
NDMI011: Combinatorics and Graph Theory 1

Lecture #8

Menger’s theorems and the Ear lemma

Irena Penev

November 24, 2021



In what follows, all graphs are finite, simple (i.e. have no loops
and no parallel edges), and non-null.

This lecture consists of three parts:

1 a brief review of vertex- and edge-connectivity;
2 Menger’s theorems;
3 2-connected graphs and the Ear lemma.
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Part I: A brief review of vertex- and edge-connectivity

Definition
For a graph G and (not necessarily disjoint) sets A, B ⊆ V (G), an
A-B path in G , or a path from A to B in G , is either a one-vertex
path whose sole vertex is in A ∩ B, or a path on at least two
vertices whose one endpoint is in A and whose other endpoint is in
B.
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Definition
Given a graph G and (not necessarily disjoint) sets A, B ⊆ V (G),
we say that a set X ⊆ V (G) separates A from B in G if every path
from A to B in G contains at least one vertex of X . Note that this
implies that A ∩ B ⊆ X .

A
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X

Definition
Given a graph G and a non-negative integer k, we say that G is
k-vertex-connected, or simply k-connected, if |V (G)| ≥ k + 1 and
for all X ⊆ V (G) s.t. |X | ≤ k − 1, we have that G \ X is connected.
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Definition
Given a graph G and disjoint sets A, B ⊆ V (G), we say that a set
F ⊆ E (G) separates A from B in G if every path from A to B
contains at least one edge of F .
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Definition
Given a graph G and a non-negative integer ℓ, we say that G is
ℓ-edge-connected if |V (G)| ≥ 2 and for all F ⊆ E (G) s.t.
|F | ≤ ℓ − 1, we have that G \ F is connected.
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Part II: Menger’s theorems

Menger’s theorem (vertex version)
Let G be a graph, and let A, B ⊆ V (G). Then the minimum
number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G .
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Menger’s theorem (vertex version)
Let G be a graph, and let A, B ⊆ V (G). Then the minimum
number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G .

Proof (outline).

Assume inductively that the theorem is true for
graphs on fewer than |E (G)| edges. Let k be the minimum number
of vertices separating A from B in G . WTS:
(i) there can be no more than k pairwise disjoint paths from A to

B in G ;
(ii) there are at least k pairwise disjoint paths from A to B.

(i) is “obvious.”
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Menger’s theorem (vertex version)
Let G be a graph, and let A, B ⊆ V (G). Then the minimum
number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G .

Proof (outline, continued). Let’s prove (ii):
(ii) there are at least k pairwise disjoint paths from A to B.

If E (G) = ∅, then |A ∩ B| = k, and there are k pairwise disjoint
A-B paths in G . So assume that G has at least one edge, say xy .

We apply the induction hypothesis to Gxy := G/xy .

x y vxy

G G/xy
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Menger’s theorem (vertex version)
Let G be a graph, and let A, B ⊆ V (G). Then the minimum
number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G .

Proof (outline, continued).

x y vxy

G G/xy

If x or y belongs to A, then let A′ = (A \ {x , y}) ∪ {vxy }, and
otherwise, let A′ = A. Similarly, if x or y belongs to B, then let
B′ = (B \ {x , y}) ∪ {vxy }, and otherwise, let B′ = B.



Menger’s theorem (vertex version)
Let G be a graph, and let A, B ⊆ V (G). Then the minimum
number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G .

Proof (outline, continued). Let Y ⊆ V (Gxy ) be a minimum-sized
set of vertices separating A′ from B′ in Gxy . By the induction
hypothesis, there are |Y | many pairwise disjoint paths in Gxy from
A′ to B′, and it readily follows that there are at least |Y | many
pairwise disjoint paths in G from A to B. So, if |Y | ≥ k, then we
are done.
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Menger’s theorem (vertex version)
Let G be a graph, and let A, B ⊆ V (G). Then the minimum
number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G .

Proof (outline, continued). From now on, we assume that
|Y | ≤ k − 1. Then vxy ∈ Y , for otherwise, Y would separate A
from B in G , contrary to the fact that |Y | ≤ k − 1. Now
X := (Y \ {vxy }) ∪ {x , y} separates A from B in G , and we have
that |X | = |Y | + 1. Note that this implies that |X | = k. Set
X = {x1, . . . , xk}.
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Menger’s theorem (vertex version)
Let G be a graph, and let A, B ⊆ V (G). Then the minimum
number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G .

Proof (outline, continued). We now consider the graph G \ xy .

Since x , y ∈ X , we know that any set of vertices separating A from
X in G \ xy also separates A from B in G ; consequently, any such
set has at least k vertices.
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Menger’s theorem (vertex version)
Let G be a graph, and let A, B ⊆ V (G). Then the minimum
number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G .

Proof (outline, continued). So, by the induction hypothesis, there
are k pairwise disjoint paths from A to X in G , call them
P1, . . . , Pk .

Similarly, there are k pairwise disjoint paths from B to
X in G , call them Q1, . . . , Qk .
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Corollary 1.1
Let G be a graph, and let s, t ∈ V (G) be distinct, non-adjacent
vertices of G . Then the minimum number of vertices of
V (G) \ {s, t} separating s from t in G is equal to the maximum
number of pairwise internally disjoint s-t paths in G .

The red and blue
path are internally
disjoint.

set of two vertices
separating s from t

s t

Proof (outline). Apply Menger’s theorem (vertex version) to the
graph G \ {s, t} and sets S = NG(s) and T = NG(t).
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Definition
The line graph of a graph G , denoted by L(G), is the graph whose
vertex set is E (G), and in which e, f ∈ L(V (G)) = E (G) are
adjacent iff e and f share an endpoint in G .
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Menger’s theorem (edge version)
Let G be a graph, and let s, t ∈ V (G) be distinct vertices of G .
Then the minimum number of edges separating s from t in G is
equal to the maximum number of pairwise edge-disjoint s-t paths
in G .

Proof (outline). Apply Menger’s theorem (vertex version) to the
graph L(G) and the sets S = {e ∈ E (G) | e is incident with s} and
T = {e ∈ E (G) | e is incident with t}.

s t

S T

The maximum number of pairwise edge-disjoint s-t paths in
G is equal to the maximum number of pairwise disjoint S-T
paths in L(G).
A set X ⊆ E (G) separates s from t in G iff X separates S
from T in L(G).
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The global version of Menger’s theorem
Let G be a graph on ≥ 2 vertices, and let k, ℓ ≥ 0 be integers.
(a) G is k-connected iff for all distinct s, t ∈ V (G), there are k

pairwise internally disjoint s-t paths in G .
(b) G is ℓ-edge-connected iff for all distinct s, t ∈ V (G), there are

ℓ pairwise edge-disjoint s-t paths in G .

Proof.

(b) is easier, and so we prove it first.
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Proof (continued).

Suppose that G is ℓ-edge-connected. Fix
distinct vertices s, t ∈ V (G). Since G is ℓ-edge-connected, s
cannot be separated from t with fewer than ℓ edges of G , and so
by Menger’s theorem (edge version), there are at least ℓ pairwise
edge-disjoint paths between s and t in G .
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Proof (continued). Suppose now that G is not ℓ-edge-connected.

Then ∃F ⊆ E (G) s.t. |F | ≤ ℓ − 1 and G \ F is disconnected. Let
s, t be vertices from distinct components of G \ F .

s t

Now F separates s from t, and so s can be separated from t by at
most |F | ≤ ℓ − 1 edges of G . So, by Menger’s theorem (edge
version), there are at most ℓ − 1 pairwise edge-disjoint paths
between s and t in G .
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Corollary 1.1
Let G be a graph, and let s, t ∈ V (G) be distinct, non-adjacent
vertices of G . Then the minimum number of vertices of
V (G) \ {s, t} separating s from t in G is equal to the maximum
number of pairwise internally disjoint s-t paths in G .

The global version of Menger’s theorem
Let G be a graph on ≥ 2 vertices, and let k, ℓ ≥ 0 be integers.
(a) G is k-connected iff for all distinct s, t ∈ V (G), there are k

pairwise internally disjoint s-t paths in G .

Proof (continued). It remains to prove (a).

Suppose that G is
k-connected, and let s and t be distinct vertices of G .
Suppose first that s and t are non-adjacent. Since G is
k-connected, s and t cannot be separated by fewer than k vertices
of V (G) \ {s, t}; so, by Corollary 1.1, there are k internally disjoint
paths between s and t.
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Proof (continued). Suppose now that s and t are adjacent.

By
Proposition 3.1 from Lecture Notes 7, G ′ := G \ st is
(k − 1)-connected. So, by Corollary 1.1, there are k − 1 internally
disjoint paths between s and t in G ′. These k − 1 paths, plus the
one-edge path s, t form k internally disjoint paths in G .
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Proof (continued). Suppose now that s and t are adjacent. By
Proposition 3.1 from Lecture Notes 7, G ′ := G \ st is
(k − 1)-connected.

So, by Corollary 1.1, there are k − 1 internally
disjoint paths between s and t in G ′. These k − 1 paths, plus the
one-edge path s, t form k internally disjoint paths in G .
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pairwise internally disjoint s-t paths in G .

Proof (continued). Suppose now that there are k internally disjoint
paths between any two distinct vertices of G ; we must show that
G is k-connected.

WTS |V (G)| ≥ k + 1. By hypothesis, G has at least two vertices;
fix any distinct vertices s, t ∈ V (G). Then there are k internally
disjoint paths between them, and all but possibly one of those
paths have an internal vertex, and it follows that
|V (G)| ≥ (k − 1) + 2 = k + 1.

It remains to show that for all sets X ⊆ V (G) s.t. |X | ≤ k − 1, we
have that G \ X is connected.
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Proof (continued). Suppose otherwise, and fix some X ⊆ V (G)
s.t. |X | ≤ k − 1 and G \ X is disconnected.

Then G \ X has at
least two components, and we choose vertices s and t from
distinct components of G \ X . Now X ⊆ V (G) \ {s, t} separates s
from t, and so by Corollary 1.1, there can be at most |X | ≤ k − 1
internally disjoint paths between s and t in G , a contradiction.
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Part III: The structure of 2-connected graphs and the Ear lemma

Definition
A cut-vertex of a graph G is any vertex v ∈ V (G) s.t. G \ v has
more components than G .

cut-vertex

Definition
For a non-negative integer k, a graph G is k-connected if
|V (G)| ≥ k + 1 and for all S ⊆ V (G) s.t. |S| ≤ k − 1, we have
that G \ S is connected.

So, a graph is 2-connected if it has at least three vertices, is
connected, and has no cut-vertices.
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Lemma 1.1
Let G be a graph on at least two vertices. Then G is 2-connected
iff any two distinct vertices lie on a common cycle.

Proof. By Menger’s theorem (global version), a graph on at least
two vertices is 2-connected iff for any pair of distinct vertices,
there are two internally disjoint paths between them. But
obviously, two distinct vertices lie on a common cycle iff there are
two internally-disjoint paths between them. The result now follows.
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Definition
A path addition (sometimes called open ear addition) to a graph H
is the addition to H of a path between two distinct vertices of H in
such a way that no internal vertex and no edge of the path belongs
to H.

The Ear Lemma
A graph is 2-connected iff it is a cycle or can be obtained from a
cycle by repeated path addition.



Definition
A path addition (sometimes called open ear addition) to a graph H
is the addition to H of a path between two distinct vertices of H in
such a way that no internal vertex and no edge of the path belongs
to H.

The Ear Lemma
A graph is 2-connected iff it is a cycle or can be obtained from a
cycle by repeated path addition.



The Ear Lemma
A graph is 2-connected iff it is a cycle or can be obtained from a
cycle by repeated path addition.

Proof of the “⇐=” part.

Clearly, cycles are 2-connected (indeed,
every cycle has at least three vertices, is connected, and has no
cut-vertices). Further, if a graph G can be obtained from a
2-connected graph H by adding a path, then G has at least three
vertices (because H does), and it is easy to see that G is connected
and has no cut-vertices; so, G is 2-connected. It now follows by an
easy induction (e.g. on the number of paths added) that any graph
obtained from a cycle by repeated path addition is 2-connected.
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A graph is 2-connected iff it is a cycle or can be obtained from a
cycle by repeated path addition.

Proof of the “=⇒” part (outline).

Fix a 2-connected graph G . By
Lemma 1.1, G contains a cycle. Now, let H be a maximal
subgraph of G that either is a cycle or can be obtained from a
cycle by repeated path addition. We must show that H = G .
H is an induced subgraph of G , because otherwise, we can add
another path to H.
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Proof of the “=⇒” part (outline, continued).

Also, V (H) = V (G),
for otherwise, we could add another path to H.

H G
u v

p1

pt−1

pt

We now have that V (H) = V (G), and that H is an induced
subgraph of G . So, H = G .
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