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Lecture #8
Menger’s theorems and the Ear lemma

Irena Penev

In what follows, all graphs are finite, simple (i.e. have no loops and no
parallel edges), and non-null.

1 Menger’s theorems

Menger’s theorem (vertex version). Let G be a graph, and let A, B C
V(G).Y Then the minimum number of vertices separating A from B in G is
equal to the mazimum number of pairwise disjoint A-B paths in G.?

A= {a17a27a3=a4}
b2 B= {b17b27b3}
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Proof. We assume inductively that the theorem holds for graphs that have
fewer than |E(G)| edges. More precisely, we assume that for all graphs
G’ such that |E(G")| < |E(G)|, and all sets A’, B’ C V(G’), the minimum
number of vertices separating A’ from B’ in G’ is equal to the maximum
number of pairwise disjoint A’-B’ paths in G’. We must prove that this holds
for G as well. From now on, we let k be the minimum number of vertices
separating A from B in G.

1A and B need not be disjoint.
2“Pairwise disjoint” here means that no two paths have a vertex in common (and
consequently, no two paths have an edge in common).



First, we claim that there can be no more than k pairwise disjoint paths
from A to B in G. Indeed, let X C V(G) be a k-vertex set separating A
from B in G, and let P be any collection of pairwise disjoint paths from A
to B. By definition, every path in P contains at least one vertex of X, and
since paths in P are pairwise disjoint, no two paths in P contain the same
vertex of X. So, |P| < |X| =k, as we had claimed.

It remains to show that there are at least k pairwise disjoint paths from
A to B. Clearly, for any set X C V(G) separating A from B in G, we have
that AN B C X; consequently, |A N B| < k. Now, if E(G) = (), then AN B
separates A from B in G, and so |A N B| = k; in this case, the vertices of
AN B form k pairwise disjoint one-vertex paths from A to B, and we are
done. From now on, we assume that G has at least one edge, say xy. Let
Gy = G/zy, i.e. let G4y be the graph obtained from G by contracting the
edge zy, and let v,, be the vertex obtained by contracting xy.3
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Now, if z or y belongs to A, then let A’ = (A\ {z,y}) U{vsy}, and otherwise,
let A" = A. Similarly, if z or y belongs to B, then let B’ = (B\{z, y})U{vgy},
and otherwise, let B’ = B.

Let Y C V(Gay) be a minimum-sized set of vertices separating A’ from
B'in ny.‘l By the induction hypothesis, there are |Y'| many pairwise disjoint
paths in G, from A’ to B’, and it readily follows® that there are at least
|Y'| many pairwise disjoint paths in G from A to B. So, if |Y| > k,% then
we are done. From now on, we assume that |Y| < k — 1. Then v, €Y,
for otherwise, Y would separate A from B in G,” contrary to the fact that
Y| < k—1. Now X := (Y \ {vgy}) U {z,y} separates A from B in G}
and we have that |X| = |Y|+ 1. Note that this implies that |X| = £.? Set

3Formally, v, is some (“new”) vertex that does not belong to V(G), and
Gy is the graph with vertex set V(G.y) = (V(G) \ {z, y}) U {vzy} and edge
set E(Gzy) = {e € E(G) | eis incident neither with z nor with y in G} U {vvgy |
v € V(G), v is adjacent to = or y in G}.

“This means that for all sets Y’ C V(Gyy) separating A from B in Gy, we have that
Y| < [Y'].

®Details?

5In fact, it is not possible that |Y| > k (details?), but we do not need this stronger fact.

"Proof?

8Proof?

“Indeed, since |Y| < k — 1, we have that |X| < k. On the other hand, since X separates
A from B in G, we know that |X| > k. So, | X| = k.



X ={z1,...,zx}.

We now consider the graph G \ zy, i.e. the graph obtained from G by
deleting the edge 2y.!° Since z,y € X, we know that any set of vertices
separating A from X in G\ zy also separates A from B in G;!! consequently,
any such set has at least k£ vertices, and so by the induction hypothesis,
there are k pairwise disjoint paths from A to X in G, call them Py, ..., Pg.
Similarly, there are k pairwise disjoint paths from B to X in G, call them
Q1,...,Qr. We may assume that for all i € {1,...,k}, z; is an endpoint
both of P; and of ;. So, P —x1 —Q1, ..., Px — xi — Q are pairwise disjoint
walks from A to B. But in fact, each of these walks is a path, for otherwise,
it would contain a path from A to B that contains no vertex of X.'2 So,
there are at least k pairwise disjoint paths from A to B in G. O

Given a graph G and distinct vertices s,t € V(G), two paths from s to ¢
in G are internally disjoint if they have no vertices in common except the
endpoints s and t.

The following corollary is also often referred to as the vertex version of
Menger’s theorem.

Corollary 1.1. Let G be a graph, and let s,t € V(QG) be distinct, non-
adjacent vertices of G. Then the minimum number of vertices of V(G) \
{s,t} separating s from t in G is equal to the mazimum number of pairwise
internally disjoint s-t paths in G.

The red and blue
path are internally
disjoint.
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Proof. Let S = Ng(s) and T'= Ng(t). Obviously, the minimum number of
vertices of V(G) \ {s,t} separating s from ¢ in G is equal to the minimum

080, V(G \ zy) = V(G) and E(G\ zy) = E(G) \ {zy}.

11et us check this. Let Z be any set of vertices separating A from X in G \ zy, and
let p1,...,pt, with p1 € A and p: € B, be a path from A to B in G. Then some vertex of
pi,...,pr belongs to X; let ¢ € {1,...,t} be the smallest index such that p; € X. Then
P1,...,pi is a path from A to X in G. Furthermore, since p1, ..., p; contains exactly one
vertex of X, and since x,y € X, we see that the path pi,...,p; does not use the edge zy;
consequently, p1,...,p; is a path from A to X in G \ zy, and we deduce that this path
(and consequently, the path p1,...,p: as well) contains a vertex of Z.

2Details?



number of vertices of V(G) \ {s,t} separating S from T in G \ {s,¢}.!3
Similarly, the maximum number of pairwise internally disjoint s-t paths
in G is equal to the maximum number of pairwise disjoint S-T" paths in
G. By Menger’s theorem (vertex version), the minimum number of vertices
separating S from 7" in G\ {s, t} is equal to the maximum number of pairwise
disjoint S-T paths in G \ {s,t}. So, the minimum number of vertices of
V(G) \ {s,t} separating s from ¢ in G is equal to the maximum number of
pairwise internally disjoint s-t paths in G. This completes the argument. [

Our next goal is to prove the edge version of Menger’s theorem. The
line graph of a graph G, denoted by L(G), is the graph whose vertex set is
E(G), and in which e, f € L(V(G)) = E(G) are adjacent if and only if e and
f share an endpoint in G.
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Proposition 1.2. Let G be a graph, let s,t € V(G) be distinct vertices of
G, let S be the set of all edges in G incident with s, and let T be the set of
all edges in G incident with t. Let X C E(G). Then X separates s from t in
G if and only if X separates S from T in L(G).

Proof. Suppose that X separates s from ¢ in GG; we must show that X
separates S from T in G. Suppose otherwise. Then there exists some path
e1,...,e. in L(G) that does not contain any vertex (in L(G)) from X.** For
each i € {1,...,7 — 1}, let v; be a common vertex of e; and e;;1.!> Then
S,V1,...,0r_1,t is a walk in L(G) from s to t that uses only edges ey, ..., e,
and consequently, does not use any edge of X. It follows that there is a path
from s to £ in G that does not use any edges of X, contrary to the fact that
X separates s from ¢ in G. This proves that X indeed separates S from T'
in G.

Suppose now that X does not separate s from ¢ in GG; we must show that
X does not separate S from T in L(G). Since X does not separate s from ¢

Tndeed, for any set X C V(G) \ {s,t}, we have that X separates s from ¢ in G if and
only if X separates S from T in G \ {s,t}.

Note that e1, ..., e, are vertices of L(G), and consequently, edges of G.

5Such a vertex exists because e; and e; 1 are adjacent vertices of L(@G), and consequently,
they are edges of G that share an endpoint.



in GG, we know that there is a path v1,...,v, in G, with v; = s and v, = ¢,

that does not use any edge of X. But now vive, vovs, ..., v._10, is a path
from S to T in L(G) that does not use any vertex (in L(G)) in X. So, X
does not separate S from T in L(G). O

Proposition 1.3. Let G be a graph, let s,t € V(G) be distinct vertices of
G, let S be the set of all edges in G incident with s, and let T' be the set
of all edges in G incident with t. Let £ be a non-negative integer. Then the
following are equivalent:

(i) there are £ pairwise edge-disjoint s-t paths in G;

(ii) there are £ pairwise disjoint S-G paths in L(G).

The red and blue path
are edge-disjoint.

Proof. Suppose first that (i) holds, and fix ¢ pairwise edge-disjoint s-¢t paths
in G,say Pp,...,P. Forallie {1,...,0}, set P, =0, ...,0% . Now, for all

» Upy e )
ie{l,....0}, set Pl = viv) vhol, ... vl vl (with v} = s and v, = t).
Clearly, Pf, ..., PZL are pairwise disjoint S-T" paths in L(G).

Suppose now that (ii) holds, and fix ¢ pairwise disjoint S-7" paths in

G, say Qf,...,Q%. For all i € {1,...,£}, set QF = ei,... el . Now, for

» Tyt

all i € {1,...,4} and j € {1,...,7;}, let vé- be a common vertex of the

edges 63- and eéﬂ in G, and set Q; = s,vi,... ,vf,i_l,t. Then @1, ...,Qy are
pairwise edge-disjoint s-t walks in GG, and we deduce that there are ¢ pairwise
edge-disjoint s-t paths in G. 0

Menger’s theorem (edge version). Let G be a graph, and let s,t € V(G)
be distinct vertices of G. Then the minimum number of edges separating s
from t in G is equal to the maximum number of pairwise edge-disjoint s-t
paths in G.

edges separating s from ¢



Proof. Let S be the set of all edges in GG incident with s, and let T" be the set
of all edges in GG incident with ¢. By Proposition 1.2, the minimum number
of edges separating s from ¢ in G is equal to the minimum number of vertices
separating S from T in L(G). By Proposition 1.3, the maximum number
of pairwise edge-disjoint s-t paths in G is equal to the maximum number
of pairwise disjoint S-T" paths in G. By Menger’s theorem (vertex version),
the minimum number of vertices separating S from 7" in L(G) is equal to
the maximum number of pairwise disjoint S-T" paths in G. We now deduce
that the minimum number of edges separating s from ¢ in G is equal to the
maximum number of pairwise edge-disjoint s-t paths in GG. This completes
the argument. O

The global version of Menger’s theorem. Let G be a graph on at least
two vertices, and let k,€ > 0 be integers.

(a) G is k-connected if and only if for all distinct s,t € V(G), there are k
pairwise internally disjoint s-t paths in G.

(b) G is L-edge-connected if and only if for all distinct s,t € V(G), there are
{ pairwise edge-disjoint s-t paths in G.

Proof. We first prove (a). Suppose that G is k-connected, and let s and ¢ be
distinct vertices of G.

Suppose first that s and t are non-adjacent. Since G is k-connected, s
and ¢ cannot be separated by fewer than k vertices of V/(G) \ {s,t}; so, by
Corollary 1.1, there are k internally disjoint paths between s and t.

Suppose now that s and t are adjacent. Set G’ = G\ st.1® By Propo-
sition 3.1 from Lecture Notes 7, G’ is (k — 1)-connected. Now s and t are
distinct and non-adjacent in G’, and they cannot be separated (in G’) by
fewer than k — 1 vertices of V(G’) \ {s,t}; so, Corollary 1.1 guarantees that
there are k — 1 internally disjoint paths between s and ¢ in G’. These k — 1
paths, plus the one-edge path s,t form k internally disjoint paths in G.

Suppose now that there are k internally disjoint paths between any two
distinct vertices of GG; we must show that G is k-connected.

Let us first show that |V (G)| > k + 1. By hypothesis, G has at least two
vertices; fix any distinct vertices s,t € V(G). Then there are k internally
disjoint paths between them, and all but possibly one of those paths have
an internal vertex;'” so these k paths together have at least & — 1 internal
vertices, and it follows that |V (G)| > (k — 1) +2 = k + 1,'® which is what
we needed.

It remains to show that for all sets X C V(G) such that | X| <k —1, we
have that G \ X is connected. Suppose otherwise, and fix some X C V(G)

1680, G’ is the graph obtained from G by deleting the edge st.

17If s and t are adjacent, then s,t is a path between s and ¢t with no internal vertices.
However, any other path between s and ¢ has at least one internal vertex.

18We are counting the k — 1 internal vertices of our paths, plus the endpoints s and ¢



such that |X| <k —1and G\ X is disconnected. Then G \ X has at least
two components, and we choose vertices s and ¢ from distinct components of
G\ X. Now X CV(G) \ {s,t} separates s from ¢, and so by Corollary 1.1,
there can be at most | X| < k — 1 internally disjoint paths between s and ¢
in G. But this contradicts the fact that there are k internally disjoint paths
between any two distinct vertices of G.

We now prove (b). Suppose that G is f-edge-connected. Fix distinct
vertices s,t € V(G). Since G is f-edge-connected, s cannot be separated from
t with fewer than ¢ edges of G, and so by Menger’s theorem (edge version),
there are at least £ pairwise edge-disjoint paths between s and ¢ in G.

Suppose now that G is not f-edge connected. Then there exists a set
F C E(G) such that |F| <¢—1 and G \ F is disconnected. Since G \ F is
disconnected, it has at least two components; let s and ¢ be vertices from
distinct components of G\ F. Now F' separates s from ¢, and in particular, s
can be separated from ¢ by at most |F| < ¢ — 1 edges of G. So, by Menger’s
theorem (edge version), there are at most ¢ — 1 pairwise edge-disjoint paths
between s and t in G. O

2 2-connected graphs and ear decomposition

A cut-vertez of a graph G is any vertex v € V(G) such that G \ v has more
components than G.

\

cut-vertex

Recall that, for a non-negative integer k, a graph G is k-connected if
[V(G)| > k+ 1 and for all S C V(G) such that |S| < k — 1, we have that
G\ S is connected. So, a graph is 2-connected if it has at least three vertices,
is connected, and has no cut-vertices.

Lemma 2.1. Let G be a graph on at least two vertices. Then G is 2-connected
if and only if any two distinct vertices lie on a common cycle.'?

Proof. By Menger’s theorem (global version), a graph on at least two vertices
is 2-connected if and only if for any pair of distinct vertices, there are two
internally disjoint paths between them. But obviously, two distinct vertices
lie on a common cycle if and only if there are two internally-disjoint paths
between them. The result now follows.

9Note that if G has at least two vertices, and any two distinct vertices lie on a common
cycle, then in particular, G contains a cycle, and therefore, G has at least three vertices.
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In this section, we give a full structural description of 2-connected graphs.
A path addition (sometimes called open ear addition) to a graph H is the
addition to H of a path between two distinct vertices of H in such a way
that no internal vertex and no edge of the path belongs to H. In the picture
below, we show how the cube graph can be constructed by starting with a
cycle of length four and then repeatedly adding open ears (the path/open
ear added at each step is in red).

The Ear lemma. A graph is 2-connected if and only if it is a cycle or can
be obtained from a cycle by repeated path addition.

Proof. We first prove the “if” (i.e. “<=") part of the lemma. Clearly, cycles
are 2-connected (indeed, every cycle has at least three vertices, is connected,
and has no cut-vertices).?’ Further, if a graph G can be obtained from a
2-connected graph H by adding a path, then G has at least three vertices
(because H does), and it is easy to see that G is connected and has no
cut-vertices;?! so, G is 2-connected. It now follows by an easy induction
(e.g. on the number of paths added) that any graph obtained from a cycle
by repeated path addition is 2-connected. This proves the “if” part of the
lemma.

It remains to prove the “only if” (i.e. “=") part of the lemma. Fix a
2-connected graph G. By Lemma 2.1, G contains a cycle.?? Now, let H be
a maximal subgraph of G that either is a cycle or can be obtained from a
cycle by repeated path addition.?> We must show that H = G.

First, we claim that H is an induced subgraph of G.24 If not, then there
exist distinct vertices u,v € V(H) that are adjacent in G, but not in H; but
then the graph obtained from H by adding the one-edge path u, v contradicts
the maximality of H. So, H is indeed an induced subgraph of G.

20 Alternatively, this follows from Lemma 2.1.

?!Check this!

22Indeed, G has at least three vertices (because it is 2-connected), and by Lemma 2.1,
any two of them lie on a common cycle. So, G contains a cycle.

23This means that no subgraph H* of G that either is a cycle or can be obtained from a
cycle by repeated path addition contains H as a proper subgraph.

21 A graph H is an induced subgraph of a graph G if V(H) C V(G), and for all distinct
u,v € V(H), we have that uv € E(H) if and only if uv € E(G).
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It remains to show that V(H) = V(G). Suppose otherwise. Then since
G is connected, there is at least one edge between V(H) and V(G) \ V(H);
fix adjacent vertices u € V(H) and v € V(G) \ V(H). Since both G is
2-connected, we know that G\ u is connected; consequently, there is a
path in G\ u from v to some vertex in V(H) \ {u}; let P = v,p1,...,p¢
(t > 1) be a path in G \ v with p, € V(H) \ {u}; we may assume that
p1y---,pi—1 € V(G)\ V(H).?> But now the graph obtained from H by
adding the path u,v,p1,...,p; contradicts the maximality of H.
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This proves that V(H) = V(G). Since we already know that H is an induced
subgraph of G, it follows that H = G. This proves the “only if” part of the
lemma. O

2 Otherwise, we fix a minimal index i € {1,...,t — 1} such that p; € V(H), and we
consider the path v, p1,...,p; instead of v,p1,...,p:.



