NDMI011: Combinatorics and Graph Theory 1

Lecture #8

Menger's theorems and the Ear lemma

Irena Penev

November 24, 2021

• In what follows, all graphs are finite, simple (i.e. have no loops and no parallel edges), and non-null.

- In what follows, all graphs are finite, simple (i.e. have no loops and no parallel edges), and non-null.
- This lecture consists of three parts:

- In what follows, all graphs are finite, simple (i.e. have no loops and no parallel edges), and non-null.
- This lecture consists of three parts:
 - a brief review of vertex- and edge-connectivity;

- In what follows, all graphs are finite, simple (i.e. have no loops and no parallel edges), and non-null.
- This lecture consists of three parts:
 - a brief review of vertex- and edge-connectivity;
 - Menger's theorems;

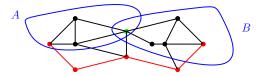
- In what follows, all graphs are finite, simple (i.e. have no loops and no parallel edges), and non-null.
- This lecture consists of three parts:
 - a brief review of vertex- and edge-connectivity;
 - Menger's theorems;
 - 3 2-connected graphs and the Ear lemma.

Part I: A brief review of vertex- and edge-connectivity

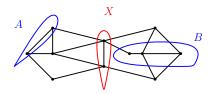
Part I: A brief review of vertex- and edge-connectivity

Definition

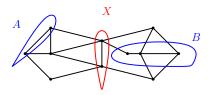
For a graph G and (not necessarily disjoint) sets $A, B \subseteq V(G)$, an A-B path in G, or a path from A to B in G, is either a one-vertex path whose sole vertex is in $A \cap B$, or a path on at least two vertices whose one endpoint is in A and whose other endpoint is in B.



Given a graph G and (not necessarily disjoint) sets $A, B \subseteq V(G)$, we say that a set $X \subseteq V(G)$ separates A from B in G if every path from A to B in G contains at least one vertex of X. Note that this implies that $A \cap B \subseteq X$.



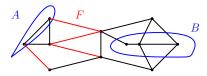
Given a graph G and (not necessarily disjoint) sets $A, B \subseteq V(G)$, we say that a set $X \subseteq V(G)$ separates A from B in G if every path from A to B in G contains at least one vertex of X. Note that this implies that $A \cap B \subseteq X$.



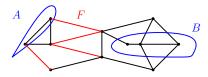
Definition

Given a graph G and a non-negative integer k, we say that G is *k*-vertex-connected, or simply *k*-connected, if $|V(G)| \ge k + 1$ and for all $X \subseteq V(G)$ s.t. $|X| \le k - 1$, we have that $G \setminus X$ is connected.

Given a graph G and disjoint sets $A, B \subseteq V(G)$, we say that a set $F \subseteq E(G)$ separates A from B in G if every path from A to B contains at least one edge of F.



Given a graph G and disjoint sets $A, B \subseteq V(G)$, we say that a set $F \subseteq E(G)$ separates A from B in G if every path from A to B contains at least one edge of F.



Definition

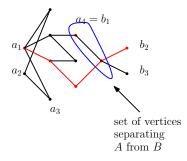
Given a graph G and a non-negative integer ℓ , we say that G is ℓ -edge-connected if $|V(G)| \ge 2$ and for all $F \subseteq E(G)$ s.t. $|F| \le \ell - 1$, we have that $G \setminus F$ is connected.

Part II: Menger's theorems

Part II: Menger's theorems

Menger's theorem (vertex version)

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.



$$A = \{a_1, a_2, a_3, a_4\}$$

$$B = \{b_1, b_2, b_3\}$$

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline).

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline). Assume inductively that the theorem is true for graphs on fewer than |E(G)| edges. Let k be the minimum number of vertices separating A from B in G.

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline). Assume inductively that the theorem is true for graphs on fewer than |E(G)| edges. Let k be the minimum number of vertices separating A from B in G. WTS:

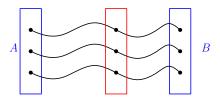
- (i) there can be no more than k pairwise disjoint paths from A to B in G;
- (ii) there are at least k pairwise disjoint paths from A to B.

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline). Assume inductively that the theorem is true for graphs on fewer than |E(G)| edges. Let k be the minimum number of vertices separating A from B in G. WTS:

- (i) there can be no more than k pairwise disjoint paths from A to B in G;
- (ii) there are at least k pairwise disjoint paths from A to B.

(i) is "obvious."



Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline, continued). Let's prove (ii):

(ii) there are at least k pairwise disjoint paths from A to B.

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline, continued). Let's prove (ii):

(ii) there are at least k pairwise disjoint paths from A to B. If $E(G) = \emptyset$, then $|A \cap B| = k$, and there are k pairwise disjoint A-B paths in G.

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline, continued). Let's prove (ii):

(ii) there are at least k pairwise disjoint paths from A to B.

If $E(G) = \emptyset$, then $|A \cap B| = k$, and there are k pairwise disjoint A-B paths in G. So assume that G has at least one edge, say xy.

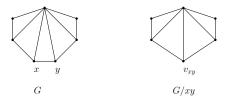
Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline, continued). Let's prove (ii):

(ii) there are at least k pairwise disjoint paths from A to B.

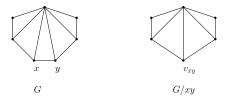
If $E(G) = \emptyset$, then $|A \cap B| = k$, and there are k pairwise disjoint A-B paths in G. So assume that G has at least one edge, say xy.

We apply the induction hypothesis to $G_{xy} := G/xy$.



Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

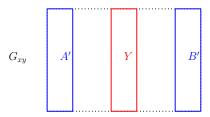
Proof (outline, continued).



If x or y belongs to A, then let $A' = (A \setminus \{x, y\}) \cup \{v_{xy}\}$, and otherwise, let A' = A. Similarly, if x or y belongs to B, then let $B' = (B \setminus \{x, y\}) \cup \{v_{xy}\}$, and otherwise, let B' = B.

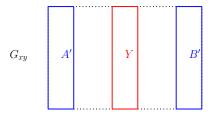
Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline, continued). Let $Y \subseteq V(G_{xy})$ be a minimum-sized set of vertices separating A' from B' in G_{xy} . By the induction hypothesis, there are |Y| many pairwise disjoint paths in G_{xy} from A' to B', and it readily follows that there are at least |Y| many pairwise disjoint paths in G from A to B. So, if $|Y| \ge k$, then we are done.



Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline, continued). From now on, we assume that $|Y| \le k - 1$. Then $v_{xy} \in Y$, for otherwise, Y would separate A from B in G, contrary to the fact that $|Y| \le k - 1$. Now $X := (Y \setminus \{v_{xy}\}) \cup \{x, y\}$ separates A from B in G, and we have that |X| = |Y| + 1. Note that this implies that |X| = k. Set $X = \{x_1, \ldots, x_k\}$.

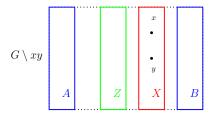


Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline, continued). We now consider the graph $G \setminus xy$.

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline, continued). We now consider the graph $G \setminus xy$. Since $x, y \in X$, we know that any set of vertices separating A from X in $G \setminus xy$ also separates A from B in G; consequently, any such set has at least k vertices.

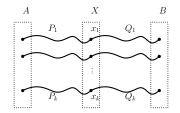


Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline, continued). So, by the induction hypothesis, there are k pairwise disjoint paths from A to X in G, call them P_1, \ldots, P_k .

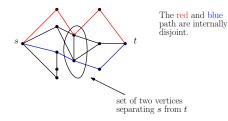
Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline, continued). So, by the induction hypothesis, there are k pairwise disjoint paths from A to X in G, call them P_1, \ldots, P_k . Similarly, there are k pairwise disjoint paths from B to X in G, call them Q_1, \ldots, Q_k .



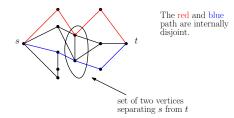
Corollary 1.1

Let G be a graph, and let $s, t \in V(G)$ be distinct, non-adjacent vertices of G. Then the minimum number of vertices of $V(G) \setminus \{s, t\}$ separating s from t in G is equal to the maximum number of pairwise internally disjoint s-t paths in G.



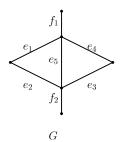
Corollary 1.1

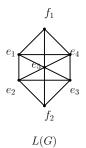
Let G be a graph, and let $s, t \in V(G)$ be distinct, non-adjacent vertices of G. Then the minimum number of vertices of $V(G) \setminus \{s, t\}$ separating s from t in G is equal to the maximum number of pairwise internally disjoint s-t paths in G.



Proof (outline). Apply Menger's theorem (vertex version) to the graph $G \setminus \{s, t\}$ and sets $S = N_G(s)$ and $T = N_G(t)$.

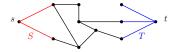
The *line graph* of a graph G, denoted by L(G), is the graph whose vertex set is E(G), and in which $e, f \in L(V(G)) = E(G)$ are adjacent iff e and f share an endpoint in G.





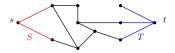
Let G be a graph, and let $s, t \in V(G)$ be distinct vertices of G. Then the minimum number of edges separating s from t in G is equal to the maximum number of pairwise edge-disjoint s-t paths in G.

Proof (outline). Apply Menger's theorem (vertex version) to the graph L(G) and the sets $S = \{e \in E(G) \mid e \text{ is incident with } s\}$ and $T = \{e \in E(G) \mid e \text{ is incident with } t\}$.



Let G be a graph, and let $s, t \in V(G)$ be distinct vertices of G. Then the minimum number of edges separating s from t in G is equal to the maximum number of pairwise edge-disjoint s-t paths in G.

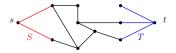
Proof (outline). Apply Menger's theorem (vertex version) to the graph L(G) and the sets $S = \{e \in E(G) \mid e \text{ is incident with } s\}$ and $T = \{e \in E(G) \mid e \text{ is incident with } t\}$.



• The maximum number of pairwise edge-disjoint *s*-*t* paths in *G* is equal to the maximum number of pairwise disjoint *S*-*T* paths in *L*(*G*).

Let G be a graph, and let $s, t \in V(G)$ be distinct vertices of G. Then the minimum number of edges separating s from t in G is equal to the maximum number of pairwise edge-disjoint s-t paths in G.

Proof (outline). Apply Menger's theorem (vertex version) to the graph L(G) and the sets $S = \{e \in E(G) \mid e \text{ is incident with } s\}$ and $T = \{e \in E(G) \mid e \text{ is incident with } t\}$.



- The maximum number of pairwise edge-disjoint *s*-*t* paths in *G* is equal to the maximum number of pairwise disjoint *S*-*T* paths in *L*(*G*).
- A set X ⊆ E(G) separates s from t in G iff X separates S from T in L(G).

The global version of Menger's theorem

Let G be a graph on ≥ 2 vertices, and let $k, \ell \geq 0$ be integers.

- (a) G is k-connected iff for all distinct $s, t \in V(G)$, there are k pairwise internally disjoint s-t paths in G.
- (b) G is ℓ -edge-connected iff for all distinct $s, t \in V(G)$, there are ℓ pairwise edge-disjoint s-t paths in G.

Proof.

Let G be a graph on ≥ 2 vertices, and let $k, \ell \geq 0$ be integers.

- (a) G is k-connected iff for all distinct $s, t \in V(G)$, there are k pairwise internally disjoint s-t paths in G.
- (b) G is ℓ -edge-connected iff for all distinct $s, t \in V(G)$, there are ℓ pairwise edge-disjoint s-t paths in G.

Proof. (b) is easier, and so we prove it first.

Let G be a graph, and let $s, t \in V(G)$ be distinct vertices of G. Then the minimum number of edges separating s from t in G is equal to the maximum number of pairwise edge-disjoint s-t paths in G.

The global version of Menger's theorem

Let G be a graph on ≥ 2 vertices, and let $k, \ell \geq 0$ be integers.

(b) G is ℓ -edge-connected iff for all distinct $s, t \in V(G)$, there are ℓ pairwise edge-disjoint s-t paths in G.

Proof (continued).

Let G be a graph, and let $s, t \in V(G)$ be distinct vertices of G. Then the minimum number of edges separating s from t in G is equal to the maximum number of pairwise edge-disjoint s-t paths in G.

The global version of Menger's theorem

Let G be a graph on ≥ 2 vertices, and let $k, \ell \geq 0$ be integers.

(b) G is ℓ -edge-connected iff for all distinct $s, t \in V(G)$, there are ℓ pairwise edge-disjoint s-t paths in G.

Proof (continued). Suppose that G is ℓ -edge-connected. Fix distinct vertices $s, t \in V(G)$.

Let G be a graph, and let $s, t \in V(G)$ be distinct vertices of G. Then the minimum number of edges separating s from t in G is equal to the maximum number of pairwise edge-disjoint s-t paths in G.

The global version of Menger's theorem

Let G be a graph on ≥ 2 vertices, and let $k, \ell \geq 0$ be integers.

(b) G is ℓ -edge-connected iff for all distinct $s, t \in V(G)$, there are ℓ pairwise edge-disjoint s-t paths in G.

Proof (continued). Suppose that *G* is ℓ -edge-connected. Fix distinct vertices $s, t \in V(G)$. Since *G* is ℓ -edge-connected, *s* cannot be separated from *t* with fewer than ℓ edges of *G*,

Let G be a graph, and let $s, t \in V(G)$ be distinct vertices of G. Then the minimum number of edges separating s from t in G is equal to the maximum number of pairwise edge-disjoint s-t paths in G.

The global version of Menger's theorem

Let G be a graph on ≥ 2 vertices, and let $k, \ell \geq 0$ be integers.

(b) G is ℓ -edge-connected iff for all distinct $s, t \in V(G)$, there are ℓ pairwise edge-disjoint s-t paths in G.

Proof (continued). Suppose that G is ℓ -edge-connected. Fix distinct vertices $s, t \in V(G)$. Since G is ℓ -edge-connected, s cannot be separated from t with fewer than ℓ edges of G, and so by Menger's theorem (edge version), there are at least ℓ pairwise edge-disjoint paths between s and t in G.

Let G be a graph on ≥ 2 vertices, and let $k, \ell \geq 0$ be integers.

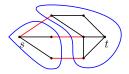
(b) G is ℓ -edge-connected iff for all distinct $s, t \in V(G)$, there are ℓ pairwise edge-disjoint s-t paths in G.

Proof (continued). Suppose now that *G* is not ℓ -edge-connected.

Let G be a graph on ≥ 2 vertices, and let $k, \ell \geq 0$ be integers.

(b) G is ℓ -edge-connected iff for all distinct $s, t \in V(G)$, there are ℓ pairwise edge-disjoint s-t paths in G.

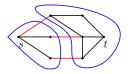
Proof (continued). Suppose now that *G* is not ℓ -edge-connected. Then $\exists F \subseteq E(G)$ s.t. $|F| \leq \ell - 1$ and $G \setminus F$ is disconnected. Let *s*, *t* be vertices from distinct components of $G \setminus F$.



Let G be a graph on ≥ 2 vertices, and let $k, \ell \geq 0$ be integers.

(b) G is ℓ -edge-connected iff for all distinct $s, t \in V(G)$, there are ℓ pairwise edge-disjoint s-t paths in G.

Proof (continued). Suppose now that *G* is not ℓ -edge-connected. Then $\exists F \subseteq E(G)$ s.t. $|F| \leq \ell - 1$ and $G \setminus F$ is disconnected. Let *s*, *t* be vertices from distinct components of $G \setminus F$.



Now *F* separates *s* from *t*, and so *s* can be separated from *t* by at most $|F| \le \ell - 1$ edges of *G*. So, by Menger's theorem (edge version), there are at most $\ell - 1$ pairwise edge-disjoint paths between *s* and *t* in *G*.

Let G be a graph, and let $s, t \in V(G)$ be distinct, non-adjacent vertices of G. Then the minimum number of vertices of $V(G) \setminus \{s, t\}$ separating s from t in G is equal to the maximum number of pairwise internally disjoint s-t paths in G.

The global version of Menger's theorem

Let G be a graph on ≥ 2 vertices, and let $k, \ell \geq 0$ be integers.

(a) G is k-connected iff for all distinct $s, t \in V(G)$, there are k pairwise internally disjoint s-t paths in G.

Proof (continued). It remains to prove (a).

Let G be a graph, and let $s, t \in V(G)$ be distinct, non-adjacent vertices of G. Then the minimum number of vertices of $V(G) \setminus \{s, t\}$ separating s from t in G is equal to the maximum number of pairwise internally disjoint s-t paths in G.

The global version of Menger's theorem

Let G be a graph on ≥ 2 vertices, and let $k, \ell \geq 0$ be integers.

(a) G is k-connected iff for all distinct $s, t \in V(G)$, there are k pairwise internally disjoint s-t paths in G.

Proof (continued). It remains to prove (a). Suppose that G is k-connected, and let s and t be distinct vertices of G.

Let G be a graph, and let $s, t \in V(G)$ be distinct, non-adjacent vertices of G. Then the minimum number of vertices of $V(G) \setminus \{s, t\}$ separating s from t in G is equal to the maximum number of pairwise internally disjoint s-t paths in G.

The global version of Menger's theorem

Let G be a graph on ≥ 2 vertices, and let $k, \ell \geq 0$ be integers.

(a) G is k-connected iff for all distinct $s, t \in V(G)$, there are k pairwise internally disjoint s-t paths in G.

Proof (continued). It remains to prove (a). Suppose that *G* is *k*-connected, and let *s* and *t* be distinct vertices of *G*. Suppose first that *s* and *t* are non-adjacent. Since *G* is *k*-connected, *s* and *t* cannot be separated by fewer than *k* vertices of $V(G) \setminus \{s, t\}$; so, by Corollary 1.1, there are *k* internally disjoint paths between *s* and *t*.

Let G be a graph, and let $s, t \in V(G)$ be distinct, non-adjacent vertices of G. Then the minimum number of vertices of $V(G) \setminus \{s, t\}$ separating s from t in G is equal to the maximum number of pairwise internally disjoint s-t paths in G.

The global version of Menger's theorem

Let G be a graph on ≥ 2 vertices, and let $k, \ell \geq 0$ be integers.

(a) G is k-connected iff for all distinct $s, t \in V(G)$, there are k pairwise internally disjoint s-t paths in G.

Proof (continued). Suppose now that *s* and *t* are adjacent.

Let G be a graph, and let $s, t \in V(G)$ be distinct, non-adjacent vertices of G. Then the minimum number of vertices of $V(G) \setminus \{s, t\}$ separating s from t in G is equal to the maximum number of pairwise internally disjoint s-t paths in G.

The global version of Menger's theorem

Let G be a graph on ≥ 2 vertices, and let $k, \ell \geq 0$ be integers.

(a) G is k-connected iff for all distinct $s, t \in V(G)$, there are k pairwise internally disjoint s-t paths in G.

Proof (continued). Suppose now that *s* and *t* are adjacent. By Proposition 3.1 from Lecture Notes 7, $G' := G \setminus st$ is (k-1)-connected.

Let G be a graph, and let $s, t \in V(G)$ be distinct, non-adjacent vertices of G. Then the minimum number of vertices of $V(G) \setminus \{s, t\}$ separating s from t in G is equal to the maximum number of pairwise internally disjoint s-t paths in G.

The global version of Menger's theorem

Let G be a graph on ≥ 2 vertices, and let $k, \ell \geq 0$ be integers.

(a) G is k-connected iff for all distinct $s, t \in V(G)$, there are k pairwise internally disjoint s-t paths in G.

Proof (continued). Suppose now that *s* and *t* are adjacent. By Proposition 3.1 from Lecture Notes 7, $G' := G \setminus st$ is (k-1)-connected. So, by Corollary 1.1, there are k-1 internally disjoint paths between *s* and *t* in *G'*.

Let G be a graph, and let $s, t \in V(G)$ be distinct, non-adjacent vertices of G. Then the minimum number of vertices of $V(G) \setminus \{s, t\}$ separating s from t in G is equal to the maximum number of pairwise internally disjoint s-t paths in G.

The global version of Menger's theorem

Let G be a graph on ≥ 2 vertices, and let $k, \ell \geq 0$ be integers.

(a) G is k-connected iff for all distinct $s, t \in V(G)$, there are k pairwise internally disjoint s-t paths in G.

Proof (continued). Suppose now that *s* and *t* are adjacent. By Proposition 3.1 from Lecture Notes 7, $G' := G \setminus st$ is (k-1)-connected. So, by Corollary 1.1, there are k-1 internally disjoint paths between *s* and *t* in *G'*. These k-1 paths, plus the one-edge path *s*, *t* form *k* internally disjoint paths in *G*.

Let G be a graph on ≥ 2 vertices, and let $k, \ell \geq 0$ be integers.

(a) G is k-connected iff for all distinct $s, t \in V(G)$, there are k pairwise internally disjoint s-t paths in G.

Proof (continued). Suppose now that there are k internally disjoint paths between any two distinct vertices of G; we must show that G is k-connected.

Let G be a graph on ≥ 2 vertices, and let $k, \ell \geq 0$ be integers.

(a) G is k-connected iff for all distinct $s, t \in V(G)$, there are k pairwise internally disjoint s-t paths in G.

Proof (continued). Suppose now that there are k internally disjoint paths between any two distinct vertices of G; we must show that G is k-connected.

WTS $|V(G)| \ge k + 1$.

Let G be a graph on ≥ 2 vertices, and let $k, \ell \geq 0$ be integers.

(a) G is k-connected iff for all distinct $s, t \in V(G)$, there are k pairwise internally disjoint s-t paths in G.

Proof (continued). Suppose now that there are k internally disjoint paths between any two distinct vertices of G; we must show that G is k-connected.

WTS $|V(G)| \ge k + 1$. By hypothesis, G has at least two vertices; fix any distinct vertices $s, t \in V(G)$.

Let G be a graph on ≥ 2 vertices, and let $k, \ell \geq 0$ be integers.

(a) G is k-connected iff for all distinct $s, t \in V(G)$, there are k pairwise internally disjoint s-t paths in G.

Proof (continued). Suppose now that there are k internally disjoint paths between any two distinct vertices of G; we must show that G is k-connected.

WTS $|V(G)| \ge k + 1$. By hypothesis, *G* has at least two vertices; fix any distinct vertices $s, t \in V(G)$. Then there are *k* internally disjoint paths between them, and all but possibly one of those paths have an internal vertex, and it follows that $|V(G)| \ge (k - 1) + 2 = k + 1$.

Let G be a graph on ≥ 2 vertices, and let $k, \ell \geq 0$ be integers.

(a) G is k-connected iff for all distinct $s, t \in V(G)$, there are k pairwise internally disjoint s-t paths in G.

Proof (continued). Suppose now that there are k internally disjoint paths between any two distinct vertices of G; we must show that G is k-connected.

WTS $|V(G)| \ge k + 1$. By hypothesis, *G* has at least two vertices; fix any distinct vertices $s, t \in V(G)$. Then there are *k* internally disjoint paths between them, and all but possibly one of those paths have an internal vertex, and it follows that $|V(G)| \ge (k - 1) + 2 = k + 1$.

It remains to show that for all sets $X \subseteq V(G)$ s.t. $|X| \leq k - 1$, we have that $G \setminus X$ is connected.

Let G be a graph, and let $s, t \in V(G)$ be distinct, non-adjacent vertices of G. Then the minimum number of vertices of $V(G) \setminus \{s, t\}$ separating s from t in G is equal to the maximum number of pairwise internally disjoint s-t paths in G.

The global version of Menger's theorem

Let G be a graph on ≥ 2 vertices, and let $k, \ell \geq 0$ be integers.

(a) G is k-connected iff for all distinct $s, t \in V(G)$, there are k pairwise internally disjoint s-t paths in G.

Proof (continued). Suppose otherwise, and fix some $X \subseteq V(G)$ s.t. $|X| \leq k - 1$ and $G \setminus X$ is disconnected.

Let G be a graph, and let $s, t \in V(G)$ be distinct, non-adjacent vertices of G. Then the minimum number of vertices of $V(G) \setminus \{s, t\}$ separating s from t in G is equal to the maximum number of pairwise internally disjoint s-t paths in G.

The global version of Menger's theorem

Let G be a graph on ≥ 2 vertices, and let $k, \ell \geq 0$ be integers.

(a) G is k-connected iff for all distinct $s, t \in V(G)$, there are k pairwise internally disjoint s-t paths in G.

Proof (continued). Suppose otherwise, and fix some $X \subseteq V(G)$ s.t. $|X| \leq k - 1$ and $G \setminus X$ is disconnected. Then $G \setminus X$ has at least two components, and we choose vertices *s* and *t* from distinct components of $G \setminus X$.

Let G be a graph, and let $s, t \in V(G)$ be distinct, non-adjacent vertices of G. Then the minimum number of vertices of $V(G) \setminus \{s, t\}$ separating s from t in G is equal to the maximum number of pairwise internally disjoint s-t paths in G.

The global version of Menger's theorem

Let G be a graph on ≥ 2 vertices, and let $k, \ell \geq 0$ be integers.

(a) G is k-connected iff for all distinct $s, t \in V(G)$, there are k pairwise internally disjoint s-t paths in G.

Proof (continued). Suppose otherwise, and fix some $X \subseteq V(G)$ s.t. $|X| \leq k - 1$ and $G \setminus X$ is disconnected. Then $G \setminus X$ has at least two components, and we choose vertices s and t from distinct components of $G \setminus X$. Now $X \subseteq V(G) \setminus \{s, t\}$ separates s from t, and so by Corollary 1.1, there can be at most $|X| \leq k - 1$ internally disjoint paths between s and t in G, a contradiction.

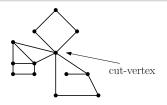
Definition

A *cut-vertex* of a graph G is any vertex $v \in V(G)$ s.t. $G \setminus v$ has more components than G.



Definition

A *cut-vertex* of a graph G is any vertex $v \in V(G)$ s.t. $G \setminus v$ has more components than G.

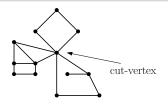


Definition

For a non-negative integer k, a graph G is k-connected if $|V(G)| \ge k+1$ and for all $S \subseteq V(G)$ s.t. $|S| \le k-1$, we have that $G \setminus S$ is connected.

Definition

A *cut-vertex* of a graph G is any vertex $v \in V(G)$ s.t. $G \setminus v$ has more components than G.



Definition

For a non-negative integer k, a graph G is k-connected if $|V(G)| \ge k+1$ and for all $S \subseteq V(G)$ s.t. $|S| \le k-1$, we have that $G \setminus S$ is connected.

• So, a graph is 2-connected if it has at least three vertices, is connected, and has no cut-vertices.

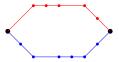
Lemma 1.1

Let G be a graph on at least two vertices. Then G is 2-connected iff any two distinct vertices lie on a common cycle.

Lemma 1.1

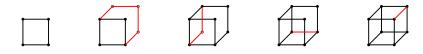
Let G be a graph on at least two vertices. Then G is 2-connected iff any two distinct vertices lie on a common cycle.

Proof. By Menger's theorem (global version), a graph on at least two vertices is 2-connected iff for any pair of distinct vertices, there are two internally disjoint paths between them. But obviously, two distinct vertices lie on a common cycle iff there are two internally-disjoint paths between them. The result now follows.



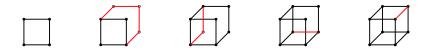
Definition

A path addition (sometimes called open ear addition) to a graph H is the addition to H of a path between two distinct vertices of H in such a way that no internal vertex and no edge of the path belongs to H.



Definition

A path addition (sometimes called open ear addition) to a graph H is the addition to H of a path between two distinct vertices of H in such a way that no internal vertex and no edge of the path belongs to H.



The Ear Lemma

A graph is 2-connected iff it is a cycle or can be obtained from a cycle by repeated path addition.

A graph is 2-connected iff it is a cycle or can be obtained from a cycle by repeated path addition.

Proof of the " \Leftarrow " part.

A graph is 2-connected iff it is a cycle or can be obtained from a cycle by repeated path addition.

Proof of the " impart. Clearly, cycles are 2-connected (indeed, every cycle has at least three vertices, is connected, and has no cut-vertices).

A graph is 2-connected iff it is a cycle or can be obtained from a cycle by repeated path addition.

Proof of the " \Leftarrow " part. Clearly, cycles are 2-connected (indeed, every cycle has at least three vertices, is connected, and has no cut-vertices). Further, if a graph *G* can be obtained from a 2-connected graph *H* by adding a path, then *G* has at least three vertices (because *H* does), and it is easy to see that *G* is connected and has no cut-vertices; so, *G* is 2-connected.

A graph is 2-connected iff it is a cycle or can be obtained from a cycle by repeated path addition.

Proof of the " \Leftarrow " part. Clearly, cycles are 2-connected (indeed, every cycle has at least three vertices, is connected, and has no cut-vertices). Further, if a graph *G* can be obtained from a 2-connected graph *H* by adding a path, then *G* has at least three vertices (because *H* does), and it is easy to see that *G* is connected and has no cut-vertices; so, *G* is 2-connected. It now follows by an easy induction (e.g. on the number of paths added) that any graph obtained from a cycle by repeated path addition is 2-connected.

A graph is 2-connected iff it is a cycle or can be obtained from a cycle by repeated path addition.

Proof of the " \implies " part (outline).

A graph is 2-connected iff it is a cycle or can be obtained from a cycle by repeated path addition.

Proof of the " \implies " *part (outline).* Fix a 2-connected graph *G*. By Lemma 1.1, *G* contains a cycle.

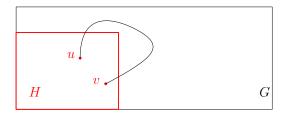
A graph is 2-connected iff it is a cycle or can be obtained from a cycle by repeated path addition.

Proof of the " \implies " part (outline). Fix a 2-connected graph G. By Lemma 1.1, G contains a cycle. Now, let H be a maximal subgraph of G that either is a cycle or can be obtained from a cycle by repeated path addition. We must show that H = G.

A graph is 2-connected iff it is a cycle or can be obtained from a cycle by repeated path addition.

Proof of the " \implies " part (outline). Fix a 2-connected graph G. By Lemma 1.1, G contains a cycle. Now, let H be a maximal subgraph of G that either is a cycle or can be obtained from a cycle by repeated path addition. We must show that H = G.

H is an induced subgraph of G, because otherwise, we can add another path to H.

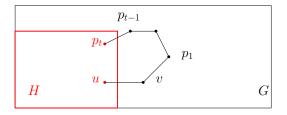


A graph is 2-connected iff it is a cycle or can be obtained from a cycle by repeated path addition.

Proof of the " \implies " part (outline, continued).

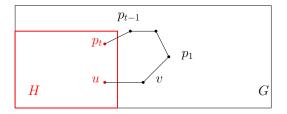
A graph is 2-connected iff it is a cycle or can be obtained from a cycle by repeated path addition.

Proof of the " \implies " part (outline, continued). Also, V(H) = V(G), for otherwise, we could add another path to H.



A graph is 2-connected iff it is a cycle or can be obtained from a cycle by repeated path addition.

Proof of the " \implies " part (outline, continued). Also, V(H) = V(G), for otherwise, we could add another path to H.



We now have that V(H) = V(G), and that H is an induced subgraph of G. So, H = G.