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In what follows, all graphs are finite, simple (i.e. have no loops
and no parallel edges), and non-null.



This lecture consists of three parts:

1 Matchings.
2 Latin rectangles.
3 An introduction to connectivity.
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Part I: Matchings

Definition
A matching in a graph G is a set of edges M ⊆ E (G) such that
every vertex of G is incident with at most one edge in M.

Definition
A vertex cover of a graph G is any set C of vertices of G such that
every edge of G has at least one endpoint in C .



Part I: Matchings

Definition
A matching in a graph G is a set of edges M ⊆ E (G) such that
every vertex of G is incident with at most one edge in M.

Definition
A vertex cover of a graph G is any set C of vertices of G such that
every edge of G has at least one endpoint in C .



The Kőnig-Egerváry theorem
The maximum size of a matching in a bipartite graph is equal to
the minimum size of a vertex cover in that graph.

Proof.

Let G be a bipartite graph with bipartition (A, B). Clearly,
it suffices to prove the following two statements:
(a) for every matching M and every vertex cover C of G , we have

that |M| ≤ |C |;
(b) there exist a matching M and a vertex cover C of G such that

|M| = |C |.
Proof of (a). Fix a matching M and a vertex cover C in G .
Clearly, every edge of M has at least one endpoint in C . Since no
two edges of M share an endpoint, we deduce that |M| ≤ |C |.
This proves (a).
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Proof (continued).
(b) there exist a matching M and a vertex cover C of G such that

|M| = |C |.
Proof of (b).

We form a network (G ′, s, t, c) as follows:
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Proof (continued).
(b) there exist a matching M and a vertex cover C of G such that

|M| = |C |.
Proof of (b) (continued). Let f be a maximum flow in (G ′, s, t, c),
and let R be a cut of minimum capacity.

By Theorem 3.4 from
Lecture Notes 6, we may assume that f (e) is an integer for all
e ∈ E (G ′). By the Max-flow min-cut theorem, we know that
val(f ) = c(R). It now suffices to produce a matching of size
val(f ) and vertex cover of size c(R).
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Proof (continued). Because of capacities, and because of inflows
and outflows, we have that f (e) ≤ 1 for all e ∈ E (G ′). So,
f (e) ∈ {0, 1} for all e ∈ E (G ′).
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Proof (continued). Let
M = {ab ∈ E (G) | a ∈ A, b ∈ B, f (a, b) = 1}. Then M is a
matching of size val(f ) (details: Lecture Notes).
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Proof (continued). Reminder: R is a cut of minimum capacity.

R
cannot contain any edges between A and B.
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Proof (continued). Let C be the set of all vertices in
V (G) = A ∪ B that are incident with at least one edge of R.

Then
R = {(s, a) | a ∈ A ∩ C} ∪ {(b, t) | b ∈ B ∩ C}. It follows that
|C | = c(R), and C is a vertex cover of G (details: Lecture Notes).
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Proof (continued). Let C be the set of all vertices in
V (G) = A ∪ B that are incident with at least one edge of R. Then
R = {(s, a) | a ∈ A ∩ C} ∪ {(b, t) | b ∈ B ∩ C}. It follows that
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Definition
Given a bipartite graph G with bipartition (A, B),

an A-saturating matching in G is a matching M in G such
that every vertex of A is incident with some edge in M;
a B-saturating matching in G is a matching M in G such that
every vertex of B is incident with some edge in M.

A

B

For a graph G and a set A ⊆ V (G), we denote by NG(A) the
set of all vertices in V (G) \ A that have a neighbor in A.
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Hall’s theorem (graph theoretic formulation)
Let G be a bipartite graph with bipartition (A, B). Then the
following are equivalent:
(a) all sets A′ ⊆ A satisfy |A′| ≤ |NG(A′)|;
(b) G has an A-saturating matching.
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(b) G has an A-saturating matching.

A′

NG(A
′)

B

A

Proof (continued). “(b) =⇒ (a).” is “obvious.” For “(a) =⇒ (b),”
it suffices to show that any vertex cover of G is of size ≥ |A|.
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Proof (continued). Let C be a vertex cover of G .

A

B

C

Then there can be no edges between A \ C and B \ C , and we
deduce that NG(A \ C) ⊆ B ∩ C , and consequently,
|NG(A \ C)| ≤ |B ∩ C |. Now we have the following:

|A| = |A ∩ C | + |A \ C |
≤ |A ∩ C | + |NG(A \ C)| by (a)
≤ |A ∩ C | + |B ∩ C |
= |C |.



Corollary 1.1
Let G be a bipartite graph with bipartition (A, B). Assume that G
has at least one edge and that for all a ∈ A and b ∈ B, we have
that dG(a) ≥ dG(b). Then G has an A-saturating matching.

Proof. Lecture Notes.



Definition
For a non-negative integer k, a graph G is k-regular if it all its
vertices are of degree k. G is regular if there exists some
non-negative integer k such that G is k-regular.

Definition
A perfect matching in a graph G is a matching M such that every
vertex of G is incident with an edge in M.
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Corollary 1.1
Let G be a bipartite graph with bipartition (A, B). Assume that G
has at least one edge and that for all a ∈ A and b ∈ B, we have
that dG(a) ≥ dG(b). Then G has an A-saturating matching.

Corollary 1.2
Every regular bipartite graph that has at least one edge has a
perfect matching.

Proof. Let G be a k-regular (k ≥ 0) bipartite graph with
bipartition (A, B), and assume that G has at least one edge. By
Corollary 1.1, G has an A-saturating matching. Now, since G has
at least one edge, we see that k ≥ 1. Further, since G is k-regular,
we have that |E (G)| = k|A| and |E (G)| = k|B|, and so
k|A| = k|B|; since k ̸= 0, it follows that |A| = |B|. Consequently,
any A-saturating matching of G is a perfect matching. Since G has
an A-saturating matching, it follows that G has a perfect matching.
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Definition
Suppose X and I are sets, and {Ai}i∈I is a family of (not
necessarily distinct) subsets of X . A transversal (or a system of
distinct representatives) for (X , {Ai}i∈I) is an injective (i.e.
one-to-one) function f : I → X such that for all i ∈ I, we have that
f (i) ∈ Ai .

Hall’s theorem (combinatorial formulation)
Let X and I be finite sets, and let {Ai}i∈I be a family of (not
necessarily distinct) subsets of X . Then the following are
equivalent:
(a) all sets J ⊆ I satisfy |J | ≤ |

⋃
j∈J Aj |;

(b) (X , {Ai}i∈I) has a transversal.

Proof. Exercise.
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Definition
For a graph G , let odd(G) be the number of odd components (i.e.
components with an odd number of vertices) of G .

Tutte’s theorem
Let G be a graph. Then the following are equivalent:
(a) for all sets S ⫋ V (G), we have that odd(G \ S) ≤ |S|;
(b) G has a perfect matching.

Proof. Omitted.
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Part II: Latin rectangles

Definition
For positive integers r and n, with r ≤ n, an r × n Latin rectangle
is an r × n array (or matrix) whose entries are numbers 1, . . . , n,
and in which each number 1, . . . , n occurs at most once in each
row and each column.

1 2 3

2 31

4

4

Theorem 2.1
Let r and n be positive integers such that r < n. Then every r × n
Latin rectangle can be extended to an n × n Latin square.
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Theorem 2.1
Let r and n be positive integers such that r < n. Then every r × n
Latin rectangle can be extended to an n × n Latin square.

Proof outline.

Let L =
[

a1 . . . an
]

be an r × n Latin
rectangle. Obviously, it suffices to show that we can extend L to
an (r + 1) × n Latin rectangle by adding a row of length n to the
bottom of L, for then the result will follow immediately by an easy
induction.
Let A = {a1, . . . , an} and B = {1, . . . , n}, and let G be the
bipartite graph with bipartition (A, B) in which ai ∈ A and j ∈ B
are adjacent if and only if j is not an entry of the column ai .
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Latin rectangle can be extended to an n × n Latin square.

Proof outline (continued).
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1 2 3 4

A

B

Then G is an (n − r)-regular bipartite graph that has at least one
edge. So, by Corollary 1.2, G has a perfect matching. This perfect
matching gives a “recipe” for adding one row to our r × n Latin
rectangle in a way that produces an (r + 1) × n Latin rectangle.
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Part III: An introduction to connectivity

Definition
For a graph G and (not necessarily disjoint) sets A, B ⊆ V (G), an
A-B path in G , or a path from A to B in G , is either a one-vertex
path whose sole vertex is in A ∩ B, or a path on at least two
vertices whose one endpoint is in A and whose other endpoint is in
B.

A
B
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Definition
Given a graph G and (not necessarily disjoint) sets A, B ⊆ V (G),
we say that a set X ⊆ V (G) separates A from B in G if every path
from A to B in G contains at least one vertex of X . Note that this
implies that A ∩ B ⊆ X .

A
B

X



Definition
Given a graph G and a non-negative integer k, we say that G is
k-vertex-connected, or simply k-connected, if |V (G)| ≥ k + 1 and
for all X ⊆ V (G) such that |X | ≤ k − 1, we have that G \ X is
connected.

Every (non-null) graph is 0-connected.
Every connected graph on at least two vertices is 1-connected.
(However, K1 is not 1-connected.)

Definition
The connectivity of a graph G , denoted κ(G), is the largest integer
k such that G is k-connected.

If k = κ(G), then either G = Kk+1 or there exists a set of k
vertices whose deletion from G yields a disconnected graph.
If there exists a set of at most k vertices whose deletion from
G yields a disconnected graph, then κ(G) ≤ k.
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Definition
Given a graph G and disjoint sets A, B ⊆ V (G), we say that a set
F ⊆ E (G) separates A from B in G if every path from A to B
contains at least one edge of F .

A
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Definition
Given a graph G and a non-negative integer ℓ, we say that G is
ℓ-edge-connected if |V (G)| ≥ 2 and for all F ⊆ E (G) such that
|F | ≤ ℓ − 1, we have that G \ F is connected.
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Definition
The edge-connectivity of a graph G on at least two vertices,
denoted by λ(G), is the largest integer ℓ such that G is
ℓ-edge-connected.

If ℓ = λ(G), then there exists a set of ℓ edges whose deletion
from G yields a disconnected graph.
If there exists a set of at most ℓ edges whose deletion from G
yields a disconnected graph, then λ(G) ≤ ℓ.
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Proposition 3.1
Let G be a graph on at least two vertices. Then

(a) for all edges e ∈ E (G), λ(G) − 1 ≤ λ(G \ e) ≤ λ(G);
(b) for all sets F ⊆ E (G), λ(G \ F ) ≤ λ(G).

Proof. Lecture Notes.
Proposition 3.2
Let G be a graph on at least two vertices. Then

(a) for all edges e ∈ E (G), κ(G) − 1 ≤ κ(G \ e) ≤ κ(G);
(b) for all sets F ⊆ E (G), κ(G \ F ) ≤ κ(G).

Proof. Lecture Notes.



However, unlike edge deletion, vertex deletion sometimes
increases connectivity.

For instance, for the graph G represented below, we have that
κ(G) = λ(G) = 1, but κ(G \ x) = λ(G \ x) = 5.
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Theorem 3.3
Let G be a graph on at least two vertices. Then
κ(G) ≤ λ(G) ≤ δ(G).

Proof.

We first prove that λ(G) ≤ δ(G). Fix a vertex v ∈ V (G)
such that dG(v) = δ(G), and let F be the set of all edges of G
that are incident with v . Clearly, G \ F is disconnected, and it
follows that λ(G) ≤ δ(G).

v
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Theorem 3.3
Let G be a graph on at least two vertices. Then
κ(G) ≤ λ(G) ≤ δ(G).

Proof (continued). It remains to show that κ(G) ≤ λ(G). Fix a
set F ⊆ E (G) such that |F | = λ(G) and G \ F is disconnected.

Claim. If C is the vertex set of a component of G \ F ,
then no edge of F has both its endpoints in C.

C ?

F

Proof of the Claim. Suppose some edge e ∈ F be an edge that has
both its endpoints in C . Then G \ (F \ {e}) is still disconnected,
contrary to the fact that |F \ {e}| = |F | − 1 = λ(G) − 1. This
proves the Claim.
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Theorem 3.3
Let G be a graph on at least two vertices. Then
κ(G) ≤ λ(G) ≤ δ(G).

Proof (continued). Reminder: F ⊆ E (G), |F | = λ(G), G \ F is
disconnected. WTS κ(G) ≤ λ(G).

Suppose first that there exists a vertex v ∈ V (G) that is not
incident with any edge in F . Let C be the vertex set of the
component of G \ F that contains v . By the Claim, no edge in F
has both endpoints in C . Now, let X be the set of all vertices in C
that are incident with an edge in F . Then |X | ≤ |F | = λ(G) and
G \ X is disconnected. So, κ(G) ≤ λ(G).

C

V (G) \ S

X

F
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Theorem 3.3
Let G be a graph on at least two vertices. Then
κ(G) ≤ λ(G) ≤ δ(G).

Proof (continued). Reminder: F ⊆ E (G), |F | = λ(G), G \ F is
disconnected. WTS κ(G) ≤ λ(G).
Suppose now that every vertex of G is incident with an edge of F .

v

Let v ∈ V (G), and let C be the component of G \ F containing v .
Then each vertex in NC [v ] is incident with an edge of F , and (by
the Claim) no two vertices of NC [v ] are incident with the same
edge of F . So, dG(v) ≤ |F | = λ(G). Since we chose v arbitrarily,
this implies that ∆(G) ≤ λ(G); we already saw that λ(G) ≤ δ(G),
and we now deduce that λ(G) = ∆(G).
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Theorem 3.3
Let G be a graph on at least two vertices. Then
κ(G) ≤ λ(G) ≤ δ(G).

Proof (continued). Reminder: F ⊆ E (G), |F | = λ(G), G \ F is
disconnected, λ(G) = ∆(G). WTS κ(G) ≤ λ(G).

Now, if G is a complete graph, then |V (G)| = ∆(G) + 1, and we
see that κ(G) = ∆(G) = λ(G). So assume that G is not complete,
and fix some x ∈ V (G) that has a non-neighbor in G . Then
G \ NG(x) is disconnected, and we have that
|NG(x)| = dG(x) ≤ ∆(G) = λ(G). So, κ(G) ≤ λ(G).
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Definition
A vertex-cutset of a graph G is any set X ⫋ V (G) such that G \ X
has more components than G . Similarly, an edge-cutset of G is
any set F ⊆ E (G) such that G \ F has more components than G .

If G is connected, then a vertex-cutset of G is any set
X ⫋ V (G) such that G \ X is disconnected.
By definition, no graph G has a vertex-cutset of size strictly
smaller than κ(G).
Similarly, no graph G has an edge-cutset of size strictly
smaller than λ(G).
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