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Lecture #7

Applications of networks. Graph connectivity

Irena Penev

In what follows, all graphs are finite, simple (i.e. have no loops and no
parallel edges), and non-null.

1 Matchings and transversals

A matching in a graph G is a set of edges M ⊆ E(G) such that every vertex
of G is incident with at most one edge in M . An example of a matching in a
graph is given below (edges of the matching are in red).

A vertex cover of a graph G is any set C of vertices of G such that every
edge of G has at least one endpoint in C. An example of a vertex cover in a
graph is given below (vertices of the vertex cover are in red).

The Kőnig-Egerváry theorem. The maximum size of a matching in a
bipartite graph is equal to the minimum size of a vertex cover in that graph.

Proof. Let G be a bipartite graph with bipartition (A,B). Clearly, it suffices
to prove the following two statements:
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(a) for every matching M and every vertex cover C of G, we have that
|M | ≤ |C|;1

(b) there exist a matchingM and a vertex cover C of G such that |M | = |C|.

We begin by proving (a). Fix a matching M and a vertex cover C in G.
Clearly, every edge of M has at least one endpoint in C. Since no two edges
of M share an endpoint, we deduce that |M | ≤ |C|. This proves (a).

It remains to prove (b). Let s and t be two new vertices, i.e. s ̸= t and
s, t /∈ V (G). We now form a network (G′, s, t, c) as follows:

� V (G′) = V (G) ∪ {s, t};

� E(G′) = {(s, a) | a ∈ A} ∪ {(a, b) | a ∈ A, b ∈ B, ab ∈ E(G)} ∪ {(b, t) |
b ∈ B};

� c(a, b) = |A|+ 1 for all (a, b) ∈ E(G′), with a ∈ A and b ∈ B;

� c(s, a) = 1 for all a ∈ A;

� c(b, t) = 1 for all b ∈ B.

s

t

A

B

1

|A| + 1

1

Let f be a maximum flow in (G′, s, t, c), and let R be a cut of minimum
capacity. By Theorem 3.4 from Lecture Notes 6, we may assume that f(e)
is an integer for all e ∈ E(G′). By the Max-flow min-cut theorem, we know
that val(f) = c(R). It now suffices to produce a matching of size val(f) and
vertex cover of size c(R).

1In fact, (a) holds for all graphs, not just bipartite ones. However, there are (non-
bipartite) graphs for which (b) fails.
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First, we claim that f(e) ∈ {0, 1} for all e ∈ E(G′). Clearly, it suffices
to show that f(e) ≤ 1 for all e ∈ E(G′).2 For all a ∈ A, we have that
f(s, a) ≤ c(s, a) = 1; and for all b ∈ B, we have that f(b, t) ≤ c(b, t) = 1.
Now, fix a ∈ A and b ∈ B such that ab ∈ E(G). The inflow into a is at
most 1,3 and so the outflow is at most one. So, f(a, b) ≤ 1. This proves that
f(e) ∈ {0, 1} for all e ∈ E(G′), as we had claimed.

Now, let M = {ab ∈ E(G) | a ∈ A, b ∈ B, f(a, b) = 1}. Then4

|M | = |{(a, b) ∈ E(G′) | a ∈ A, b ∈ B, f(a, b) = 1}|

= |{e ∈ SG′(A ∪ {s}, B ∪ {t}) | f(e) = 1}|

(∗)
= f(A ∪ {s}, B ∪ {t})

(∗∗)
= val(f),

where (*) follows from the fact that f(e) ∈ {0, 1} for all e ∈ E(G), and (**)
follows from Lemma 2.3 from Lecture Notes 6. Let us check that M is a
matching in G. Suppose otherwise. Then one of the following holds:

(i) there exist a ∈ A and b1, b2 ∈ B (with b1 ̸= b2) such that ab1, ab2 ∈ M ;

(ii) there exist a1, a2 ∈ A (with a1 ̸= a2) and b ∈ B such that a1b, a2b ∈ M .

Suppose first that (i) holds. Then f(a, b1) = f(a, b2) = 1, and so the outflow
from a is at least 2. On the other hand, the inflow into a is at most 1,5 a
contradiction. Suppose now that (ii) holds. then f(a1, b) = f(a2, b) = 1, and
so the inflow into b is at least 2. On the other hand, the outflow from b is at
most 1,6 a contradiction. This proves that M is indeed a matching.

It remains to produce a vertex cover of size c(R). Let C be the set of
all vertices in V (G) = A ∪B that are incident with at least one edge of R.
Our goal is to show that C is a vertex cover of size at most c(R). First,
note that {(s, a) | a ∈ A} is a cut in (G′, s, t, c) of capacity |A|, and so
c(R) ≤ |A|. Since every edge from A to B has capacity |A|+ 1 > c(R), we
deduce that R does not contain any edges from A to B; then R = {(s, a) |

2This is because, for all e ∈ E(G′), f(e) is a non-negative integer, and so if f(e) ≤ 1,
then f(e) ∈ {0, 1}.

3This is because (s, a) is the only edge in G′ with head a, and f(s, a) ≤ c(s, a) = 1.
4SG′(A ∪ {s}, B ∪ {t}) is the set of all edges from A ∪ {s} to B ∪ {t} in the oriented

graph G′; note that all edges in SG′(A ∪ {s}, B ∪ {t}) are in fact from A to B.
5This is because (s, a) is the only edge in G′ with head a, and f(s, a) ≤ c(s, a) = 1.
6This is because (b, t) is the only edge in G′ with tail b, and f(b, t) ≤ c(b, t) = 1.
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a ∈ A ∩ C} ∪ {(b, t) | b ∈ B ∩ C}. It follows that

c(R) =
( ∑

a∈A∩C
c(s, a)︸ ︷︷ ︸

=1

)
+
( ∑

b∈B∩C
c(b, t)︸ ︷︷ ︸
=1

)

= |A ∩ C|+ |B ∩ C|

= |C|.

It remains to show that C is a vertex cover of G. Fix adjacent vertices a ∈ A
and b ∈ B; we must show that at least one of a, b belongs to C. Suppose
otherwise. It then follows from the construction of C that R contains none of
the edges (s, a), (a, b), and (b, t) of G′, and consequently, s, a, b, t is a directed
path from s to t in G′ \R, contrary to the fact that R is a cut in (G′, s, t, c).
This proves that C is indeed a vertex cover of G. This completes the proof
of (b).

Given a bipartite graph G with bipartition (A,B),

� an A-saturating matching in G is a matching M in G such that every
vertex of A is incident with some edge in M ;

� a B-saturating matching in G is a matching M in G such that every
vertex of B is incident with some edge in M .

For a graph G and a set A ⊆ V (G), we denote by NG(A) the set of
all vertices in V (G) \ A that have a neighbor in A. As a corollary of the
Kőnig-Egerváry theorem, we obtain the following.

Hall’s theorem (graph theoretic formulation). Let G be a bipartite
graph with bipartition (A,B). Then the following are equivalent:

(a) all sets A′ ⊆ A satisfy |A′| ≤ |NG(A
′)|;

(b) G has an A-saturating matching.

A′

NG(A
′)

B

A
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Proof. Suppose first that (b) holds; we must prove that (a) holds. Fix an
A-saturating matching M in G, and fix A′ ⊆ A. Since M is an A-saturating
matching, and since A′ is a stable set,7 we know that precisely |A′| edges
in M are incident with a vertex in A′, and each of those edges has another
endpoint in B. No two edges in M share an endpoint, and it follows that
exactly |A′| vertices in B are incident with an edge of M that has an endpoint
in A′; let B′ be the set of all such vertices of B. But clearly, B′ ⊆ NG(A

′),
and so |NG(A

′)| ≥ |B′| = |A′|. This proves (a).
Suppose, conversely, that (a) holds; we must prove that (b) holds. Since

all edges of G are between A and B, it suffices to show that G has a matching
of size at least |A|.8 By the Kőnig-Egerváry theorem, it is enough to show
that any vertex cover of G is of size at least |A|. Let C be a vertex cover of
G. Then there can be no edges between A \ C and B \ C, and we deduce
that NG(A \ C) ⊆ B ∩ C, and consequently, |NG(A \ C)| ≤ |B ∩ C|. Now
we have the following:

|A| = |A ∩ C|+ |A \ C|

≤ |A ∩ C|+ |NG(A \ C)| by (a)

≤ |A ∩ C|+ |B ∩ C|

= |C|.

This completes the proof of (b).

The degree of a vertex v in a graph G, denoted by dG(v), is the number
of edges of G that v is incident with.

Corollary 1.1. Let G be a bipartite graph with bipartition (A,B). Assume
that G has at least one edge and that for all a ∈ A and b ∈ B, we have that
dG(a) ≥ dG(b). Then G has an A-saturating matching.

Proof. We first check that dG(a) ≥ 1 for all a ∈ A. Suppose otherwise, and
fix some a0 ∈ A such that d(a0) = 0. Now, since G has at least one edge,
and since every edge of G has one endpoint in A and the other one in B,
we see that some vertex b0 ∈ B is incident with at least one edge, and so
dG(b0) ≥ 1. But now dG(a0) < dG(b0), a contradiction. This proves that
dG(a) ≥ 1 for all a ∈ A, as we had claimed.

Now, suppose that G does not have an A-saturating matching. Then by
Hall’s theorem, there exists some A′ ⊆ A such that |A′| > |NG(A

′)|.
7A stable set (or independent set) is a set of pairwise non-adjacent vertices.
8Note that any matching in G of size at least |A| is in fact of size precisely |A|.
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A′

NG(A
′)

B

A

Note that every edge in G has at least one endpoint in (A \A′) ∪NG(A
′),9

and so
|E(G)| ≤

∑
v∈(A\A′)∪NG(A′)

dG(v)

≤
( ∑

a∈A\A′
dG(a)

)
+
( ∑

b∈NG(A′)

dG(b)
)
.

Now, since A′ ⊆ A and NG(A
′) ⊆ B, we know that for all a ∈ A′ and

b ∈ NG(A
′), we have that dG(a) ≥ dG(b). Furthermore, by our choice of A′,

we have that |A′| > |NG(A
′)|. Since dG(a) ≥ 1 for all a ∈ A, we now deduce

that
∑
a∈A′

dG(a) >
∑

b∈NG(A′)

dG(b), and it follows that

|E(G)| ≤
( ∑

a∈A\A′
dG(a)

)
+
( ∑

b∈NG(A′)

dG(b)
)
.

<
( ∑

a∈A\A′
dG(a)

)
+
( ∑

a∈A′
dG(a)

)
=

∑
a∈A

dG(a).

But this is impossible since, obviously, |E(G)| =
∑
a∈A

dG(a).

For a non-negative integer k, a graph G is k-regular if it all its vertices
are of degree k. G is regular if there exists some non-negative integer k such
that G is k-regular.

A perfect matching in a graph G is a matching M such that every vertex
of G is incident with an edge in M . An example of a perfect matching is
shown below (edges of the perfect matching are in red).

9Indeed, if some edge of G had neither endpoint in (A \A′) ∪NG(A
′), then one of its

endpoints would be in A′ and the other one would be in B \NG(A
′), a contradiction.
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Obviously, not all graphs have perfect matchings. For instance, no graph
with an odd number of vertices has a perfect matching. (There are also many
graphs that have an even number of vertices, and yet do not have a perfect
matching.)

Corollary 1.2. Every regular bipartite graph that has at least one edge has
a perfect matching.

Proof. Let G be a k-regular (k ≥ 0) bipartite graph with bipartition (A,B),
and assume that G has at least one edge. By Corollary 1.1, G has an A-
saturating matching. Now, since G has at least one edge, we see that k ≥ 1.
Further, since G is k-regular, we have that |E(G)| = k|A| and |E(G)| = k|B|,
and so k|A| = k|B|; since k ̸= 0, it follows that |A| = |B|. Consequently,
any A-saturating matching of G is a perfect matching. Since G has an
A-saturating matching, it follows that G has a perfect matching.

For a graph G, let odd(G) be the number of odd components (i.e. com-
ponents with an odd number of vertices) of G. The following theorem gives
a necessary and sufficient condition for a graph to have a perfect matching.

Tutte’s theorem. Let G be a graph. Then the following are equivalent:

(a) for all sets S ⫋ V (G), we have that odd(G \ S) ≤ |S|;

(b) G has a perfect matching.

Proof. Omitted.

We complete this section by giving another formulation of Hall’s theorem.
We first need a definition. Suppose X and I are sets, and {Ai}i∈I is a
family of (not necessarily distinct) subsets of X.10 A transversal (or a system
of distinct representatives) for (X, {Ai}i∈I) is an injective (i.e. one-to-one)
function f : I → X such that for all i ∈ I, we have that f(i) ∈ Ai.

Hall’s theorem (combinatorial formulation). Let X and I be finite
sets, and let {Ai}i∈I be a family of (not necessarily distinct) subsets of X.
Then the following are equivalent:

10Technically, we have that A : I → P(X); for i ∈ I, we write Ai instead of A(i).
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(a) all sets J ⊆ I satisfy |J | ≤ |
⋃

j∈J Aj |;

(b) (X, {Ai}i∈I) has a transversal.

Proof. Exercise.

2 Extending Latin rectangles

For positive integers r and n, with r ≤ n, an r × n Latin rectangle is an
r × n array (or matrix) whose entries are numbers 1, . . . , n, and in which
each number 1, . . . , n occurs at most once in each row and each column. One
2× 4 Latin rectangle is represented below.

1 2 3

2 31

4

4

Theorem 2.1. Let r and n be positive integers such that r < n. Then every
r × n Latin rectangle can be extended to an n× n Latin square.11

Proof. Let L =
[
a1 . . . an

]
be an r× n Latin rectangle.12 Obviously, it

suffices to show that we can extend L to an (r + 1)× n Latin rectangle by
adding a row of length n to the bottom of L, for then the result will follow
immediately by an easy induction.

Let A = {a1, . . . ,an} and B = {1, . . . , n}, and let G be the bipartite
graph with bipartition (A,B) in which ai ∈ A and j ∈ B are adjacent if and
only if j is not an entry of the column ai. For instance, for the Latin rectangle
from the beginning of the section, we would get the following bipartite graph:

1

2

2

4

3

1 3

4

1 2 3 4

A

B

11This means that, for any r × n Latin rectangle, it is possible to add n − r rows of
length n to the bottom of the Latin rectangle that we started with and thus obtain an
n× n Latin square.

12This means that a1, . . . ,an are the columns of our Latin rectangle, in that order.
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Each column of L has r entries, and consequently, there are n− r values in
B that do not appear in it. So, for all ai ∈ A, we have that dG(ai) = n− r.
Now, fix j ∈ B. We know that j appears exactly once in each row of L, and L
has r rows. Consequently, j appears exactly r times in L, and since it cannot
appear more than once in any column, we see that it appears in precisely r
columns of L. Thus, j fails to appear in precisely n− r columns of L, and
consequently, dG(j) = n− r. We have now shown that is (n− r)-regular. So,
G is a regular bipartite graph, and (since r < n) it has at least one edge.
Corollary 1.2 now implies that G has a perfect matching, call it M . Now,
for each i ∈ {1, . . . , n}, let ji be the (unique) element of {1, . . . , n} such that
aiji ∈ M . We now add the row

[
j1 . . . jn

]
to the bottom of L, and we

thus obtain an (r + 1)× n Latin rectangle, which is what we needed.

3 Vertex and edge connectivity

For a graph G and (not necessarily disjoint) sets A,B ⊆ V (G), an A-B path
in G, or a path from A to B in G, is either a one-vertex path whose sole
vertex is in A ∩B, or a path on at least two vertices whose one endpoint is
in A and whose other endpoint is in B.

Given a graph G and (not necessarily disjoint) sets A,B ⊆ V (G), we
say that a set X ⊆ V (G) separates A from B in G if every path from A
to B in G contains at least one vertex of X. Note that this implies that
A ∩B ⊆ X.13

Given a graph G and a non-negative integer k, we say that G is k-vertex-
connected, or simply k-connected, if |V (G)| ≥ k + 1 and for all X ⊆ V (G)
such that |X| ≤ k − 1, we have that G \ X is connected. Note that this
means that every (non-null) graph is 0-connected, and that every connected
graph on at least two vertices is 1-connected.14 The connectivity of a graph
G, denoted κ(G), is the largest integer k such that G is k-connected. Note
that if k = κ(G), then either G = Kk+1 or there exists a set of k vertices
whose deletion from G yields a disconnected graph. Furthermore, if there
exists a set of at most k vertices whose deletion from G yields a disconnected
graph, then κ(G) ≤ k.

Given a graph G and disjoint sets A,B ⊆ V (G), we say that a set
F ⊆ E(G) separates A from B in G if every path from A to B contains at
least one edge of F .

Given a graph G and a non-negative integer ℓ, we say that G is ℓ-edge-
connected if |V (G)| ≥ 2 and for all F ⊆ E(G) such that |F | ≤ ℓ − 1, we
have that G \ F is connected. The edge-connectivity of a graph G on at
least two vertices, denoted by λ(G), is the largest integer ℓ such that G is

13Indeed, if x ∈ A ∩B, then x counts as a one-vertex path from A to B. So, any set of
vertices that separates A from B must include A ∩B as a subset.

14However, K1 is not 1-connected.
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ℓ-edge-connected. Note that if ℓ = λ(G), then there exists a set of ℓ edges
whose deletion from G yields a disconnected graph. Furthermore, if there
exists a set of at most ℓ edges whose deletion from G yields a disconnected
graph, then λ(G) ≤ ℓ.

Proposition 3.1. Let G be a graph on at least two vertices. Then

(a) for all edges e ∈ E(G), λ(G)− 1 ≤ λ(G \ e) ≤ λ(G);

(b) for all sets F ⊆ E(G), λ(G \ F ) ≤ λ(G).

Proof. Clearly, (b) follows from (a) by an easy induction. It remains to prove
(a). Fix e ∈ E(G).

We first show that λ(G \ e) ≥ λ(G) − 1. Fix F ⊆ E(G \ e) such that
|F | ≤ λ(G)− 2. Set F ′ = F ∪ {e}; then |F ′| ≤ λ(G)− 1, and we deduce that
G \F ′ is connected. But (G \ e) \F = G \F ′, and we deduce that (G \ e) \F
is connected. This proves that λ(G \ e) ≥ λ(G)− 1.

It remains to show that λ(G\e) ≤ λ(G). Fix F ⊆ E(G) with |F | = λ(G),
such that G \ F is disconnected. Set F ′ = F \ {e}; then |F ′| ≤ λ(G).
Furthermore, we have that (G\e)\F ′ = G\F , and we deduce that (G\e)\F ′

is disconnected. Since |F ′| ≤ λ(G), we see that λ(G \ e) ≤ λ(G).

Proposition 3.2. Let G be a graph on at least two vertices. Then

(a) for all edges e ∈ E(G), κ(G)− 1 ≤ κ(G \ e) ≤ κ(G);

(b) for all sets F ⊆ E(G), κ(G \ F ) ≤ κ(G).

Proof. Clearly, (b) follows from (a) by an easy induction. It remains to prove
(a). Fix e ∈ E(G).

We first show that κ(G \ e) ≥ κ(G)− 1. Since G is κ(G)-connected, we
know that G (and consequently, G \ e as well) has at least κ(G) + 1 vertices.
Now, fix X ⊆ V (G) such that |X| ≤ κ(G)− 2; we must show that (G\ e)\X
is connected. Suppose first that e is incident with some vertex in X. Then
(G \ e) \X = G \X. Since |X| ≤ κ(G)− 2, we see that G \X is connected,
and it follows that (G \ e) \X is connected. It remains to consider the case
when e is not incident with any vertex in X. Set e = x1x2 (i.e. let x1 and
x2 be the endpoints of e). Set X1 := X ∪ {x1} and X2 := X ∪ {x2}. Then
|X1| = |X2| = κ(G)−1, and we deduce that G\X1 and G\X2 are connected.
Now, since x2 ∈ V (G)\X1, and since G\X1 is a connected graph on at least
two vertices, we see that x2 is adjacent to some vertex in u ∈ V (G) \X1;
since x1 ∈ X1, we see that u ̸= x1. Now, (G \ e) \X can be obtained from
the connected graph G \ X2 by adding to it the vertex x2 and making it
adjacent to all vertices in NG(x2) \ {x1}. Since u ∈ NG(x2) \ {x1}, we see
that x2 is not an isolated vertex of (G\e)\X, and we deduce that (G\e)\X
is connected. This proves that κ(G \ e) ≥ κ(G)− 1.
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It remains to show that κ(G\e) ≤ κ(G). By definition, |V (G)| ≥ κ(G)+1.
If G has precisely κ(G) + 1 vertices, then so does G \ e, and it follows from
the definition that κ(G \ e) ≤ κ(G). It remains to consider the case when
|V (G)| ≥ κ(G) + 2. In this case, there exists a set X ⊆ V (G) of size κ(G)
such that G \X is disconnected. But then (G \ e) \X is disconnected as
well, and it follows that κ(G \ e) ≤ κ(G).

We note that, unlike edge deletion, vertex deletion sometimes increases
connectivity. For instance, for the graph G represented below, we have that
κ(G) = λ(G) = 1, but κ(G \ x) = λ(G \ x) = 5.

x

G

Recall that for a graph G, δ(G) is the minimum and ∆(G) the maximum
degree in G, i.e. δ(G) = min{dG(v) | v ∈ V (G)} and ∆(G) = max{dG(v) |
v ∈ V (G)}.

Theorem 3.3. Let G be a graph on at least two vertices. Then κ(G) ≤
λ(G) ≤ δ(G).

Proof. We first prove that λ(G) ≤ δ(G). Fix a vertex v ∈ V (G) such that
dG(v) = δ(G), and let F be the set of all edges of G that are incident with v.
Clearly, G \ F is disconnected, and it follows that λ(G) ≤ δ(G).

It remains to show that κ(G) ≤ λ(G). Fix a set F ⊆ E(G) such that
|F | = λ(G) and G \ F is disconnected.

Claim. If C is the vertex set of a component of G \ F , then no
edge of F has both its endpoints in C.

Proof of the Claim. Suppose otherwise. Let C be the vertex set of a
component of G \ F ,15 and let e ∈ F be an edge that has both its endpoints
in C. Then G \ (F \ {e}) is still disconnected,16 contrary to the fact that
|F \ {e}| = |F | − 1 = λ(G)− 1. This proves the Claim. ■

Suppose first that there exists a vertex v ∈ V (G) that is not incident
with any edge in F . Let C be the vertex set of the component of G \ F that

15Since G \ F is disconnected, this implies that C and V (G) \ C are both non-empty,
and there are no edges between them.

16This is because there are still no edges between C and V (G) \ C, and both C and
V (G) \ C are non-empty.

11



contains v. By the Claim, no edge in F has both endpoints in C. Now, let
X be the set of all vertices in C that are incident with an edge in F . Then
|X| ≤ |F | = λ(G) and G \X is disconnected. So, κ(G) ≤ λ(G).

C

V (G) \ S

X

F

v

It remains to consider the case when every vertex of G is incident with
an edge of F .17 Fix any v ∈ V (G); we will show that dG(v) ≤ λ(G). Let C
be the component of G \ F that contains v, and let Fv be the set of edges
of F incident with v. Let u1, . . . , ut be the neighbors of v in the component
C, and for all i ∈ {1, . . . , t}, let Fi be the set of all edges of F incident with
ui. By supposition, sets Fv, F1, . . . , Ft are all non-empty, and by the Claim,
they are pairwise disjoint. So,

dG(v) = |Fv|+ t ≤ |Fv|+ |F1|+ · · ·+ |Ft| ≤ |F | = λ(G),

as we had claimed. Since we chose v arbitrarily, it now follows that ∆(G) ≤
λ(G); we already saw that λ(G) ≤ δ(G), and we now deduce that λ(G) =
∆(G). Now, if G is a complete graph, then |V (G)| = ∆(G) + 1, and we see
that κ(G) = ∆(G) = λ(G). So assume that G is not complete, and fix some
x ∈ V (G) that has a non-neighbor in G. Then G \NG(x) is disconnected,
and we have that |NG(x)| = dG(x) ≤ ∆(G) = λ(G). So, κ(G) ≤ λ(G).

Terminology: A vertex-cutset of a graph G is any set X ⫋ V (G) such
that G \X has more components than G.18 Similarly, an edge-cutset of G is
any set F ⊆ E(G) such that G \ F has more components than G.

By definition, no graph G has a vertex-cutset of size strictly smaller than
κ(G). Similarly, no graph G has an edge-cutset of size strictly smaller than
λ(G).

17For an example, see the graph below, with the edges of F in red.

18So, if G is connected, then a vertex-cutset of G is any set X ⫋ V (G) such that G \X
is disconnected.
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