

Theorem 3.5
Let n ≥ 2 be an integer, let G be any graph on the vertex set
{1, . . . , n}, and let Q be the Laplacian of G . Then the number of
spanning trees of G is precisely det(Q1,1).a

aQ1,1 is the matrix obtained from Q by deleting the first row and first
column.



Example
Using Theorem 3.5, prove Cayley’s formula.

Solution. Fix an integer n ≥ 2, and consider the complete graph
on the vertex set {1, . . . , n}. Then the Laplacian of this graph is
the n × n matrix

Q =


n − 1 −1 −1 . . . −1

−1 n − 1 −1 . . . −1
−1 −1 n − 1 . . . −1

...
...

... . . . ...
−1 −1 −1 . . . n − 1


n×n

.

The matrix Q1,1 has exactly the same form, only it is of size
(n − 1) × (n − 1). Since det(Q1,1) = nn−2 (details: Lecture Notes),
Theorem 3.5 guarantees that the number of spanning trees of Kn
is nn−2. This proves Cayley’s formula.
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