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Lecture #7
Applications of networks. Graph connectivity

Irena Penev

In what follows, all graphs are finite, simple (i.e. have no loops and no
parallel edges), and non-null.

1 Matchings and transversals

A matching in a graph G is a set of edges M C E(G) such that every vertex
of GG is incident with at most one edge in M. An example of a matching in a
graph is given below (edges of the matching are in red).

A wertex cover of a graph G is any set C' of vertices of G such that every
edge of G has at least one endpoint in C. An example of a vertex cover in a
graph is given below (vertices of the vertex cover are in red).

The Ko6nig-Egervary theorem. The mazimum size of a matching in a
bipartite graph is equal to the minimum size of a vertexr cover in that graph.

Proof. Let G be a bipartite graph with bipartition (A, B). Clearly, it suffices
to prove the following two statements:



(a) for every matching M and every vertex cover C' of G, we have that
M| <|Cl!

(b) there exist a matching M and a vertex cover C of G such that |M| = |C|.

We begin by proving (a). Fix a matching M and a vertex cover C in G.
Clearly, every edge of M has at least one endpoint in C. Since no two edges
of M share an endpoint, we deduce that |M| < |C|. This proves (a).

It remains to prove (b). Let s and ¢ be two new vertices, i.e. s # t and
s,t ¢ V(G). We now form a network (G, s,t,c) as follows:

o V(G = V(GQ)U{s,t};

E(G") ={(s,a) |ac A} U{(a,b) |a € A,b e B,abec E(G)}U{(b,1) |
b e B};

c(a,b) = |A| 4+ 1 for all (a,b) € E(G'), with a € A and b € B;

e ¢(s,a) =1 for all a € A4;

c(b,t) =1 for all b € B.
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Let f be a maximum flow in (G’,s,t,¢), and let R be a cut of minimum
capacity. By Theorem 3.4 from Lecture Notes 6, we may assume that f(e)
is an integer for all e € E(G’). By the Max-flow min-cut theorem, we know
that val(f) = ¢(R). It now suffices to produce a matching of size val(f) and
vertex cover of size ¢(R).

'In fact, (a) holds for all graphs, not just bipartite ones. However, there are (non-
bipartite) graphs for which (b) fails.



First, we claim that f(e) € {0,1} for all e € E(G’). Clearly, it suffices
to show that f(e) < 1 for all e € E(G’).2 For all a € A, we have that
f(s,a) < c¢(s,a) = 1; and for all b € B, we have that f(b,t) < ¢(b,t) = 1.
Now, fix a € A and b € B such that ab € E(G). The inflow into a is at
most 1, and so the outflow is at most one. So, f(a,b) < 1. This proves that
f(e) € {0,1} for all e € E(G"), as we had claimed.

Now, let M = {ab € E(G) | a € A,b € B, f(a,b) = 1}. Then?

M| = |{(a,b) € E(G") |a€ Abe B, f(a,b) =1}
= HeeSe(Au{s},BU{t}) | f(e) =1}

= f(AU{s}, BU{t})

= val(p),

where (*) follows from the fact that f(e) € {0,1} for all e € E(G), and (**)
follows from Lemma 2.3 from Lecture Notes 6. Let us check that M is a
matching in G. Suppose otherwise. Then one of the following holds:

(i) there exist a € A and by, by € B (with by # be) such that aby, aby € M;
(ii) there exist aj, a2 € A (with a; # ag) and b € B such that a1b, asb € M.

Suppose first that (i) holds. Then f(a,b1) = f(a,b2) = 1, and so the outflow
from a is at least 2. On the other hand, the inflow into a is at most 1,%> a
contradiction. Suppose now that (ii) holds. then f(ay,b) = f(az,b) =1, and
so the inflow into b is at least 2. On the other hand, the outflow from b is at
most 1,% a contradiction. This proves that M is indeed a matching.

It remains to produce a vertex cover of size ¢(R). Let C be the set of
all vertices in V(G) = AU B that are incident with at least one edge of R.
Our goal is to show that C' is a vertex cover of size at most ¢(R). First,
note that {(s,a) | a € A} is a cut in (G',s,t,c) of capacity |A|, and so
¢(R) < |A]. Since every edge from A to B has capacity |A| +1 > ¢(R), we
deduce that R does not contain any edges from A to B; then R = {(s,a) |

2This is because, for all e € E(G’), f(e) is a non-negative integer, and so if f(e) <1,
then f(e) € {0,1}.

3This is because (s,a) is the only edge in G’ with head a, and f(s,a) < c(s,a) = 1.

1Sa (AU {s}, BU {t}) is the set of all edges from AU {s} to B U {t} in the oriented
graph G’; note that all edges in Sg/(A U {s}, BU {t}) are in fact from A to B.

®This is because (s, a) is the only edge in G’ with head a, and f(s,a) < ¢(s,a) = 1.

5This is because (b, t) is the only edge in G’ with tail b, and f(b,t) < ¢(b,t) = 1.



ac€ ANC}U{(b,t) | be BNC}. It follows that

W = (Fotea) (Fan)

— |ANC|+|BNC|

= |C].

It remains to show that C' is a vertex cover of G. Fix adjacent vertices a € A
and b € B; we must show that at least one of a,b belongs to C. Suppose
otherwise. It then follows from the construction of C' that R contains none of
the edges (s, a), (a,b), and (b,t) of G’, and consequently, s, a, b, t is a directed
path from s to ¢t in G’ \ R, contrary to the fact that R is a cut in (G', s,t,c).
This proves that C' is indeed a vertex cover of G. This completes the proof
of (b). O

Given a bipartite graph G with bipartition (A, B),

e an A-saturating matching in G is a matching M in G such that every
vertex of A is incident with some edge in M

e a B-saturating matching in G is a matching M in G such that every
vertex of B is incident with some edge in M.

For a graph G and a set A C V(G), we denote by Ng(A) the set of
all vertices in V(G) \ A that have a neighbor in A. As a corollary of the
Konig-Egervary theorem, we obtain the following.

Hall’s theorem (graph theoretic formulation). Let G be a bipartite
graph with bipartition (A, B). Then the following are equivalent:

(a) all sets A" C A satisfy |A'| < |Ng(A)|;

(b) G has an A-saturating matching.




Proof. Suppose first that (b) holds; we must prove that (a) holds. Fix an
A-saturating matching M in G, and fix A’ C A. Since M is an A-saturating
matching, and since A’ is a stable set,” we know that precisely |A’| edges
in M are incident with a vertex in A’, and each of those edges has another
endpoint in B. No two edges in M share an endpoint, and it follows that
exactly | A’| vertices in B are incident with an edge of M that has an endpoint
in A’; let B’ be the set of all such vertices of B. But clearly, B’ C Ng(A'),
and so [Ng(A’)| > |B'| = |A’|. This proves (a).

Suppose, conversely, that (a) holds; we must prove that (b) holds. Since
all edges of GG are between A and B, it suffices to show that G has a matching
of size at least |A|.® By the K6nig-Egervéry theorem, it is enough to show
that any vertex cover of G is of size at least |A|. Let C be a vertex cover of
G. Then there can be no edges between A\ C and B\ C, and we deduce
that Ng(A\ C) C BN C, and consequently, |[Ng(A\ C)| < |BnNC|. Now
we have the following:

4] = [ANC]+]A\C]
< [ANCl+ |Na(A\C)| by (a)
< |AnC|+|BnC|
= |C|.
This completes the proof of (b). O

The degree of a vertex v in a graph G, denoted by dg(v), is the number
of edges of G that v is incident with.

Corollary 1.1. Let G be a bipartite graph with bipartition (A, B). Assume
that G has at least one edge and that for all a € A and b € B, we have that
dg(a) > dg(b). Then G has an A-saturating matching.

Proof. We first check that dg(a) > 1 for all a € A. Suppose otherwise, and
fix some ag € A such that d(ap) = 0. Now, since G has at least one edge,
and since every edge of G has one endpoint in A and the other one in B,
we see that some vertex by € B is incident with at least one edge, and so
da(bo) > 1. But now dg(agp) < dg(bo), a contradiction. This proves that
dg(a) > 1 for all a € A, as we had claimed.

Now, suppose that G does not have an A-saturating matching. Then by
Hall’s theorem, there exists some A’ C A such that |A’| > |[Ng(4')].

"A stable set (or independent set) is a set of pairwise non-adjacent vertices.
8Note that any matching in G of size at least |A| is in fact of size precisely |A|.
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Note that every edge in G has at least one endpoint in (4 \ A’) U Ng(4),°
and so

|E(G)| < > da(v)
vE(A\A")UNg(A')

IN

(© de@)+( X dav)).

aE A/ bENG(A')
Now, since A" C A and Ng(A4') C B, we know that for all a € A" and
b € Ng(A’), we have that dg(a) > dg(b). Furthermore, by our choice of A’,
we have that |A’| > |Ng(A")|. Since dg(a) > 1 for all a € A, we now deduce

that > dg(a) > Y.  dg(b), and it follows that
ac A’/ bENG(A)

B@) < (¥ do(@)+( T dal®).

acA\ A/ bENG(A')

< (2 do@)+( T dala))

a€A\A’ acA’

= > dg(a).

acA

But this is impossible since, obviously, |[E(G)| = >_ dg(a). O
acA

For a non-negative integer k, a graph G is k-reqular if it all its vertices
are of degree k. G is regular if there exists some non-negative integer k£ such
that G is k-regular.

A perfect matching in a graph G is a matching M such that every vertex
of G is incident with an edge in M. An example of a perfect matching is
shown below (edges of the perfect matching are in red).

9Indeed, if some edge of G' had neither endpoint in (A\ A’) U Ng(A’), then one of its
endpoints would be in A’ and the other one would be in B\ Ng(A’), a contradiction.



Obviously, not all graphs have perfect matchings. For instance, no graph
with an odd number of vertices has a perfect matching. (There are also many
graphs that have an even number of vertices, and yet do not have a perfect
matching.)

Corollary 1.2. Fvery reqular bipartite graph that has at least one edge has
a perfect matching.

Proof. Let G be a k-regular (k > 0) bipartite graph with bipartition (A, B),
and assume that G has at least one edge. By Corollary 1.1, G has an A-
saturating matching. Now, since GG has at least one edge, we see that k > 1.
Further, since G is k-regular, we have that |E(G)| = k|A| and |E(G)| = k|B|,
and so k|A| = k|B|; since k # 0, it follows that |A| = |B|. Consequently,
any A-saturating matching of G is a perfect matching. Since G has an
A-saturating matching, it follows that G has a perfect matching. O

For a graph G, let odd(G) be the number of odd components (i.e. com-
ponents with an odd number of vertices) of G. The following theorem gives
a necessary and sufficient condition for a graph to have a perfect matching.

Tutte’s theorem. Let G be a graph. Then the following are equivalent:
(a) for all sets S G V(G), we have that odd(G \ S) < |S|;
(b) G has a perfect matching.

Proof. Omitted. O

We complete this section by giving another formulation of Hall’s theorem.
We first need a definition. Suppose X and I are sets, and {A;};cs is a
family of (not necessarily distinct) subsets of X.19 A transversal (or a system
of distinct representatives) for (X, {A;}ier) is an injective (i.e. one-to-one)
function f: I — X such that for all i € I, we have that f(i) € A;.

Hall’s theorem (combinatorial formulation). Let X and I be finite
sets, and let {A;}ier be a family of (not necessarily distinct) subsets of X.
Then the following are equivalent:

Y Technically, we have that A : I — 2(X); for i € I, we write A; instead of A(i).



(a) all sets J C I satisfy |J]| < [U;es 4l

(b) (X,{A;}icr) has a transversal.

Proof. Exercise. O

2 Extending Latin rectangles

For positive integers r and n, with » < n, an r X n Latin rectangle is an
r X n array (or matrix) whose entries are numbers 1,...,n, and in which
each number 1,...,n occurs at most once in each row and each column. One
2 x 4 Latin rectangle is represented below.

Theorem 2.1. Let r and n be positive integers such that r < n. Then every
r x n Latin rectangle can be extended to an n x n Latin square.'!

Proof. Let L = [ a; ... an ] be an r x n Latin rectangle.'> Obviously, it
suffices to show that we can extend L to an (r + 1) x n Latin rectangle by
adding a row of length n to the bottom of L, for then the result will follow
immediately by an easy induction.

Let A = {ai,...,a,} and B = {1,...,n}, and let G be the bipartite
graph with bipartition (A, B) in which a; € A and j € B are adjacent if and
only if j is not an entry of the column a;. For instance, for the Latin rectangle
from the beginning of the section, we would get the following bipartite graph:

1 2 3 4

A
2 4 1 3
1 2 3 4 B

"1This means that, for any r x n Latin rectangle, it is possible to add n — 7 rows of
length n to the bottom of the Latin rectangle that we started with and thus obtain an
n X n Latin square.

12This means that ai, ..., a, are the columns of our Latin rectangle, in that order.



Fach column of L has r entries, and consequently, there are n — r values in
B that do not appear in it. So, for all a; € A, we have that dg(a;) =n —r.
Now, fix j € B. We know that j appears exactly once in each row of L, and L
has r rows. Consequently, j appears exactly r times in L, and since it cannot
appear more than once in any column, we see that it appears in precisely r
columns of L. Thus, j fails to appear in precisely n — r columns of L, and
consequently, dg(j) = n —r. We have now shown that is (n — r)-regular. So,
G is a regular bipartite graph, and (since r < n) it has at least one edge.
Corollary 1.2 now implies that G has a perfect matching, call it M. Now,
for each i € {1,...,n}, let j; be the (unique) element of {1,...,n} such that
a;j; € M. We now add the row [ 1 - Jn ] to the bottom of L, and we
thus obtain an (r 4+ 1) x n Latin rectangle, which is what we needed. O

3 Vertex and edge connectivity

For a graph G and (not necessarily disjoint) sets A, B C V(G), an A-B path
in G, or a path from A to B in G, is either a one-vertex path whose sole
vertex is in AN B, or a path on at least two vertices whose one endpoint is
in A and whose other endpoint is in B.

Given a graph G and (not necessarily disjoint) sets 4, B C V(G), we
say that a set X C V(G) separates A from B in G if every path from A
to B in G contains at least one vertex of X. Note that this implies that
AnBCX.!3

Given a graph G and a non-negative integer k, we say that G is k-vertez-
connected, or simply k-connected, if |V (G)| > k+ 1 and for all X C V(G)
such that |X| < k — 1, we have that G \ X is connected. Note that this
means that every (non-null) graph is 0-connected, and that every connected
graph on at least two vertices is 1-connected.' The connectivity of a graph
G, denoted x(G), is the largest integer k such that G is k-connected. Note
that if & = k(G), then either G = K}y or there exists a set of k vertices
whose deletion from G yields a disconnected graph. Furthermore, if there
exists a set of at most k vertices whose deletion from G yields a disconnected
graph, then x(G) < k.

Given a graph G and disjoint sets A, B C V(G), we say that a set
F C E(G) separates A from B in G if every path from A to B contains at
least one edge of F'.

Given a graph G and a non-negative integer ¢, we say that G is £-edge-
connected if |V (G)| > 2 and for all FF C E(G) such that |[F| < £ —1, we
have that G\ F' is connected. The edge-connectivity of a graph G on at
least two vertices, denoted by A(G), is the largest integer ¢ such that G is

13Indeed, if € AN B, then z counts as a one-vertex path from A to B. So, any set of
vertices that separates A from B must include A N B as a subset.
14However, K is not 1-connected.



l-edge-connected. Note that if £ = A(G), then there exists a set of £ edges
whose deletion from G yields a disconnected graph. Furthermore, if there
exists a set of at most £ edges whose deletion from G yields a disconnected
graph, then A\(G) < /.

Proposition 3.1. Let G be a graph on at least two vertices. Then
(a) for all edges e € E(G), A(G) —1 < ANG \ e) < A(G);
(b) for all sets F C E(G), A(G\ F) < A(G).

Proof. Clearly, (b) follows from (a) by an easy induction. It remains to prove
(a). Fix e € E(G).

We first show that A(G \ e) > A(G) — 1. Fix F C E(G \ e) such that
|F| < A(G)—2. Set F' = FU{e}; then |F'| < A\(G) — 1, and we deduce that
G\ F’ is connected. But (G\e)\ F = G\ F’, and we deduce that (G\e)\ F
is connected. This proves that A\(G \ e) > A(G) — 1.

It remains to show that A\(G\ e) < A(G). Fix F C E(G) with |F| = \(G),
such that G \ F is disconnected. Set F' = F'\ {e}; then |[F'| < AG).
Furthermore, we have that (G\e)\ F’ = G\ F, and we deduce that (G\e)\ F’
is disconnected. Since |F'| < A(G), we see that A\(G \ e) < A(G). O

Proposition 3.2. Let G be a graph on at least two vertices. Then
(a) for all edges e € E(G), k(G) —1 < k(G \ e) < k(G);
(b) for all sets F C E(G), k(G \ F) < k(G).

Proof. Clearly, (b) follows from (a) by an easy induction. It remains to prove
(a). Fix e € E(G).

We first show that k(G \ ) > k(G) — 1. Since G is k(G)-connected, we
know that G (and consequently, G \ e as well) has at least x(G) + 1 vertices.
Now, fix X C V(G) such that | X| < x(G) —2; we must show that (G\e)\ X
is connected. Suppose first that e is incident with some vertex in X. Then
(G\e)\ X =G\ X. Since | X| < k(G) — 2, we see that G \ X is connected,
and it follows that (G \ e) \ X is connected. It remains to consider the case
when e is not incident with any vertex in X. Set e = z1x2 (i.e. let x; and
x2 be the endpoints of e€). Set X; := X U{z1} and Xo := X U {x2}. Then
|X1] = |X2| = K(G)—1, and we deduce that G\ X; and G\ X3 are connected.
Now, since x2 € V(G) \ X1, and since G'\ X is a connected graph on at least
two vertices, we see that x9 is adjacent to some vertex in u € V(GQ) \ Xi;
since z1 € X, we see that u # x;. Now, (G \ €) \ X can be obtained from
the connected graph G\ Xy by adding to it the vertex xo and making it
adjacent to all vertices in Ng(x2) \ {z1}. Since u € Ng(z2) \ {z1}, we see
that xg is not an isolated vertex of (G'\ e)\ X, and we deduce that (G\e)\ X
is connected. This proves that x(G \ e) > k(G) — 1.
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It remains to show that k(G \e) < k(G). By definition, |V (G)| > k(G)+1.
If G has precisely k(G) + 1 vertices, then so does G \ e, and it follows from
the definition that x(G \ e) < k(G). It remains to consider the case when
|[V(G)| > k(G) + 2. In this case, there exists a set X C V(G) of size k(G)
such that G \ X is disconnected. But then (G \ e) \ X is disconnected as
well, and it follows that k(G \ e) < k(G). O

We note that, unlike edge deletion, vertex deletion sometimes increases
connectivity. For instance, for the graph G represented below, we have that

k(G) = AG) =1, but k(G \z) =G\ z)=5.

r

G

Recall that for a graph G, §(G) is the minimum and A(G) the maximum
degree in G, i.e. §(G) = min{dg(v) | v € V(G)} and A(G) = max{dg(v) |
veV(G)}.

Theorem 3.3. Let G be a graph on at least two vertices. Then r(G) <
AMG) <4(G).

Proof. We first prove that A(G) < §(G). Fix a vertex v € V(G) such that
da(v) = 0(G), and let F' be the set of all edges of G that are incident with v.
Clearly, G \ F is disconnected, and it follows that A(G) < 4(G).

It remains to show that x(G) < A(G). Fix a set F' C E(G) such that
|F'| = A(G) and G \ F' is disconnected.

Claim. If C is the vertex set of a component of G \ F', then no
edge of F' has both its endpoints in C.

Proof of the Claim. Suppose otherwise. Let C' be the vertex set of a
component of G'\ F,'> and let e € F be an edge that has both its endpoints
in C. Then G\ (F\ {e}) is still disconnected,'¢ contrary to the fact that
|F'\ {e}| = |F|—1= A(G) — 1. This proves the Claim. B

Suppose first that there exists a vertex v € V(G) that is not incident
with any edge in F. Let C be the vertex set of the component of G \ F' that

5Since G'\ F is disconnected, this implies that C and V(G) \ C are both non-empty,
and there are no edges between them.

'6This is because there are still no edges between C' and V(G) \ C, and both C' and
V(G) \ C are non-empty.
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contains v. By the Claim, no edge in F' has both endpoints in C. Now, let
X be the set of all vertices in C' that are incident with an edge in F'. Then
|X| < |F|=XG) and G\ X is disconnected. So, k(G) < A(G).

It remains to consider the case when every vertex of G is incident with
an edge of F.!7 Fix any v € V(G); we will show that dg(v) < A(G). Let C
be the component of G \ F' that contains v, and let F,, be the set of edges
of F incident with v. Let u1,...,u; be the neighbors of v in the component
C, and for all i € {1,...,t}, let F; be the set of all edges of F' incident with
u;. By supposition, sets Fy, Fi,..., F; are all non-empty, and by the Claim,
they are pairwise disjoint. So,

da(v) = |F|l+t < [F|+ A+ + B < |[F] = MG),

as we had claimed. Since we chose v arbitrarily, it now follows that A(G) <
AG); we already saw that A\(G) < 0(G), and we now deduce that A\(G) =
A(G). Now, if G is a complete graph, then |V(G)| = A(G) + 1, and we see
that k(G) = A(G) = A(G). So assume that G is not complete, and fix some
x € V(G) that has a non-neighbor in G. Then G \ Ng(z) is disconnected,
and we have that |Ng(x)| = dg(z) < A(G) = A(G). So, k(G) < XG). O

Terminology: A wvertez-cutset of a graph G is any set X G V(G) such
that G'\ X has more components than G.'® Similarly, an edge-cutset of G is
any set F' C E(G) such that G\ F' has more components than G.

By definition, no graph G has a vertex-cutset of size strictly smaller than
k(G). Similarly, no graph G has an edge-cutset of size strictly smaller than

AG).

"For an example, see the graph below, with the edges of F' in red.

%S0, if G is connected, then a vertex-cutset of G is any set X S V(G) such that G\ X
is disconnected.
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