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@ In what follows, all graphs are finite, simple (i.e. have no loops
and no parallel edges), and non-null.



This lecture consists of three parts:
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This lecture consists of three parts:
@ Matchings.
@ Latin rectangles.

© An introduction to connectivity.



Part |: Matchings



Part |: Matchings

Definition

A matching in a graph G is a set of edges M C E(G) such that
every vertex of G is incident with at most one edge in M.

Definition

A vertex cover of a graph G is any set C of vertices of G such that
every edge of G has at least one endpoint in C.




The Konig-Egervary theorem

The maximum size of a matching in a bipartite graph is equal to
the minimum size of a vertex cover in that graph.

Proof.



The Konig-Egervary theorem

The maximum size of a matching in a bipartite graph is equal to
the minimum size of a vertex cover in that graph.

Proof. Let G be a bipartite graph with bipartition (A, B).



The Konig-Egervary theorem

The maximum size of a matching in a bipartite graph is equal to
the minimum size of a vertex cover in that graph.

Proof. Let G be a bipartite graph with bipartition (A, B). Clearly,
it suffices to prove the following two statements:

(a) for every matching M and every vertex cover C of G, we have
that [M| < |C|;

(b) there exist a matching M and a vertex cover C of G such that
|M[ = [C].



The Konig-Egervary theorem

The maximum size of a matching in a bipartite graph is equal to
the minimum size of a vertex cover in that graph.

Proof. Let G be a bipartite graph with bipartition (A, B). Clearly,
it suffices to prove the following two statements:

(a) for every matching M and every vertex cover C of G, we have
that [M| < |C|;

(b) there exist a matching M and a vertex cover C of G such that
|M[ = [C].

Proof of (a). Fix a matching M and a vertex cover C in G.

Clearly, every edge of M has at least one endpoint in C. Since no

two edges of M share an endpoint, we deduce that |M| < |C].

This proves (a).



Proof (continued).

(b) there exist a matching M and a vertex cover C of G such that
|M[ = C].
Proof of (b).



Proof (continued).

(b) there exist a matching M and a vertex cover C of G such that
|M[ = C].
Proof of (b). We form a network (G’, s, t, c) as follows:
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Proof (continued).

(b) there exist a matching M and a vertex cover C of G such that
[M[ = [C].

Proof of (b) (continued). Let f be a maximum flow in (G', s, t, ¢),

and let R be a cut of minimum capacity.



Proof (continued).

(b) there exist a matching M and a vertex cover C of G such that
[M[ = [C].

Proof of (b) (continued). Let f be a maximum flow in (G', s, t, ¢),

and let R be a cut of minimum capacity. By Theorem 3.4 from

Lecture Notes 6, we may assume that f(e) is an integer for all
e € E(G).



Proof (continued).

(b) there exist a matching M and a vertex cover C of G such that
[M[ = [C].

Proof of (b) (continued). Let f be a maximum flow in (G', s, t, ¢),

and let R be a cut of minimum capacity. By Theorem 3.4 from

Lecture Notes 6, we may assume that f(e) is an integer for all

e € E(G'). By the Max-flow min-cut theorem, we know that

val(f) = ¢(R). It now suffices to produce a matching of size

val(f) and vertex cover of size c(R).
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Proof (continued). Because of capacities, and because of inflows
and outflows, we have that f(e) <1 for all e € E(G’). So,
f(e) € {0,1} for all e € E(G').



>

Proof (continued). Let
M={abec E(G)|ac A be B,f(a,b)=1}. Then M is a
matching of size val(f) (details: Lecture Notes).



Proof (continued). Reminder: R is a cut of minimum capacity.



Proof (continued). Reminder: R is a cut of minimum capacity. R
cannot contain any edges between A and B.
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Proof (continued). Let C be the set of a
V(G) = AU B that are incident with at
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Il vertices in
least one edge of R.
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Proof (continued). Let C be the set of all vertices in
V(G) = AU B that are incident with at least one edge of R. Then
R={(s,a)|ac ANC}U{(b,t)| be BN C}.
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Proof (continued). Let C be the set of all vertices in

V(G) = AU B that are incident with at least one edge of R. Then
R={(s,a)|ac AN C}U{(b,t)| be BN C}. It follows that

|C| = ¢(R), and C is a vertex cover of G (details: Lecture Notes).



Given a bipartite graph G with bipartition (A, B),
@ an A-saturating matching in G is a matching M in G such

that every vertex of A is incident with some edge in M,

@ a B-saturating matching in G is a matching M in G such that
every vertex of B is incident with some edge in M.




Given a bipartite graph G with bipartition (A, B),
@ an A-saturating matching in G is a matching M in G such

that every vertex of A is incident with some edge in M,

@ a B-saturating matching in G is a matching M in G such that
every vertex of B is incident with some edge in M.

@ For a graph G and a set A C V(G), we denote by Ng(A) the
set of all vertices in V(G) \ A that have a neighbor in A.



Hall's theorem (graph theoretic formulation)

Let G be a bipartite graph with bipartition (A, B). Then the
following are equivalent:

(a) all sets A" C A satisfy |A'| < [Ng(A)];
(b) G has an A-saturating matching.
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(a) all sets A’ C A satisfy |A'| < |Ng(A")|;
(b) G has an A-saturating matching.

SN




(a) all sets A’ C A satisfy |A'| < |Ng(A")|;
(b) G has an A-saturating matching.

SN

Proof (continued). “(b) = (a)." is “obvious.”




(a) all sets A’ C A satisfy |A'| < |Ng(A")|;
(b) G has an A-saturating matching.

SN

Proof (continued). “(b) = (a)." is “obvious.” For “(a) = (b),”
it suffices to show that any vertex cover of G is of size > |A|.




Proof (continued). Let C be a vertex cover of G.

‘ B

‘A

Then there can be no edges between A\ C and B\ C, and we
deduce that Ng(A\ C) C BN C, and consequently,
ING(A\ C)| < |BnN C|. Now we have the following:

|Al AN Cl+ AN\ C|
[ANC|+[Ng(A\ C)| by (a)
AN C|+|BNC|
€l
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Let G be a bipartite graph with bipartition (A, B). Assume that G
has at least one edge and that for all a € A and b € B, we have
that dg(a) > dg(b). Then G has an A-saturating matching.

Proof. Lecture Notes.



Definition

For a non-negative integer k, a graph G is k-regular if it all its
vertices are of degree k. G is regular if there exists some
non-negative integer k such that G is k-regular.




Definition

For a non-negative integer k, a graph G is k-regular if it all its
vertices are of degree k. G is regular if there exists some
non-negative integer k such that G is k-regular.

Definition

A perfect matching in a graph G is a matching M such that every
vertex of G is incident with an edge in M.




Let G be a bipartite graph with bipartition (A, B). Assume that G
has at least one edge and that for all a € A and b € B, we have
that dg(a) > dg(b). Then G has an A-saturating matching.



Let G be a bipartite graph with bipartition (A, B). Assume that G

has at least one edge and that for all a € A and b € B, we have
that dg(a) > dg(b). Then G has an A-saturating matching.

A\,

Every regular bipartite graph that has at least one edge has a
perfect matching.

.




Let G be a bipartite graph with bipartition (A, B). Assume that G

has at least one edge and that for all a € A and b € B, we have
that dg(a) > dg(b). Then G has an A-saturating matching.

A\,

Every regular bipartite graph that has at least one edge has a
perfect matching.

.

Proof. Let G be a k-regular (k > 0) bipartite graph with
bipartition (A, B), and assume that G has at least one edge. By
Corollary 1.1, G has an A-saturating matching.



Let G be a bipartite graph with bipartition (A, B). Assume that G

has at least one edge and that for all a € A and b € B, we have
that dg(a) > dg(b). Then G has an A-saturating matching.

A\,

Every regular bipartite graph that has at least one edge has a
perfect matching.

.

Proof. Let G be a k-regular (k > 0) bipartite graph with
bipartition (A, B), and assume that G has at least one edge. By
Corollary 1.1, G has an A-saturating matching. Now, since G has
at least one edge, we see that k > 1.



Let G be a bipartite graph with bipartition (A, B). Assume that G

has at least one edge and that for all a € A and b € B, we have
that dg(a) > dg(b). Then G has an A-saturating matching.

A\,

Every regular bipartite graph that has at least one edge has a
perfect matching.

.

Proof. Let G be a k-regular (k > 0) bipartite graph with
bipartition (A, B), and assume that G has at least one edge. By
Corollary 1.1, G has an A-saturating matching. Now, since G has
at least one edge, we see that k > 1. Further, since G is k-regular,
we have that |E(G)| = k|A| and |E(G)| = k|B|, and so

k|A| = k|B|; since k # 0, it follows that |A| = |B|.



Let G be a bipartite graph with bipartition (A, B). Assume that G

has at least one edge and that for all a € A and b € B, we have
that dg(a) > dg(b). Then G has an A-saturating matching.

A\,

Every regular bipartite graph that has at least one edge has a
perfect matching.

.

Proof. Let G be a k-regular (k > 0) bipartite graph with
bipartition (A, B), and assume that G has at least one edge. By
Corollary 1.1, G has an A-saturating matching. Now, since G has
at least one edge, we see that k > 1. Further, since G is k-regular,
we have that |E(G)| = k|A| and |E(G)| = k|B|, and so

k|A| = k|B|; since k # 0, it follows that |A| = |B|. Consequently,
any A-saturating matching of G is a perfect matching. Since G has
an A-saturating matching, it follows that G has a perfect matching.



Hall's theorem (graph theoretic formulation)

Let G be a bipartite graph with bipartition (A, B). Then the
following are equivalent:

(a) all sets A" C A satisfy |A'| < [Ng(A)];
(b) G has an A-saturating matching.
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Definition

Suppose X and / are sets, and {A;};c; is a family of (not
necessarily distinct) subsets of X. A transversal (or a system of
distinct representatives) for (X, {A;}ics) is an injective (i.e.
one-to-one) function f : | — X such that for all / € I, we have that
f(l) € A.



Definition

Suppose X and / are sets, and {A;};c; is a family of (not
necessarily distinct) subsets of X. A transversal (or a system of
distinct representatives) for (X, {A;}ics) is an injective (i.e.
one-to-one) function f : | — X such that for all / € I, we have that
f(l) € A.

Hall's theorem (combinatorial formulation)

Let X and / be finite sets, and let {A;};c; be a family of (not
necessarily distinct) subsets of X. Then the following are
equivalent:

(a) all sets J C [ satisfy [J| < |Ujc, Ajl;

(b) (X,{Ai}ics) has a transversal.

Proof. Exercise.



Definition

For a graph G, let odd(G) be the number of odd components (i.e.
components with an odd number of vertices) of G.




Definition

For a graph G, let odd(G) be the number of odd components (i.e.
components with an odd number of vertices) of G.

Tutte's theorem

Let G be a graph. Then the following are equivalent:
(a) for all sets S G V/(G), we have that odd(G \ S) < |S];
(b) G has a perfect matching.

Proof. Omitted.



Part 1I: Latin rectangles



Part 1I: Latin rectangles

Definition

For positive integers r and n, with r < n, an r x n Latin rectangle
is an r x n array (or matrix) whose entries are numbers 1,..., n,
and in which each number 1,..., n occurs at most once in each
row and each column.




Part 1I: Latin rectangles

Definition

For positive integers r and n, with r < n, an r x n Latin rectangle
is an r x n array (or matrix) whose entries are numbers 1,..., n,
and in which each number 1,..., n occurs at most once in each
row and each column.

Let r and n be positive integers such that r < n. Then every r X n
Latin rectangle can be extended to an n x n Latin square.




Let r and n be positive integers such that r < n. Then every r X n
Latin rectangle can be extended to an n x n Latin square.

Proof outline.



Let r and n be positive integers such that r < n. Then every r X n
Latin rectangle can be extended to an n x n Latin square.

Proof outline. Let L = [ a;y ... a, } be an r x n Latin
rectangle. Obviously, it suffices to show that we can extend L to
an (r + 1) x n Latin rectangle by adding a row of length n to the
bottom of L, for then the result will follow immediately by an easy
induction.



Let r and n be positive integers such that r < n. Then every r X n
Latin rectangle can be extended to an n x n Latin square.

Proof outline. Let L = [ a;y ... a, } be an r x n Latin
rectangle. Obviously, it suffices to show that we can extend L to
an (r + 1) x n Latin rectangle by adding a row of length n to the
bottom of L, for then the result will follow immediately by an easy
induction.

Let A={a;1,...,a,} and B={1,...,n}, and let G be the
bipartite graph with bipartition (A, B) in which a; € Aand j € B
are adjacent if and only if j is not an entry of the column a;.



Let r and n be positive integers such that r < n. Then every r X n
Latin rectangle can be extended to an n x n Latin square.

Proof outline (continued).




Let r and n be positive integers such that r < n. Then every r X n
Latin rectangle can be extended to an n x n Latin square.

Proof outline (continued).

Then G is an (n — r)-regular bipartite graph that has at least one
edge.



Let r and n be positive integers such that r < n. Then every r X n
Latin rectangle can be extended to an n x n Latin square.

Proof outline (continued).

Then G is an (n — r)-regular bipartite graph that has at least one
edge. So, by Corollary 1.2, G has a perfect matching.



Let r and n be positive integers such that r < n. Then every r X n
Latin rectangle can be extended to an n x n Latin square.

Proof outline (continued).

Then G is an (n — r)-regular bipartite graph that has at least one
edge. So, by Corollary 1.2, G has a perfect matching. This perfect
matching gives a “recipe” for adding one row to our r x n Latin
rectangle in a way that produces an (r + 1) x n Latin rectangle.



Part Ill: An introduction to connectivity



Part Ill: An introduction to connectivity

Definition

For a graph G and (not necessarily disjoint) sets A, B C V(G), an
A-B path in G, or a path from A to B in G, is either a one-vertex
path whose sole vertex is in AN B, or a path on at least two

vertices whose one endpoint is in A and whose other endpoint is in
B.




Definition

Given a graph G and (not necessarily disjoint) sets A, B C V(G),
we say that a set X C V/(G) separates A from B in G if every path
from A to B in G contains at least one vertex of X. Note that this
implies that AN B C X.




Definition

Given a graph G and a non-negative integer k, we say that G is
k-vertex-connected, or simply k-connected, if |[V/(G)| > k + 1 and
for all X C V(G) such that |X| < k — 1, we have that G\ X is

connected.




Definition

Given a graph G and a non-negative integer k, we say that G is
k-vertex-connected, or simply k-connected, if |[V/(G)| > k + 1 and
for all X C V(G) such that |X| < k — 1, we have that G\ X is

connected.

e Every (non-null) graph is 0-connected.
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Given a graph G and a non-negative integer k, we say that G is
k-vertex-connected, or simply k-connected, if |[V/(G)| > k + 1 and
for all X C V(G) such that |X| < k — 1, we have that G\ X is

connected.

e Every (non-null) graph is 0-connected.

@ Every connected graph on at least two vertices is 1-connected.
(However, Kj is not 1-connected.)



Definition

Given a graph G and a non-negative integer k, we say that G is
k-vertex-connected, or simply k-connected, if |[V/(G)| > k + 1 and
for all X C V(G) such that |X| < k — 1, we have that G\ X is

connected.

e Every (non-null) graph is 0-connected.

@ Every connected graph on at least two vertices is 1-connected.
(However, Kj is not 1-connected.)

Definition

The connectivity of a graph G, denoted x(G), is the largest integer
k such that G is k-connected.




Definition

Given a graph G and a non-negative integer k, we say that G is
k-vertex-connected, or simply k-connected, if |[V/(G)| > k + 1 and
for all X C V(G) such that |X| < k — 1, we have that G\ X is

connected.

e Every (non-null) graph is 0-connected.

@ Every connected graph on at least two vertices is 1-connected.
(However, Kj is not 1-connected.)

Definition

The connectivity of a graph G, denoted x(G), is the largest integer
k such that G is k-connected.

o If k = k(G), then either G = Kj;1 or there exists a set of k
vertices whose deletion from G yields a disconnected graph.



Definition

Given a graph G and a non-negative integer k, we say that G is
k-vertex-connected, or simply k-connected, if |[V/(G)| > k + 1 and
for all X C V(G) such that |X| < k — 1, we have that G\ X is

connected.

e Every (non-null) graph is 0-connected.

@ Every connected graph on at least two vertices is 1-connected.
(However, Kj is not 1-connected.)

Definition

The connectivity of a graph G, denoted x(G), is the largest integer
k such that G is k-connected.

o If k = k(G), then either G = Kj;1 or there exists a set of k
vertices whose deletion from G yields a disconnected graph.

@ If there exists a set of at most k vertices whose deletion from
G yields a disconnected graph, then x(G) < k.



Definition

Given a graph G and disjoint sets A, B C V/(G), we say that a set
F C E(G) separates A from B in G if every path from A to B
contains at least one edge of F.




Definition

Given a graph G and disjoint sets A, B C V/(G), we say that a set
F C E(G) separates A from B in G if every path from A to B
contains at least one edge of F.

Definition

Given a graph G and a non-negative integer ¢, we say that G is
(-edge-connected if |V(G)| > 2 and for all F C E(G) such that
|F| <€ —1, we have that G \ F is connected.




Definition

The edge-connectivity of a graph G on at least two vertices,
denoted by A(G), is the largest integer ¢ such that G is
f-edge-connected.




Definition

The edge-connectivity of a graph G on at least two vertices,
denoted by A(G), is the largest integer ¢ such that G is
f-edge-connected.

e If £ = A\(G), then there exists a set of ¢ edges whose deletion
from G yields a disconnected graph.



Definition

The edge-connectivity of a graph G on at least two vertices,
denoted by A(G), is the largest integer ¢ such that G is
f-edge-connected.

e If £ = A\(G), then there exists a set of ¢ edges whose deletion
from G yields a disconnected graph.

o If there exists a set of at most ¢ edges whose deletion from G
yields a disconnected graph, then A\(G) < /.



Proposition 3.1

Let G be a graph on at least two vertices. Then
@ for all edges e € E(G), A(G) —1 < A(G\ e) < A\(G);
@ forall sets F C E(G), A(G\ F) < A(G).

Proof. Lecture Notes.

Proposition 3.2

Let G be a graph on at least two vertices. Then
@ for all edges e € E(G), k(G) —1 < k(G \ e) < k(G);
@ for all sets F C E(G), k(G \ F) < k(G).

Proof. Lecture Notes.



@ However, unlike edge deletion, vertex deletion sometimes
increases connectivity.



@ However, unlike edge deletion, vertex deletion sometimes
increases connectivity.

e For instance, for the graph G represented below, we have that
k(G) = AN(G) =1, but k(G \ x) = A(G\ x) =5.

r




Let G be a graph on at least two vertices. Then
k(G) < A(G) <4(G).

Proof.



Let G be a graph on at least two vertices. Then
k(G) < A(G) <4(G).

Proof. We first prove that A\(G) < 6(G). Fix a vertex v € V(G)
such that dg(v) = §(G), and let F be the set of all edges of G
that are incident with v. Clearly, G\ F is disconnected, and it

follows that A(G) < 6(G).



Let G be a graph on at least two vertices. Then
k(G) < A(G) <4(G).

Proof (continued). It remains to show that x(G) < A(G). Fix a
set F C E(G) such that |F| = A(G) and G\ F is disconnected.



Let G be a graph on at least two vertices. Then
k(G) < A(G) <4(G).

Proof (continued). It remains to show that x(G) < A(G). Fix a
set F C E(G) such that |F| = A(G) and G\ F is disconnected.

Claim. If C is the vertex set of a component of G\ F,
then no edge of F has both its endpoints in C.



Let G be a graph on at least two vertices. Then
k(G) < A(G) <4(G).

Proof (continued). It remains to show that x(G) < A(G). Fix a

set F C E(G) such that |F| = A(G) and G\ F is disconnected.
Claim. If C is the vertex set of a component of G\ F,
then no edge of F has both its endpoints in C.

Proof of the Claim. Suppose some edge e € F be an edge that has
both its endpoints in C. Then G\ (F \ {e}) is still disconnected,
contrary to the fact that |F \ {e}| = |F| — 1= A(G) — 1. This
proves the Claim.



Let G be a graph on at least two vertices. Then
k(G) < MG) < 4(G).

Proof (continued). Reminder: F C E(G), |F| = A(G), G\ F is
disconnected. WTS k(G) < A(G).



Let G be a graph on at least two vertices. Then
k(G) < MG) < 4(G).

Proof (continued). Reminder: F C E(G), |F| = A(G), G\ F is
disconnected. WTS k(G) < A(G).

Suppose first that there exists a vertex v € V(G) that is not
incident with any edge in F. Let C be the vertex set of the
component of G\ F that contains v. By the Claim, no edge in F
has both endpoints in C. Now, let X be the set of all vertices in C
that are incident with an edge in F. Then |X| < |F| = A(G) and
G \ X is disconnected. So, k(G) < A(G).




Let G be a graph on at least two vertices. Then
k(G) < A(G) <4(G).

Proof (continued). Reminder: F C E(G), |F| = A(G), G\ F is
disconnected. WTS k(G) < A(G).

Suppose now that every vertex of G is incident with an edge of F.



Let G be a graph on at least two vertices. Then
k(G) < A(G) <4(G).

Proof (continued). Reminder: F C E(G), |F| = A(G), G\ F is
disconnected. WTS k(G) < A(G).

Suppose now that every vertex of G is incident with an edge of F.

v

Let v € V(G), and let C be the component of G \ F containing v.
Then each vertex in N¢[v] is incident with an edge of F, and (by
the Claim) no two vertices of N¢[v] are incident with the same
edge of F.



Let G be a graph on at least two vertices. Then
k(G) < A(G) <4(G).

Proof (continued). Reminder: F C E(G), |F| = A(G), G\ F is
disconnected. WTS k(G) < A(G).

Suppose now that every vertex of G is incident with an edge of F.

v

Let v € V(G), and let C be the component of G \ F containing v.
Then each vertex in N¢[v] is incident with an edge of F, and (by
the Claim) no two vertices of N¢[v] are incident with the same
edge of F. So, dg(v) < |F| = A(G).



Let G be a graph on at least two vertices. Then
k(G) < A(G) <4(G).

Proof (continued). Reminder: F C E(G), |F| = A(G), G\ F is
disconnected. WTS k(G) < A(G).

Suppose now that every vertex of G is incident with an edge of F.

v

Let v € V(G), and let C be the component of G \ F containing v.
Then each vertex in N¢[v] is incident with an edge of F, and (by
the Claim) no two vertices of N¢[v] are incident with the same
edge of F. So, dg(v) < |F| = A(G). Since we chose v arbitrarily,
this implies that A(G) < A(G); we already saw that A(G) < §(G),
and we now deduce that A\(G) = A(G).



Let G be a graph on at least two vertices. Then

k(G) < A(G) < 4(G).

Proof (continued). Reminder: F C E(G), |
disconnected, A\(G) = A(G). WTS &(G) < A\(G).



Let G be a graph on at least two vertices. Then
k(G) < AXG) < 4(G).

Proof (continued). Reminder: F C E(G), |F| = X\(G), G\ F is
disconnected, A\(G) = A(G). WTS &(G) < A(G).

Now, if G is a complete graph, then |V(G)| = A(G) + 1, and we
see that kK(G) = A(G) = A(G). So assume that G is not complete,
and fix some x € V/(G) that has a non-neighbor in G. Then

G \ Ng(x) is disconnected, and we have that

ING(x)| = dg(x) < A(G) = A(G). So, k(G) < A(G).



Definition

A vertex-cutset of a graph G is any set X & V/(G) such that G\ X
has more components than G. Similarly, an edge-cutset of G is
any set F C E(G) such that G\ F has more components than G.




Definition

A vertex-cutset of a graph G is any set X & V/(G) such that G\ X
has more components than G. Similarly, an edge-cutset of G is
any set F C E(G) such that G\ F has more components than G.

@ If G is connected, then a vertex-cutset of G is any set
X S V(G) such that G\ X is disconnected.



Definition
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Definition

A vertex-cutset of a graph G is any set X & V/(G) such that G\ X
has more components than G. Similarly, an edge-cutset of G is
any set F C E(G) such that G\ F has more components than G.

@ If G is connected, then a vertex-cutset of G is any set
X S V(G) such that G\ X is disconnected.

@ By definition, no graph G has a vertex-cutset of size strictly
smaller than x(G).

@ Similarly, no graph G has an edge-cutset of size strictly
smaller than A\(G).



