NDMI011: Combinatorics and Graph Theory 1

Lecture #7

Applications of networks. Graph connectivity

Irena Penev

November 10, 2021

This lecture consists of three parts:

Matchings.

This lecture consists of three parts:

- Matchings.
- 2 Latin rectangles.

This lecture consists of three parts:

- Matchings.
- 2 Latin rectangles.
- An introduction to connectivity.

Part I: Matchings

Part I: Matchings

Definition

A matching in a graph G is a set of edges $M \subseteq E(G)$ such that every vertex of G is incident with at most one edge in M.

Definition

A *vertex cover* of a graph G is any set C of vertices of G such that every edge of G has at least one endpoint in G.

The maximum size of a matching in a bipartite graph is equal to the minimum size of a vertex cover in that graph.

Proof.

The maximum size of a matching in a bipartite graph is equal to the minimum size of a vertex cover in that graph.

Proof. Let G be a bipartite graph with bipartition (A, B).

The maximum size of a matching in a bipartite graph is equal to the minimum size of a vertex cover in that graph.

Proof. Let G be a bipartite graph with bipartition (A, B). Clearly, it suffices to prove the following two statements:

- (a) for every matching M and every vertex cover C of G, we have that $|M| \leq |C|$;
- (b) there exist a matching M and a vertex cover C of G such that |M| = |C|.

The maximum size of a matching in a bipartite graph is equal to the minimum size of a vertex cover in that graph.

Proof. Let G be a bipartite graph with bipartition (A, B). Clearly, it suffices to prove the following two statements:

- (a) for every matching M and every vertex cover C of G, we have that $|M| \leq |C|$;
- (b) there exist a matching M and a vertex cover C of G such that |M| = |C|.

Proof of (a). Fix a matching M and a vertex cover C in G. Clearly, every edge of M has at least one endpoint in C. Since no two edges of M share an endpoint, we deduce that $|M| \leq |C|$. This proves (a).

(b) there exist a matching M and a vertex cover C of G such that |M| = |C|.

Proof of (b).

(b) there exist a matching M and a vertex cover C of G such that |M| = |C|.

Proof of (b). We form a network (G', s, t, c) as follows:

(b) there exist a matching M and a vertex cover C of G such that |M| = |C|.

Proof of (b) (continued). Let f be a maximum flow in (G', s, t, c), and let R be a cut of minimum capacity.

 $e \in E(G')$.

(b) there exist a matching M and a vertex cover C of G such that |M| = |C|.

Proof of (b) (continued). Let f be a maximum flow in (G', s, t, c), and let R be a cut of minimum capacity. By Theorem 3.4 from Lecture Notes 6, we may assume that f(e) is an integer for all

(b) there exist a matching M and a vertex cover C of G such that |M| = |C|.

Proof of (b) (continued). Let f be a maximum flow in (G',s,t,c), and let R be a cut of minimum capacity. By Theorem 3.4 from Lecture Notes 6, we may assume that f(e) is an integer for all $e \in E(G')$. By the Max-flow min-cut theorem, we know that

val(f) = c(R). It now suffices to produce a matching of size

val(f) and vertex cover of size c(R).

Proof (continued). Because of capacities, and because of inflows and outflows, we have that $f(e) \leq 1$ for all $e \in E(G')$. So, $f(e) \in \{0,1\}$ for all $e \in E(G')$.

Proof (continued). Let $M = \{ab \in E(G) \mid a \in A, b \in B, f(a, b) = 1\}$. Then M is a matching of size val(f) (details: Lecture Notes).

Proof (continued). Reminder: R is a cut of minimum capacity.

Proof (continued). Reminder: R is a cut of minimum capacity. R cannot contain any edges between A and B.

Proof (continued). Let C be the set of all vertices in $V(G) = A \cup B$ that are incident with at least one edge of R.

Proof (continued). Let C be the set of all vertices in $V(G) = A \cup B$ that are incident with at least one edge of R. Then $R = \{(s, a) \mid a \in A \cap C\} \cup \{(b, t) \mid b \in B \cap C\}$.

Proof (continued). Let C be the set of all vertices in $V(G) = A \cup B$ that are incident with at least one edge of R. Then $R = \{(s, a) \mid a \in A \cap C\} \cup \{(b, t) \mid b \in B \cap C\}$. It follows that |C| = c(R), and C is a vertex cover of G (details: Lecture Notes).

Definition

Given a bipartite graph G with bipartition (A, B),

- an A-saturating matching in G is a matching M in G such that every vertex of A is incident with some edge in M;
- a B-saturating matching in G is a matching M in G such that every vertex of B is incident with some edge in M.

Definition

Given a bipartite graph G with bipartition (A, B),

- an A-saturating matching in G is a matching M in G such that every vertex of A is incident with some edge in M;
- a B-saturating matching in G is a matching M in G such that every vertex of B is incident with some edge in M.

• For a graph G and a set $A \subseteq V(G)$, we denote by $N_G(A)$ the set of all vertices in $V(G) \setminus A$ that have a neighbor in A.

Hall's theorem (graph theoretic formulation)

Let G be a bipartite graph with bipartition (A, B). Then the following are equivalent:

- (a) all sets $A' \subseteq A$ satisfy $|A'| \le |N_G(A')|$;
- (b) G has an A-saturating matching.

- (a) all sets $A' \subseteq A$ satisfy $|A'| \le |N_G(A')|$;
- (b) G has an A-saturating matching.

- (a) all sets $A' \subseteq A$ satisfy $|A'| \le |N_G(A')|$;
- (b) G has an A-saturating matching.

Proof (continued). "(b) \Longrightarrow (a)." is "obvious."

- (a) all sets $A' \subseteq A$ satisfy $|A'| \leq |N_G(A')|$;
- (b) G has an A-saturating matching.

Proof (continued). "(b) \Longrightarrow (a)." is "obvious." For "(a) \Longrightarrow (b)," it suffices to show that any vertex cover of G is of size $\geq |A|$.

Proof (continued). Let C be a vertex cover of G.

Then there can be no edges between $A \setminus C$ and $B \setminus C$, and we deduce that $N_G(A \setminus C) \subseteq B \cap C$, and consequently, $|N_G(A \setminus C)| \leq |B \cap C|$. Now we have the following:

$$|A| = |A \cap C| + |A \setminus C|$$

$$\leq |A \cap C| + |N_G(A \setminus C)| \quad \text{by (a)}$$

$$\leq |A \cap C| + |B \cap C|$$

$$= |C|.$$

Corollary 1.1

Let G be a bipartite graph with bipartition (A, B). Assume that G has at least one edge and that for all $a \in A$ and $b \in B$, we have that $d_G(a) \ge d_G(b)$. Then G has an A-saturating matching.

Proof. Lecture Notes.

Definition

For a non-negative integer k, a graph G is k-regular if it all its vertices are of degree k. G is regular if there exists some non-negative integer k such that G is k-regular.

Definition

For a non-negative integer k, a graph G is k-regular if it all its vertices are of degree k. G is regular if there exists some non-negative integer k such that G is k-regular.

Definition

A perfect matching in a graph G is a matching M such that every vertex of G is incident with an edge in M.

Corollary 1.1

Let G be a bipartite graph with bipartition (A, B). Assume that G has at least one edge and that for all $a \in A$ and $b \in B$, we have that $d_G(a) \ge d_G(b)$. Then G has an A-saturating matching.

Corollary 1.1

Let G be a bipartite graph with bipartition (A, B). Assume that G has at least one edge and that for all $a \in A$ and $b \in B$, we have that $d_G(a) \ge d_G(b)$. Then G has an A-saturating matching.

Corollary 1.2

Every regular bipartite graph that has at least one edge has a perfect matching.

Let G be a bipartite graph with bipartition (A, B). Assume that G has at least one edge and that for all $a \in A$ and $b \in B$, we have that $d_G(a) \ge d_G(b)$. Then G has an A-saturating matching.

Corollary 1.2

Every regular bipartite graph that has at least one edge has a perfect matching.

Proof. Let G be a k-regular ($k \ge 0$) bipartite graph with bipartition (A,B), and assume that G has at least one edge. By Corollary 1.1, G has an A-saturating matching.

Let G be a bipartite graph with bipartition (A, B). Assume that G has at least one edge and that for all $a \in A$ and $b \in B$, we have that $d_G(a) \ge d_G(b)$. Then G has an A-saturating matching.

Corollary 1.2

Every regular bipartite graph that has at least one edge has a perfect matching.

Proof. Let G be a k-regular ($k \ge 0$) bipartite graph with bipartition (A,B), and assume that G has at least one edge. By Corollary 1.1, G has an A-saturating matching. Now, since G has at least one edge, we see that $k \ge 1$.

Let G be a bipartite graph with bipartition (A, B). Assume that G has at least one edge and that for all $a \in A$ and $b \in B$, we have that $d_G(a) \ge d_G(b)$. Then G has an A-saturating matching.

Corollary 1.2

Every regular bipartite graph that has at least one edge has a perfect matching.

Proof. Let G be a k-regular ($k \ge 0$) bipartite graph with bipartition (A, B), and assume that G has at least one edge. By Corollary 1.1, G has an A-saturating matching. Now, since G has at least one edge, we see that $k \ge 1$. Further, since G is k-regular, we have that |E(G)| = k|A| and |E(G)| = k|B|, and so k|A| = k|B|; since $k \ne 0$, it follows that |A| = |B|.

Let G be a bipartite graph with bipartition (A, B). Assume that G has at least one edge and that for all $a \in A$ and $b \in B$, we have that $d_G(a) \ge d_G(b)$. Then G has an A-saturating matching.

Corollary 1.2

Every regular bipartite graph that has at least one edge has a perfect matching.

Proof. Let G be a k-regular ($k \ge 0$) bipartite graph with bipartition (A,B), and assume that G has at least one edge. By Corollary 1.1, G has an A-saturating matching. Now, since G has at least one edge, we see that $k \ge 1$. Further, since G is k-regular, we have that |E(G)| = k|A| and |E(G)| = k|B|, and so k|A| = k|B|; since $k \ne 0$, it follows that |A| = |B|. Consequently, any A-saturating matching of G is a perfect matching. Since G has an A-saturating matching, it follows that G has a perfect matching.

Hall's theorem (graph theoretic formulation)

Let G be a bipartite graph with bipartition (A, B). Then the following are equivalent:

- (a) all sets $A' \subseteq A$ satisfy $|A'| \le |N_G(A')|$;
- (b) G has an A-saturating matching.

Suppose X and I are sets, and $\{A_i\}_{i\in I}$ is a family of (not necessarily distinct) subsets of X. A transversal (or a system of distinct representatives) for $(X, \{A_i\}_{i\in I})$ is an injective (i.e. one-to-one) function $f: I \to X$ such that for all $i \in I$, we have that $f(i) \in A_i$.

Suppose X and I are sets, and $\{A_i\}_{i\in I}$ is a family of (not necessarily distinct) subsets of X. A transversal (or a system of distinct representatives) for $(X, \{A_i\}_{i\in I})$ is an injective (i.e. one-to-one) function $f: I \to X$ such that for all $i \in I$, we have that $f(i) \in A_i$.

Hall's theorem (combinatorial formulation)

Let X and I be finite sets, and let $\{A_i\}_{i\in I}$ be a family of (not necessarily distinct) subsets of X. Then the following are equivalent:

- (a) all sets $J \subseteq I$ satisfy $|J| \le |\bigcup_{i \in J} A_i|$;
- (b) $(X, \{A_i\}_{i \in I})$ has a transversal.

Proof. Exercise.

For a graph G, let odd(G) be the number of odd components (i.e. components with an odd number of vertices) of G.

For a graph G, let odd(G) be the number of odd components (i.e. components with an odd number of vertices) of G.

Tutte's theorem

Let G be a graph. Then the following are equivalent:

- (a) for all sets $S \subsetneq V(G)$, we have that $odd(G \setminus S) \leq |S|$;
- (b) G has a perfect matching.

Proof. Omitted.

Part II: Latin rectangles

Part II: Latin rectangles

Definition

For positive integers r and n, with $r \le n$, an $r \times n$ Latin rectangle is an $r \times n$ array (or matrix) whose entries are numbers $1, \ldots, n$, and in which each number $1, \ldots, n$ occurs at most once in each row and each column.

1	2	3	4
2	4	1	3

Part II: Latin rectangles

Definition

For positive integers r and n, with $r \le n$, an $r \times n$ Latin rectangle is an $r \times n$ array (or matrix) whose entries are numbers $1, \ldots, n$, and in which each number $1, \ldots, n$ occurs at most once in each row and each column.

1	2	3	4
2	4	1	3

Theorem 2.1

Let r and n be positive integers such that r < n. Then every $r \times n$ Latin rectangle can be extended to an $n \times n$ Latin square.

Let r and n be positive integers such that r < n. Then every $r \times n$ Latin rectangle can be extended to an $n \times n$ Latin square.

Proof outline.

Let r and n be positive integers such that r < n. Then every $r \times n$ Latin rectangle can be extended to an $n \times n$ Latin square.

Proof outline. Let $L = [a_1 \ldots a_n]$ be an $r \times n$ Latin rectangle. Obviously, it suffices to show that we can extend L to an $(r+1) \times n$ Latin rectangle by adding a row of length n to the bottom of L, for then the result will follow immediately by an easy induction.

Let r and n be positive integers such that r < n. Then every $r \times n$ Latin rectangle can be extended to an $n \times n$ Latin square.

Proof outline. Let $L = [\mathbf{a}_1 \ldots \mathbf{a}_n]$ be an $r \times n$ Latin rectangle. Obviously, it suffices to show that we can extend L to an $(r+1) \times n$ Latin rectangle by adding a row of length n to the bottom of L, for then the result will follow immediately by an easy induction.

Let $A = \{\mathbf{a}_1, \dots, \mathbf{a}_n\}$ and $B = \{1, \dots, n\}$, and let G be the bipartite graph with bipartition (A, B) in which $\mathbf{a}_i \in A$ and $j \in B$ are adjacent if and only if j is not an entry of the column \mathbf{a}_i .

Let r and n be positive integers such that r < n. Then every $r \times n$ Latin rectangle can be extended to an $n \times n$ Latin square.

Proof outline (continued).

Let r and n be positive integers such that r < n. Then every $r \times n$ Latin rectangle can be extended to an $n \times n$ Latin square.

Proof outline (continued).

Then G is an (n-r)-regular bipartite graph that has at least one edge.

Let r and n be positive integers such that r < n. Then every $r \times n$ Latin rectangle can be extended to an $n \times n$ Latin square.

Proof outline (continued).

Then G is an (n-r)-regular bipartite graph that has at least one edge. So, by Corollary 1.2, G has a perfect matching.

Let r and n be positive integers such that r < n. Then every $r \times n$ Latin rectangle can be extended to an $n \times n$ Latin square.

Proof outline (continued).

Then G is an (n-r)-regular bipartite graph that has at least one edge. So, by Corollary 1.2, G has a perfect matching. This perfect matching gives a "recipe" for adding one row to our $r \times n$ Latin rectangle in a way that produces an $(r+1) \times n$ Latin rectangle.

Part III: An introduction to connectivity	

Part III: An introduction to connectivity

Definition

For a graph G and (not necessarily disjoint) sets $A, B \subseteq V(G)$, an A-B path in G, or a path from A to B in G, is either a one-vertex path whose sole vertex is in $A \cap B$, or a path on at least two vertices whose one endpoint is in A and whose other endpoint is in B.

Given a graph G and (not necessarily disjoint) sets $A, B \subseteq V(G)$, we say that a set $X \subseteq V(G)$ separates A from B in G if every path from A to B in G contains at least one vertex of X. Note that this implies that $A \cap B \subseteq X$.

Given a graph G and a non-negative integer k, we say that G is k-vertex-connected, or simply k-connected, if $|V(G)| \ge k+1$ and for all $X \subseteq V(G)$ such that $|X| \le k-1$, we have that $G \setminus X$ is connected.

Given a graph G and a non-negative integer k, we say that G is k-vertex-connected, or simply k-connected, if $|V(G)| \ge k+1$ and for all $X \subseteq V(G)$ such that $|X| \le k-1$, we have that $G \setminus X$ is connected.

• Every (non-null) graph is 0-connected.

Given a graph G and a non-negative integer k, we say that G is k-vertex-connected, or simply k-connected, if $|V(G)| \ge k+1$ and for all $X \subseteq V(G)$ such that $|X| \le k-1$, we have that $G \setminus X$ is connected.

- Every (non-null) graph is 0-connected.
- Every connected graph on at least two vertices is 1-connected. (However, K_1 is **not** 1-connected.)

Given a graph G and a non-negative integer k, we say that G is k-vertex-connected, or simply k-connected, if $|V(G)| \ge k+1$ and for all $X \subseteq V(G)$ such that $|X| \le k-1$, we have that $G \setminus X$ is connected.

- Every (non-null) graph is 0-connected.
- Every connected graph on at least two vertices is 1-connected. (However, K_1 is **not** 1-connected.)

Definition

The *connectivity* of a graph G, denoted $\kappa(G)$, is the largest integer k such that G is k-connected.

Given a graph G and a non-negative integer k, we say that G is k-vertex-connected, or simply k-connected, if $|V(G)| \ge k+1$ and for all $X \subseteq V(G)$ such that $|X| \le k-1$, we have that $G \setminus X$ is connected.

- Every (non-null) graph is 0-connected.
- Every connected graph on at least two vertices is 1-connected. (However, K_1 is **not** 1-connected.)

Definition

The *connectivity* of a graph G, denoted $\kappa(G)$, is the largest integer k such that G is k-connected.

• If $k = \kappa(G)$, then either $G = K_{k+1}$ or there exists a set of k vertices whose deletion from G yields a disconnected graph.

Given a graph G and a non-negative integer k, we say that G is k-vertex-connected, or simply k-connected, if $|V(G)| \ge k+1$ and for all $X \subseteq V(G)$ such that $|X| \le k-1$, we have that $G \setminus X$ is connected.

- Every (non-null) graph is 0-connected.
- Every connected graph on at least two vertices is 1-connected. (However, K_1 is **not** 1-connected.)

Definition

The *connectivity* of a graph G, denoted $\kappa(G)$, is the largest integer k such that G is k-connected.

- If $k = \kappa(G)$, then either $G = K_{k+1}$ or there exists a set of k vertices whose deletion from G yields a disconnected graph.
- If there exists a set of at most k vertices whose deletion from G yields a disconnected graph, then $\kappa(G) \leq k$.

Given a graph G and disjoint sets $A, B \subseteq V(G)$, we say that a set $F \subseteq E(G)$ separates A from B in G if every path from A to B contains at least one edge of F.

Given a graph G and disjoint sets $A, B \subseteq V(G)$, we say that a set $F \subseteq E(G)$ separates A from B in G if every path from A to B contains at least one edge of F.

Definition

Given a graph G and a non-negative integer ℓ , we say that G is ℓ -edge-connected if $|V(G)| \ge 2$ and for all $F \subseteq E(G)$ such that $|F| \le \ell - 1$, we have that $G \setminus F$ is connected.

The *edge-connectivity* of a graph G on at least two vertices, denoted by $\lambda(G)$, is the largest integer ℓ such that G is ℓ -edge-connected.

The *edge-connectivity* of a graph G on at least two vertices, denoted by $\lambda(G)$, is the largest integer ℓ such that G is ℓ -edge-connected.

• If $\ell = \lambda(G)$, then there exists a set of ℓ edges whose deletion from G yields a disconnected graph.

The *edge-connectivity* of a graph G on at least two vertices, denoted by $\lambda(G)$, is the largest integer ℓ such that G is ℓ -edge-connected.

- If $\ell = \lambda(G)$, then there exists a set of ℓ edges whose deletion from G yields a disconnected graph.
- If there exists a set of at most ℓ edges whose deletion from G yields a disconnected graph, then $\lambda(G) \leq \ell$.

Proposition 3.1

Let G be a graph on at least two vertices. Then

- lacktriangledown for all sets $F\subseteq E(G)$, $\lambda(G\setminus F)\leq \lambda(G)$.

Proof. Lecture Notes.

Proposition 3.2

Let G be a graph on at least two vertices. Then

- \bullet for all edges $e \in E(G)$, $\kappa(G) 1 \le \kappa(G \setminus e) \le \kappa(G)$;
- **(b)** for all sets $F \subseteq E(G)$, $\kappa(G \setminus F) \le \kappa(G)$.

Proof. Lecture Notes.

•	However, unlike edge deletion, vertex deletion sometimes increases connectivity.	

- However, unlike edge deletion, vertex deletion sometimes increases connectivity.
- For instance, for the graph G represented below, we have that $\kappa(G) = \lambda(G) = 1$, but $\kappa(G \setminus x) = \lambda(G \setminus x) = 5$.

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof.

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof. We first prove that $\lambda(G) \leq \delta(G)$. Fix a vertex $v \in V(G)$ such that $d_G(v) = \delta(G)$, and let F be the set of all edges of G that are incident with v. Clearly, $G \setminus F$ is disconnected, and it follows that $\lambda(G) \leq \delta(G)$.

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). It remains to show that $\kappa(G) \leq \lambda(G)$. Fix a set $F \subseteq E(G)$ such that $|F| = \lambda(G)$ and $G \setminus F$ is disconnected.

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). It remains to show that $\kappa(G) \leq \lambda(G)$. Fix a set $F \subseteq E(G)$ such that $|F| = \lambda(G)$ and $G \setminus F$ is disconnected. Claim. If C is the vertex set of a component of $G \setminus F$, then no edge of F has both its endpoints in C.

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). It remains to show that $\kappa(G) \leq \lambda(G)$. Fix a set $F \subseteq E(G)$ such that $|F| = \lambda(G)$ and $G \setminus F$ is disconnected. Claim. If C is the vertex set of a component of $G \setminus F$, then no edge of F has both its endpoints in C.

Proof of the Claim. Suppose some edge $e \in F$ be an edge that has both its endpoints in C. Then $G \setminus (F \setminus \{e\})$ is still disconnected, contrary to the fact that $|F \setminus \{e\}| = |F| - 1 = \lambda(G) - 1$. This proves the Claim.

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). Reminder: $F \subseteq E(G)$, $|F| = \lambda(G)$, $G \setminus F$ is disconnected. WTS $\kappa(G) \le \lambda(G)$.

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). Reminder: $F \subseteq E(G)$, $|F| = \lambda(G)$, $G \setminus F$ is disconnected. WTS $\kappa(G) \le \lambda(G)$.

Suppose first that there exists a vertex $v \in V(G)$ that is not incident with any edge in F. Let C be the vertex set of the component of $G \setminus F$ that contains v. By the Claim, no edge in F has both endpoints in C. Now, let X be the set of all vertices in C that are incident with an edge in F. Then $|X| \leq |F| = \lambda(G)$ and $G \setminus X$ is disconnected. So, $\kappa(G) \leq \lambda(G)$.

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). Reminder: $F \subseteq E(G)$, $|F| = \lambda(G)$, $G \setminus F$ is disconnected. WTS $\kappa(G) \le \lambda(G)$.

Suppose now that every vertex of G is incident with an edge of F.

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). Reminder: $F \subseteq E(G)$, $|F| = \lambda(G)$, $G \setminus F$ is disconnected. WTS $\kappa(G) \le \lambda(G)$.

Suppose now that every vertex of G is incident with an edge of F.

Let $v \in V(G)$, and let C be the component of $G \setminus F$ containing v. Then each vertex in $N_C[v]$ is incident with an edge of F, and (by the Claim) no two vertices of $N_C[v]$ are incident with the same edge of F.

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). Reminder: $F \subseteq E(G)$, $|F| = \lambda(G)$, $G \setminus F$ is disconnected. WTS $\kappa(G) \le \lambda(G)$.

Suppose now that every vertex of G is incident with an edge of F.

Let $v \in V(G)$, and let C be the component of $G \setminus F$ containing v. Then each vertex in $N_C[v]$ is incident with an edge of F, and (by the Claim) no two vertices of $N_C[v]$ are incident with the same edge of F. So, $d_G(v) \leq |F| = \lambda(G)$.

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). Reminder: $F \subseteq E(G)$, $|F| = \lambda(G)$, $G \setminus F$ is disconnected. WTS $\kappa(G) < \lambda(G)$.

Suppose now that every vertex of G is incident with an edge of F.

Let $v \in V(G)$, and let C be the component of $G \setminus F$ containing v. Then each vertex in $N_C[v]$ is incident with an edge of F, and (by the Claim) no two vertices of $N_C[v]$ are incident with the same edge of F. So, $d_G(v) \leq |F| = \lambda(G)$. Since we chose v arbitrarily, this implies that $\Delta(G) \leq \lambda(G)$; we already saw that $\lambda(G) \leq \delta(G)$, and we now deduce that $\lambda(G) = \Delta(G)$.

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). Reminder: $F \subseteq E(G)$, $|F| = \lambda(G)$, $G \setminus F$ is disconnected, $\lambda(G) = \Delta(G)$. WTS $\kappa(G) \leq \lambda(G)$.

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). Reminder: $F \subseteq E(G)$, $|F| = \lambda(G)$, $G \setminus F$ is disconnected, $\lambda(G) = \Delta(G)$. WTS $\kappa(G) \leq \lambda(G)$.

Now, if G is a complete graph, then $|V(G)|=\Delta(G)+1$, and we see that $\kappa(G)=\Delta(G)=\lambda(G)$. So assume that G is not complete, and fix some $x\in V(G)$ that has a non-neighbor in G. Then $G\setminus N_G(x)$ is disconnected, and we have that $|N_G(x)|=d_G(x)\leq \Delta(G)=\lambda(G)$. So, $\kappa(G)\leq \lambda(G)$.

A *vertex-cutset* of a graph G is any set $X \subsetneq V(G)$ such that $G \setminus X$ has more components than G. Similarly, an *edge-cutset* of G is any set $F \subseteq E(G)$ such that $G \setminus F$ has more components than G.

A *vertex-cutset* of a graph G is any set $X \subsetneq V(G)$ such that $G \setminus X$ has more components than G. Similarly, an *edge-cutset* of G is any set $F \subseteq E(G)$ such that $G \setminus F$ has more components than G.

• If G is connected, then a vertex-cutset of G is any set $X \subsetneq V(G)$ such that $G \setminus X$ is disconnected.

A *vertex-cutset* of a graph G is any set $X \subsetneq V(G)$ such that $G \setminus X$ has more components than G. Similarly, an *edge-cutset* of G is any set $F \subseteq E(G)$ such that $G \setminus F$ has more components than G.

- If G is connected, then a vertex-cutset of G is any set $X \subsetneq V(G)$ such that $G \setminus X$ is disconnected.
- By definition, no graph G has a vertex-cutset of size strictly smaller than $\kappa(G)$.

A *vertex-cutset* of a graph G is any set $X \subsetneq V(G)$ such that $G \setminus X$ has more components than G. Similarly, an *edge-cutset* of G is any set $F \subseteq E(G)$ such that $G \setminus F$ has more components than G.

- If G is connected, then a vertex-cutset of G is any set $X \subsetneq V(G)$ such that $G \setminus X$ is disconnected.
- By definition, no graph G has a vertex-cutset of size strictly smaller than $\kappa(G)$.
- Similarly, no graph G has an edge-cutset of size strictly smaller than $\lambda(G)$.