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Lecture #9

Triangle-free graphs and graphs without a C4

subgraph. Cayley’s formula

Irena Penev

1 Graphs without K3 as a subgraph

A graph is said to be triangle-free if it does not contain K3 as a subgraph.
Equivalently, a graph G is triangle-free if ω(G) ≤ 2.

The following theorem is a special case of “Turán’s theorem.”1

Mantel’s theorem. Let n be a positive integer. Then

(a) any triangle-free graph on n vertices has at most ⌊n2 ⌋⌈
n
2 ⌉ = ⌊n2

4 ⌋ edges;

(b) there exists a triangle-free graph on n vertices that has precisely ⌊n2 ⌋⌈
n
2 ⌉ =

⌊n2

4 ⌋ edges.

Proof. First, let us check that ⌊n2 ⌋⌈
n
2 ⌉ = ⌊n2

4 ⌋. If n is even, then this is
obvious. If n is odd, then there exists a non-negative integer k such that
n = 2k + 1, we compute

⌊n2 ⌋⌈
n
2 ⌉ = ⌊2k+1

2 ⌋⌈2k+1
2 ⌉ = k(k + 1) = k2 + k

and

⌊n2

4 ⌋ = ⌊ (2k+1)2

4 ⌋ = ⌊4k2+4k+1
4 ⌋ = k2 + k,

and we deduce that ⌊n2 ⌋⌈
n
2 ⌉ = ⌊n2

4 ⌋.
For (b), we observe that the complete bipartite graph K⌊n/2⌋,⌈n/2⌉ is

triangle-free2 and has precisely n vertices and ⌊n2 ⌋⌈
n
2 ⌉ edges.

It remains to prove (a). We assume inductively that the claim holds for
graphs on fewer than n vertices, i.e. that for all positive integers ñ < n, any

1Turán’s theorem gives a formula for the maximum number of edges in any Kn-free
graph. We omit the details.

2Indeed, all bipartite graphs are triangle free.
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triangle-free graph on ñ vertices has at most ⌊ ñ2

4 ⌋ edges. It is clear that the
theorem holds for n = 1 and n = 2. So, we assume that n ≥ 3, we fix a
triangle-free graph G on n vertices, and we show that G has at most ⌊n2

4 ⌋
edges. If G has no edges, then this is obvious. So assume that G has at least
one edge, say uv. Then G \ {u, v} is triangle-free and has n− 2 vertices, and

so by the induction hypothesis, it has at most ⌊ (n−2)2

4 ⌋ edges. Further, since
G is triangle-free, a vertex in V (G) \ {u, v} can be adjacent to at most one
of u, v, and so the number of edges between {u, v} and V (G) \ {u, v} is at
most |V (G) \ {u, v}| = n− 2. Since the edges of G are precisely the edges of
G \ {u, v}, plus the edges between {u, v} and V (G) \ {u, v}, plus the edge
uv, we see that

|E(G)| ≤ ⌊ (n−2)2

4 ⌋+ (n− 2) + 1

= ⌊n2−4n+4
4 ⌋+ n− 1

= ⌊n2

4 ⌋,

which is what we needed to show.

2 Graphs without C4 as a subgraph

In what follows, we will use the Cauchy-Schwarz inequality (below).

The Cauchy-Schwarz inequality. All real numbers a1, . . . , an, b1, . . . , bn
satisfy ( n∑

i=1
aibi

)2
≤

( n∑
i=1

a2i

)( n∑
i=1

b2i

)
.

Proof. Omitted.

An isolated vertex is a vertex that has no neighbors.

Theorem 2.1. Let n ∈ N. Any graph on n vertices that does not contain
C4 as a subgraph has at most 1

2(n+ n3/2) edges.

Proof. Let G be a graph on n vertices, and assume that G does not contain
C4 as a subgraph. Clearly, we may assume that G has no isolated vertices.3

Let d1, . . . , dn be the degrees of the vertices of G;4 since G is has no isolated
veetices, we see that d1, . . . , dn ≥ 1.

Let M = {(v,A) | v ∈ V (G), A ∈
(
NG(v)

2

)
}.5 Now, we will count the

number of elements of M in two ways.

3Why?
4The di’s are not necessarily distinct; di is the degree of the i-th vertex of G.
5In other words, M is the set of all ordered pairs (v, {u1, u2}) such that v ∈ V (G), and

u1, u2 ∈ V (G) are two distinct neighbors of v. Note also that (v, {u1, u2}) ∈ M if and only
if u1, v, u2 is a (not necessarily induced) two-edge path of G. So, |M | is in fact the number
of (not necessarily induced) two-edge paths in G.
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First, for each v ∈ V (G), there are precisely
(
dG(v)

2

)
choices of A such

that (v,A) ∈ M . So, |M | =
∑

v∈V (G)

(
dG(v)

2

)
=

n∑
i=1

(
di
2

)
.

We now bound |M | above, as follows. Note that the second coordinate
of any element of M is simply an element of

(
V (G)
2

)
; since |V (G)| = n, there

are at most
(
n
2

)
choices for the second coordinate of an element of M . On

the other hand, since G contains no C4 as a subgraph, we see that no two
distinct elements of M have the same second coordinate. Indeed, suppose
that (v1, A) and (v2, A) are distinct elements of M ; we then set A = {u1, u2},
we and observe that v1, u1, v2, u2, v1 is a (not necessarily induced) C4 in G,
a contradiction. So, |M | ≤

(
n
2

)
.

We now have that
n∑

i=1

(
di
2

)
≤

(
n
2

)
.

Obviously,
(
n
2

)
≤ n2

2 , and since d1, . . . , dn ≥ 1, we see that
(
di
2

)
≥ (di−1)2

2 for
all i ∈ {1, . . . , n}; consequently,

n∑
i=1

(di−1)2

2 ≤
n∑

i=1

(
di
2

)
≤

(
n
2

)
≤ n2

2 ,

and it follows that
n∑

i=1
(di − 1)2 ≤ n2.

We now compute:

n∑
i=1

(di − 1) =
n∑

i=1
(di − 1) · 1

≤
√

n∑
i=1

(di − 1)2

√
n∑

i=1
12 by the Cauchy-Schwarz

inequality

=

√
n∑

i=1
(di − 1)2

√
n

≤
√
n2

√
n because

n∑
i=1

(di − 1)2 ≤ n2

= n3/2.

It now follows that

|E(G)| = 1
2

n∑
i=1

di = 1
2

(
n+

n∑
i=1

(di − 1)
)

≤ 1
2(n+ n3/2),

which is what we needed to show.
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3 Cayley’s formula for the number of spanning
trees of a complete graph

Recall that a forest is an acyclic graph (i.e. a graph that has no cycles), and
a tree is a connected forest. A leaf in a graph G is a vertex of degree one,
i.e. a vertex that has exactly one neighbor. In what follows, we will use the
well-known fact that every tree on at least two vertices has a leaf.6 It is clear
that if v is a leaf of a tree T , then T \ v is still a tree.

A spanning tree of a connected graph G is a tree T that is a subgraph of
G, and satisfies V (T ) = V (G). An example is given below (the edges of the
spanning tree are in red).

Now, suppose we are given a labeled complete graph on n (n ≥ 2) vertices
(say, with vertices labeled 1, . . . , n). We would like to count the number of
spanning trees in this graph; equivalently, we would like to count the number
of trees on the vertex set {1, . . . , n}. There is only one spanning tree for
K2, and it is easy to see that there are three spanning trees for K3. For K4,
there are 16 spanning trees, represented below (only the edges of the trees
are represented; the remaining edges of the K4 are not shown).

6In fact, every tree on at least two vertices has at least two leaves. Let us prove this.
Suppose that T is a tree on at least two vertices, and let P = p1, . . . , pt be a path of
maximum length in T . Since T has at least one edge (because it is connected and has
at least two vertices), we know that t ≥ 2. We claim that p1 and pt are leaves of T ; by
symmetry, it suffices to show that p1 is a leaf. Obviously, p1 is adjacent to p2 in T . Further,
if p1 were adjacent to some pi with i ∈ {3, . . . , t}, then p1, p2, . . . , pi, p1 would be a cycle
in T , contrary to the fact that T is a tree. Finally, if p1 were adjacent to some vertex
v ∈ V (T ) \ {p1, . . . , pt}, then the path v, p1, . . . , pt would contradict the maximality of P .
So, p2 is the only neighbor of p1 in T , and it follows that p1 is a leaf of T .
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Our goal in this section is to prove the following.

Cayley’s formula. For all n ≥ 2, the number of spanning trees of Kn is
nn−2.

There are a number of known proofs of Cayley’s formula; here, we give
the one that uses the so called “Prüfer codes.”

We will show that for all finite sets S ⊆ N with |S| ≥ 2, the number of
trees on the vertex set S is |S||S|−2 (see Lemma 3.4). Obviously, this will
immediately imply Cayley’s formula, since the number of spanning trees of
Kn is equal to the number of trees on the vertex set {1, . . . , n}.

To simplify terminology, we will say that a tree is an integer tree if all
its vertices are positive integers.7 We now define the Prüfer code of integer
trees on at least two vertices recursively, as follows:

� for any integer tree T on exactly two vertices, the Prüfer code of T ,
denoted by P (T ), is the empty sequence;

7Note, however, that this is not standard terminology. (There is no standard terminology
for such trees.) We simply use the term “integer tree” as convenient shorthand in this
section.
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� for any integer tree T on at least three vertices, we define the Prüfer
code of T to be P (T ) := ai, P (T \ i), where i is the smallest leaf of T ,
and ai is the unique neighbor of i in T .8

An example is given below (the Prüfer code of the tree in the top left corner
is 7, 4, 4, 7, 5, and the procedure for finding it is shown below).

1 2

3

4

5

6

7

2

3

4

5

6

7 3

4

5

6

7

4

5

6

7

5

6

7

5

7

7 7, 4

7, 4, 4 7, 4, 4, 7 7, 4, 4, 7, 5

Now, our goal is to show that given a set S ⊆ N (with |S| = n ≥ 2), the
function T 7→ P (T ) is a bijection between the set of all trees with vertex set
S, and the set of all sequences of length n− 2 with terms in S.9

Lemma 3.1. If T is an integer tree on at least two vertices, then every
non-leaf of T appears in P (T ), and none of the leaves do.

Proof. We prove the lemma by induction on the number of vertices of the
integer tree T . If T is a 2-vertex integer tree, then both its vertices are
leaves, and by definition, P (T ) is the empty sequence; so the lemma is true
for 2-vertex integer trees. Now, fix an integer n ≥ 2, and assume inductively
that the lemma holds for integer trees on n vertices. Let T be an integer
tree on n + 1 vertices. Let i be the smallest leaf of T , and let ai be the
unique neighbor of i. Since T is connected and has at least three vertices,
adjacent vertices cannot both be leaves of T , and so ai is a non-leaf of T .
By construction, P (T ) = ai, P (T \ i), and so the non-leaf ai of T appears in
P (T ), whereas the leaf i of T does not. Note that for v ∈ V (T ) \ {i, ai}, we
have that dT (v) = dT\i(v), and so each vertex of T other than i and ai is a
leaf in T if and only if it is a leaf in P (T \ i). The result now follows from
the induction hypothesis.

Lemma 3.2. If two integer trees have the same vertex set and the same
Prüfer code, then they are identical.

8So, P (T ) is obtained by adding ai to the front of P (T \ i).
9Obviously, there are precisely nn−2 such sequences.
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Proof. We proceed by induction on the number of vertices. There is only one
tree on a fixed two-element vertex set, and so the lemma clearly holds for 2-
vertex integer trees. Now, fix an integer n ≥ 2, and suppose inductively that
the lemma is true for integer trees on n vertices. Let S ⊆ N with |S| = n+1,
and let T1 and T2 be trees with vertex-set S and identical Prüfer code P . P is
of length n−1, and so at least two members of S do not appear in P ; let i be
the smallest integer in S that does not appear in P . Let ai be the first term
of P , and let Pi be obtained from P by deleting its first term. By Lemma 3.1,
i is the smallest leaf of both T1 and T2, and ai is the unique neighbor of i in
both T1 and T2. Further, we have that P (T1 \ i) = P (T2 \ i) = Pi, and so by
the induction hypothesis, T1 \ i = T2 \ i. Since i has the same neighborhood
in T1 and in T2, it follows that T1 = T2.

Lemma 3.3. If n ≥ 2 is an integer, and if S ⊆ N with |S| = n, then every
sequence of length n− 2, all of whose terms are in S, is the Prüfer code of
some tree with vertex-set S.

Proof. We proceed by induction on n. Suppose first that S ⊆ N satisfies
|S| = 2, and let P be a sequence of length 2−2 = 0, all of whose terms are in
S. Then P is the empty sequence. Let T be the unique tree on the vertex-set
S. Then P (T ) = P . Now, fix an integer n ≥ 2, and suppose inductively that
the lemma is true for some n ≥ 2. We need to show that it holds for n+ 1.
Let S ⊆ N be such that |S| = n+ 1, and let P be a sequence of length n− 1,
all of whose terms are in S. Let i be the smallest member of S that does
not appear in P , and let ai be the first term of P . Let Pi be the sequence
obtained by deleting the first term from P . By the induction hypothesis,
there is a tree Ti with vertex-set S \ {i} and Prüfer code Pi. Let T be the
tree obtained by adding the vertex i to Ti, and making i adjacent to ai and
to no other vertex of Ti. Now P (T ) = P . This completes the induction.

Note that the proof of Lemma 3.3 in fact gives us a recipe for “decoding”
a given Prüfer code, i.e. for finding the tree to which the code corresponds.
For an integer n ≥ 2, an n-element set S ⊆ N, and an (n− 2)-term sequence
P , with terms in S, we proceed as follows. If n ≥ 3, then we let i be the
smallest element of S that is not in P , and we let ai be the first term of
P . We make i and ai adjacent, we delete i from S, and we delete the first
term of P . We repeat the process until S only has two elements left, and
P is the empty sequence. At this point, we make the last two remaining
elements of S adjacent. An example is given below: the tree on the vertex
set S = {1, 2, 3, 4, 5, 6, 7} whose Prüfer code is 7, 4, 4, 7, 5 is the tree on the
bottom of the picture (e is the empty sequence).
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Putting Lemmas 3.2 and 3.3 together, we obtain the following.

Lemma 3.4. Let n ≥ 2 be an integer, and let S ⊆ N be such that |S| = n.
Then the number of trees on the vertex set S is nn−2.

Proof. By Lemmas 3.2 and 3.3, the mapping T 7→ P (T ) is a bijection from
the set of all integer trees on the vertex set S to the set of (n − 2)-term
sequences, all of whose terms are elements of S. There are precisely nn−2

sequences of length n − 2, with terms in S, and it follows that there are
precisely nn−2 trees on the vertex set S.

Cayley’s formula follows immediately from Lemma 3.4, since the number
of spanning trees of Kn is precisely the number of trees on the vertex set
{1, . . . , n}.

3.1 Cayley’s formula via determinants

In this subsection, we give (without proof) a formula for computing the
number of spanning trees of any graph on the vertex set {1, . . . , n}.

Suppose that n ≥ 2 is an integer, and that G is a graph on the vertex set
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{1, . . . , n}. Then the Laplacian of G is the matrix Q = [qi,j ]n×n given by

qi,j =


dG(i) if i = j

−1 if i ̸= j and ij ∈ E(G)

0 if i ̸= j and ij /∈ E(G)

We now need some notation. Suppose A = [ai,j ]n×m is a matrix, and
suppose i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}; then Ai,j is the matrix obtained
from A by deleting the i-th row and j-th column. In particular, A1,1 is the
matrix obtained from A by deleting the first row and first column.

Theorem 3.5. Let n ≥ 2 be an integer, let G be any graph on the vertex set
{1, . . . , n}, and let Q be the Laplacian of G. Then the number of spanning
trees of G is precisely det(Q1,1).

Proof. Omitted.

Example 3.6. Using Theorem 3.5, prove Cayley’s formula.

Solution. Fix an integer n ≥ 2, and consider the complete graph on the
vertex set {1, . . . , n}. Then the Laplacian of this graph is the n× n matrix

Q =


n− 1 −1 −1 . . . −1

−1 n− 1 −1 . . . −1
−1 −1 n− 1 . . . −1
...

...
...

. . .
...

−1 −1 −1 . . . n− 1


n×n

.

The matrix Q1,1 has exactly the same form, only it is of size (n−1)× (n−1):

Q1,1 =


n− 1 −1 −1 . . . −1

−1 n− 1 −1 . . . −1
−1 −1 n− 1 . . . −1
...

...
...

. . .
...

−1 −1 −1 . . . n− 1


(n−1)×(n−1)

.
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We now compute the determinant of Q1,1:

det(Q1,1) =

∣∣∣∣∣∣∣∣∣∣∣

n− 1 −1 −1 . . . −1
−1 n− 1 −1 . . . −1
−1 −1 n− 1 . . . −1
...

...
...

. . .
...

−1 −1 −1 . . . n− 1

∣∣∣∣∣∣∣∣∣∣∣
(n−1)×(n−1)

(∗)
=

∣∣∣∣∣∣∣∣∣∣∣

n− 1 −1 −1 . . . −1
−n n 0 . . . 0
−n 0 n . . . 0

...
...

...
. . .

...
−n 0 0 . . . n

∣∣∣∣∣∣∣∣∣∣∣
(n−1)×(n−1)

(∗∗)
=

∣∣∣∣∣∣∣∣∣∣∣

1 −1 −1 . . . −1
0 n 0 . . . 0
0 0 n . . . 0
...

...
...

. . .
...

0 0 0 . . . n

∣∣∣∣∣∣∣∣∣∣∣
(n−1)×(n−1)

(∗∗∗)
= nn−2,

where (*) is obtained by subtracting the first row from all the subsequent
ones, (**) is obtained by adding to the first column the sum of all subsequent
ones, and (***) is obtained by multiplying the diagonal entries of the upper
triangular matrix that we obtained. By Theorem 3.5, we now have that the
number of spanning trees of Kn is precisely nn−2, which proves Cayley’s
formula.
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