
NDMI011: Combinatorics and Graph Theory 1

Lecture #6

Flows and cuts in networks

Irena Penev

November 3, 2021

Definition
A network is an ordered four-tuple (G , s, t, c), where G is an
oriented graph, s and t are two distinct vertices of this graph
(called the source and sink, respectively), and c : E (G) → [0, +∞)
is a function, called the capacity function. The capacity of an edge
e ∈ E (G) is the number c(e).

π

2π

6

2

1
2

3

5
4

9 6

8s t

Networks can be used to model, for example, a system of
pipes used to transport some resource, such as water or oil;
capacities would be the number of units of volume that a
given pipe can transport per unit time.

Definition
A network is an ordered four-tuple (G , s, t, c), where G is an
oriented graph, s and t are two distinct vertices of this graph
(called the source and sink, respectively), and c : E (G) → [0, +∞)
is a function, called the capacity function. The capacity of an edge
e ∈ E (G) is the number c(e).

π

2π

6

2

1
2

3

5
4

9 6

8s t

Networks can be used to model, for example, a system of
pipes used to transport some resource, such as water or oil;
capacities would be the number of units of volume that a
given pipe can transport per unit time.

Definition
A feasible flow (or simply flow) in a network (G , s, t, c) is a
function f : E (G) → [0, +∞) s.t.:

f (e) ≤ c(e) for all e ∈ E (G);
for all v ∈ V (G) \ {s, t}, we have∑
(x ,v)∈E(G)

f (x , v) =
∑

(v ,y)∈E(G)
f (v , y).

π,π

π,2π

6,6

1
2 ,2

1
2 ,

1
2

1,3

9
2 ,5

7
2 ,4

√
2,9 π +

√
2,6

2−
√
2,8s t

Definition
The value of a flow f in a network (G , s, t, c) is

val(f) =
(∑

(s,x)∈E(G)
f (s, x)

)
−

(∑
(x ,s)∈E(G)

f (x , s)
)
.

A maximum flow in (G , s, t, c) is a flow f ∗ that has maximum
value, i.e. one that satisfies val(f) ≤ val(f ∗) for all flows f .

π,π

π,2π

6,6

1
2 ,2

1
2 ,

1
2

1,3

9
2 ,5

7
2 ,4

√
2,9 π +

√
2,6

2−
√
2,8s t

The value of the flow above is π + 6 − 1
2 = 11

2 + π.

Theorem 1.1
Every network (G , s, t, c) has a maximum flow.

Proof. Omitted.

Theorem 1.1 should seem plausible, but the proof is not
obvious (since the number of flows is, typically, infinite).
The proof relies on certain results from analysis, which we
omit.

Theorem 1.1
Every network (G , s, t, c) has a maximum flow.

Proof. Omitted.
Theorem 1.1 should seem plausible, but the proof is not
obvious (since the number of flows is, typically, infinite).
The proof relies on certain results from analysis, which we
omit.

Definition
An s, t-cut, or simply cut, in a network (G , s, t, c) is a set
R ⊆ E (G) such that G \ R contains no directed path from s to t.
The capacity of the cut R is c(R) =

∑
e∈R

c(e).

s t

Max-flow min-cut theorem
The maximum value of a flow in a network is equal to the
minimum capacity of a cut in that network.

For a network (G , s, t, c), a flow f in that network, and a set
of edges R ⊆ E (G), we write

c(R) =
∑

e∈R
c(e) and f (R) =

∑
e∈R

f (e).

For a directed graph G and disjoint sets A, B ⊆ V (G), we set
S(A, B) = {(a, b) ∈ E (G) | a ∈ A, b ∈ B}.

s t

A

B

For a network (G , s, t, c), disjoint sets A, B ⊆ V (G), and a
flow f , we write

c(A, B) = c(S(A, B)) and f (A, B) = f (S(A, B)).

For a network (G , s, t, c), a flow f in that network, and a set
of edges R ⊆ E (G), we write

c(R) =
∑

e∈R
c(e) and f (R) =

∑
e∈R

f (e).

For a directed graph G and disjoint sets A, B ⊆ V (G), we set
S(A, B) = {(a, b) ∈ E (G) | a ∈ A, b ∈ B}.

s t

A

B

For a network (G , s, t, c), disjoint sets A, B ⊆ V (G), and a
flow f , we write

c(A, B) = c(S(A, B)) and f (A, B) = f (S(A, B)).

For a network (G , s, t, c), a flow f in that network, and a set
of edges R ⊆ E (G), we write

c(R) =
∑

e∈R
c(e) and f (R) =

∑
e∈R

f (e).

For a directed graph G and disjoint sets A, B ⊆ V (G), we set
S(A, B) = {(a, b) ∈ E (G) | a ∈ A, b ∈ B}.

s t

A

B

For a network (G , s, t, c), disjoint sets A, B ⊆ V (G), and a
flow f , we write

c(A, B) = c(S(A, B)) and f (A, B) = f (S(A, B)).

Proposition 2.1
Let (G , s, t, c) be a network, and let (A, B) be a partition of V (G)
such that s ∈ A and t ∈ B. Then S(A, B) is a cut in (G , s, t, c).

Proof. Lecture Notes.

s t

A

B

Proposition 2.2
Let (G , s, t, c) be a network, and let R be a cut in this network.
Then there exists a partition (A, B) of V (G) such that s ∈ A,
t ∈ B, and S(A, B) ⊆ R.

s t

A
B

Proof (outline). Let A be the set of all vertices v ∈ V (G) such that
G \ R contains a directed path from s to v , and set B = V (G) \ A.

Proposition 2.2
Let (G , s, t, c) be a network, and let R be a cut in this network.
Then there exists a partition (A, B) of V (G) such that s ∈ A,
t ∈ B, and S(A, B) ⊆ R.

s t

A
B

Proof (outline). Let A be the set of all vertices v ∈ V (G) such that
G \ R contains a directed path from s to v , and set B = V (G) \ A.

Lemma 2.3
Let f be a flow in a network (G , s, t, c), and let (A, B) be a
partition of V (G) such that s ∈ A and t ∈ B. Then
val(f) = f (A, B) − f (B, A). In particular,a we have that

val(f) =
(∑

(x ,t)∈E(G)
f (x , t)

)
−

(∑
(t,x)∈E(G)

f (t, x)
)
.

aThis happens if we take A = V (G) \ {t} and B = {t}.

Proof. Lecture Notes.

π,π

π,2π

6,6

1
2 ,2

1
2 ,

1
2

1,3

9
2 ,5

7
2 ,4

√
2,9 π +

√
2,6

2−
√
2,8s t

A B

val(f) = 11
2 + π

Corollary 2.4
Let f be a flow in a network (G , s, t, c), and let R be a cut. Then
val(f) ≤ c(R).

Proof.

By Proposition 2.2, there exists a partition (A, B) of V (G)
such that s ∈ A, t ∈ B, and S(A, B) ⊆ R. Then

val(f) = f (A, B) − f (B, A) by Lemma 2.3

≤ f (A, B) because f (e) ≥ 0 ∀e ∈ E (G)

≤ c(A, B) because f (e) ≤ c(e) ∀e ∈ E (G)

≤ c(R) because S(A, B) ⊆ R and
and c(e) ≥ 0 ∀e ∈ E (G)

which is what we needed to show.

Corollary 2.4
Let f be a flow in a network (G , s, t, c), and let R be a cut. Then
val(f) ≤ c(R).

Proof. By Proposition 2.2, there exists a partition (A, B) of V (G)
such that s ∈ A, t ∈ B, and S(A, B) ⊆ R.

Then

val(f) = f (A, B) − f (B, A) by Lemma 2.3

≤ f (A, B) because f (e) ≥ 0 ∀e ∈ E (G)

≤ c(A, B) because f (e) ≤ c(e) ∀e ∈ E (G)

≤ c(R) because S(A, B) ⊆ R and
and c(e) ≥ 0 ∀e ∈ E (G)

which is what we needed to show.

Corollary 2.4
Let f be a flow in a network (G , s, t, c), and let R be a cut. Then
val(f) ≤ c(R).

Proof. By Proposition 2.2, there exists a partition (A, B) of V (G)
such that s ∈ A, t ∈ B, and S(A, B) ⊆ R.

Then

val(f) = f (A, B) − f (B, A) by Lemma 2.3

≤ f (A, B) because f (e) ≥ 0 ∀e ∈ E (G)

≤ c(A, B) because f (e) ≤ c(e) ∀e ∈ E (G)

≤ c(R) because S(A, B) ⊆ R and
and c(e) ≥ 0 ∀e ∈ E (G)

which is what we needed to show.

Corollary 2.4
Let f be a flow in a network (G , s, t, c), and let R be a cut. Then
val(f) ≤ c(R).

Proof. By Proposition 2.2, there exists a partition (A, B) of V (G)
such that s ∈ A, t ∈ B, and S(A, B) ⊆ R. Then

val(f) = f (A, B) − f (B, A) by Lemma 2.3

≤ f (A, B) because f (e) ≥ 0 ∀e ∈ E (G)

≤ c(A, B) because f (e) ≤ c(e) ∀e ∈ E (G)

≤ c(R) because S(A, B) ⊆ R and
and c(e) ≥ 0 ∀e ∈ E (G)

which is what we needed to show.

Definition
An (s, t)-path in a network (G , s, t, c) is a sequence v0, v1, . . . , vℓ

of pairwise distinct vertices of G such that v0 = s, vℓ = t, and for
all i ∈ {0, . . . , ℓ − 1}, we have that one of (vi , vi+1) and (vi+1, vi)
belongs to E (G).

s t

Definition
Given a flow f in the network (G , s, t, c), an (s, t)-path
v0, v1, . . . , vℓ in (G , s, t, c) is said to be an f -augmenting path if
the following two conditions are satisfied:

for all i ∈ {1, . . . , ℓ − 1} such that (vi , vi+1) ∈ E (G), we have
that f (vi , vi+1) < c(vi , vi+1);
for all i ∈ {1, . . . , ℓ − 1} such that (vi+1, vi) ∈ E (G), we have
that f (vi+1, vi) > 0.

π,π

π,2π

6,6

1
2 ,2

1
2 ,

1
2

1,3

9
2 ,5

7
2 ,4

√
2,9 π +

√
2,6

2−
√
2,8s t

Lemma 2.5
Let f be a flow in a network (G , s, t, c). Then f is a maximum
flow if and only if there does not exist an f -augmenting path in
(G , s, t, c). Furthermore, if f is a maximum flow, then there exists
a cut R in (G , s, t, c) such that val(f) = c(R).

Proof.

It suffices the prove the following two statements:
(a) If there exists an f -augmenting path in (G , s, t, c), then f is

not a maximum flow in (G , s, t, c).
(b) If there does not exist an f -augmenting path in (G , s, t, c),

then f is a maximum flow in (G , s, t, c), and furthermore,
there exists a cut R in (G , s, t, c) such that val(f) = c(R).

Lemma 2.5
Let f be a flow in a network (G , s, t, c). Then f is a maximum
flow if and only if there does not exist an f -augmenting path in
(G , s, t, c). Furthermore, if f is a maximum flow, then there exists
a cut R in (G , s, t, c) such that val(f) = c(R).

Proof. It suffices the prove the following two statements:
(a) If there exists an f -augmenting path in (G , s, t, c), then f is

not a maximum flow in (G , s, t, c).
(b) If there does not exist an f -augmenting path in (G , s, t, c),

then f is a maximum flow in (G , s, t, c), and furthermore,
there exists a cut R in (G , s, t, c) such that val(f) = c(R).

(a) If there exists an f -augmenting path in (G , s, t, c), then f is
not a maximum flow in (G , s, t, c).

Proof of (a). Suppose that v0, . . . , vℓ (with v0 = s and vℓ = t) is
an f -augmenting path in (G , s, t, c).

Now, set
ε1 = min

(
{c(vi , vi+1) − f (vi , vi+1) | 0 ≤ i ≤ ℓ − 1,

(vi , vi+1) ∈ E (G)} ∪ {∞}
)
;

ε2 = min
(
{f (vi+1, vi) | 0 ≤ i ≤ ℓ − 1, (vi+1, vi) ∈ E (G)}

∪{∞}
)
;

ε = min{ε1, ε2}.
π,π

π,2π

6,6

1
2 ,2

1
2 ,

1
2

1,3

9
2 ,5

7
2 ,4

√
2,9 π +

√
2,6

2−
√
2,8s t

ε1 =
1
2

ε2 =
1
2

ε = 1
2

(a) If there exists an f -augmenting path in (G , s, t, c), then f is
not a maximum flow in (G , s, t, c).

Proof of (a). Suppose that v0, . . . , vℓ (with v0 = s and vℓ = t) is
an f -augmenting path in (G , s, t, c). Now, set

ε1 = min
(
{c(vi , vi+1) − f (vi , vi+1) | 0 ≤ i ≤ ℓ − 1,

(vi , vi+1) ∈ E (G)} ∪ {∞}
)
;

ε2 = min
(
{f (vi+1, vi) | 0 ≤ i ≤ ℓ − 1, (vi+1, vi) ∈ E (G)}

∪{∞}
)
;

ε = min{ε1, ε2}.
π,π

π,2π

6,6

1
2 ,2

1
2 ,

1
2

1,3

9
2 ,5

7
2 ,4

√
2,9 π +

√
2,6

2−
√
2,8s t

ε1 =
1
2

ε2 =
1
2

ε = 1
2

We now define a new flow f ′ as follows:
f ′(vi , vi+1) = f (vi , vi+1) + ε for all i ∈ {0, . . . , ℓ − 1} such
that (vi , vi+1) ∈ E (G);
f ′(vi+1, vi) = f (vi+1, vi) − ε for all i ∈ {0, . . . , ℓ − 1} such
that (vi+1, vi) ∈ E (G);
f ′(e) = f (e) for all other edges e.

s t
?+ ε ?− ε ?+ ε ?+ ε ?− ε ?− ε

Then val(f) < val(f ′), and so f is not a maximum flow. This
proves (a).

We now define a new flow f ′ as follows:
f ′(vi , vi+1) = f (vi , vi+1) + ε for all i ∈ {0, . . . , ℓ − 1} such
that (vi , vi+1) ∈ E (G);
f ′(vi+1, vi) = f (vi+1, vi) − ε for all i ∈ {0, . . . , ℓ − 1} such
that (vi+1, vi) ∈ E (G);
f ′(e) = f (e) for all other edges e.

s t
?+ ε ?− ε ?+ ε ?+ ε ?− ε ?− ε

Then val(f) < val(f ′), and so f is not a maximum flow. This
proves (a).

(b) If there does not exist an f -augmenting path in (G , s, t, c),
then f is a maximum flow in (G , s, t, c), and furthermore,
there exists a cut R in (G , s, t, c) such that val(f) = c(R).

Proof of (b). Suppose that (G , s, t, c) does not admit an
f -augmenting path.

Let A to be the set of all vertices v ∈ V (G)
such that there exists an f -augmenting path from s to v . Let
B = V (G) \ A. Clearly, s ∈ A and t /∈ A. Then f (A, B) = c(A, B)
and f (B, A) = 0.

s t

A

B

(b) If there does not exist an f -augmenting path in (G , s, t, c),
then f is a maximum flow in (G , s, t, c), and furthermore,
there exists a cut R in (G , s, t, c) such that val(f) = c(R).

Proof of (b). Suppose that (G , s, t, c) does not admit an
f -augmenting path. Let A to be the set of all vertices v ∈ V (G)
such that there exists an f -augmenting path from s to v . Let
B = V (G) \ A.

Clearly, s ∈ A and t /∈ A. Then f (A, B) = c(A, B)
and f (B, A) = 0.

s t

A

B

(b) If there does not exist an f -augmenting path in (G , s, t, c),
then f is a maximum flow in (G , s, t, c), and furthermore,
there exists a cut R in (G , s, t, c) such that val(f) = c(R).

Proof of (b). Suppose that (G , s, t, c) does not admit an
f -augmenting path. Let A to be the set of all vertices v ∈ V (G)
such that there exists an f -augmenting path from s to v . Let
B = V (G) \ A. Clearly, s ∈ A and t /∈ A.

Then f (A, B) = c(A, B)
and f (B, A) = 0.

s t

A

B

(b) If there does not exist an f -augmenting path in (G , s, t, c),
then f is a maximum flow in (G , s, t, c), and furthermore,
there exists a cut R in (G , s, t, c) such that val(f) = c(R).

Proof of (b). Suppose that (G , s, t, c) does not admit an
f -augmenting path. Let A to be the set of all vertices v ∈ V (G)
such that there exists an f -augmenting path from s to v . Let
B = V (G) \ A. Clearly, s ∈ A and t /∈ A. Then f (A, B) = c(A, B)
and f (B, A) = 0.

s t

A

B

(b) If there does not exist an f -augmenting path in (G , s, t, c),
then f is a maximum flow in (G , s, t, c), and furthermore,
there exists a cut R in (G , s, t, c) such that val(f) = c(R).

Proof of (b) (continued). Reminder: f (A, B) = c(A, B) and
f (B, A) = 0.
So,

val(f) = f (A, B) − f (B, A) by Lemma 2.3

= c(A, B) because f (A, B) = c(A, B)
and f (B, A) = 0

By Proposition 2.1, we know that R := S(A, B) is a cut, and by
what we just showed, val(f) = c(A, B) = c(R). It now follows
from Corollary 2.4 that f is a maximum flow in (G , s, t, c).

(b) If there does not exist an f -augmenting path in (G , s, t, c),
then f is a maximum flow in (G , s, t, c), and furthermore,
there exists a cut R in (G , s, t, c) such that val(f) = c(R).

Proof of (b) (continued). Reminder: f (A, B) = c(A, B) and
f (B, A) = 0.
So,

val(f) = f (A, B) − f (B, A) by Lemma 2.3

= c(A, B) because f (A, B) = c(A, B)
and f (B, A) = 0

By Proposition 2.1, we know that R := S(A, B) is a cut, and by
what we just showed, val(f) = c(A, B) = c(R).

It now follows
from Corollary 2.4 that f is a maximum flow in (G , s, t, c).

(b) If there does not exist an f -augmenting path in (G , s, t, c),
then f is a maximum flow in (G , s, t, c), and furthermore,
there exists a cut R in (G , s, t, c) such that val(f) = c(R).

Proof of (b) (continued). Reminder: f (A, B) = c(A, B) and
f (B, A) = 0.
So,

val(f) = f (A, B) − f (B, A) by Lemma 2.3

= c(A, B) because f (A, B) = c(A, B)
and f (B, A) = 0

By Proposition 2.1, we know that R := S(A, B) is a cut, and by
what we just showed, val(f) = c(A, B) = c(R). It now follows
from Corollary 2.4 that f is a maximum flow in (G , s, t, c).

Max-flow min-cut theorem
The maximum value of a flow in a network is equal to the
minimum capacity of a cut in that network.

Proof. Let (G , s, t, c) be a network, and let f be a maximum flow
in it (the existence of such a flow is guaranteed by Theorem 1.1).
By Lemma 2.5, there exists a cut R in (G , s, t, c) such that
val(f) = c(R). Furthermore, for any cut R ′ in (G , s, t, c),
Corollary 2.4 guarantees that val(f) ≤ c(R ′), and consequently,
c(R) ≤ c(R ′); thus, R is a cut of minimum capacity in (G , s, t, c).

Our next goal is to show how to find a maximum flow and a
minimum cut in a network.

The idea is to repeatedly find augmenting paths and update
the flow (increasing its value).
When no augmenting path exists, we instead find a cut whose
capacity is equal to the value of our flow, which (by
Corollary 2.4) guarantees that this cut is of minimum capacity.

Our next goal is to show how to find a maximum flow and a
minimum cut in a network.
The idea is to repeatedly find augmenting paths and update
the flow (increasing its value).

When no augmenting path exists, we instead find a cut whose
capacity is equal to the value of our flow, which (by
Corollary 2.4) guarantees that this cut is of minimum capacity.

Our next goal is to show how to find a maximum flow and a
minimum cut in a network.
The idea is to repeatedly find augmenting paths and update
the flow (increasing its value).
When no augmenting path exists, we instead find a cut whose
capacity is equal to the value of our flow, which (by
Corollary 2.4) guarantees that this cut is of minimum capacity.

Suppose that f is a flow in a network (G , s, t, c). We now either
find an f -augmenting path in (G , s, t, c), or we find a cut whose
capacity is val(f), as follows:

1 Set A := {s}.
2 While t /∈ A:

1 Either find vertices x ∈ A and y ∈ V (G) \ A such that
(x , y) ∈ E(G) and f (x , y) < c(x , y), or
(y , x) ∈ E(G) and f (y , x) > 0,

or determine that such x and y do not exist.
2 If we found x and y , then we set backpoint(y) = x , and we

update A := A ∪ {y}.
3 Otherwise, we stop and return the cut S(A, V (G) \ A).1

3 Construct an f -augmenting path by following backpoints
starting from t, and return this path.

1In this case, an argument analogous to the proof of Lemma 2.5 guarantees
that c(A, V (G) \ A) = val(f).

s t

u

v

w

0,2 1,1

1,2

3,3 3,3

0,1

1,1

Example 3.1
Consider the flow f in the network (G , s, t, c) as in the figure
above. Either find an f -augmenting path, or find a cut whose
capacity is val(f).

s t

u

v

w

0,2 1,1

1,2

3,3 3,3

0,1

1,1

Solution. We begin with A = {s}. We now iterate several times.

1 We select s ∈ A and u ∈ V (G) \ A, and we set A := {s, u}
and backpoint(u) = s.

2 We select s ∈ A and w ∈ V (G) \ A, and we set A := {s, u, w}
and backpoint(w) = s.

3 We select u ∈ A and v ∈ V (G) \ A, and we set
A := {s, u, w , v} and backpoint(v) = u.

4 We select v ∈ A and t ∈ V (G) \ A, and we set
A := {s, u, w , v , t} and backpoint(t) = v .

We now reconstruct our f -augmenting path: s, u, v , t. (It is easy
to see that this really is an f -augmenting path.)

s t

u

v

w

0,2 1,1

1,2

3,3 3,3

0,1

1,1

Solution. We begin with A = {s}. We now iterate several times.
1 We select s ∈ A and u ∈ V (G) \ A, and we set A := {s, u}

and backpoint(u) = s.

2 We select s ∈ A and w ∈ V (G) \ A, and we set A := {s, u, w}
and backpoint(w) = s.

3 We select u ∈ A and v ∈ V (G) \ A, and we set
A := {s, u, w , v} and backpoint(v) = u.

4 We select v ∈ A and t ∈ V (G) \ A, and we set
A := {s, u, w , v , t} and backpoint(t) = v .

We now reconstruct our f -augmenting path: s, u, v , t. (It is easy
to see that this really is an f -augmenting path.)

s t

u

v

w

0,2 1,1

1,2

3,3 3,3

0,1

1,1

Solution. We begin with A = {s}. We now iterate several times.
1 We select s ∈ A and u ∈ V (G) \ A, and we set A := {s, u}

and backpoint(u) = s.
2 We select s ∈ A and w ∈ V (G) \ A, and we set A := {s, u, w}

and backpoint(w) = s.

3 We select u ∈ A and v ∈ V (G) \ A, and we set
A := {s, u, w , v} and backpoint(v) = u.

4 We select v ∈ A and t ∈ V (G) \ A, and we set
A := {s, u, w , v , t} and backpoint(t) = v .

We now reconstruct our f -augmenting path: s, u, v , t. (It is easy
to see that this really is an f -augmenting path.)

s t

u

v

w

0,2 1,1

1,2

3,3 3,3

0,1

1,1

Solution. We begin with A = {s}. We now iterate several times.
1 We select s ∈ A and u ∈ V (G) \ A, and we set A := {s, u}

and backpoint(u) = s.
2 We select s ∈ A and w ∈ V (G) \ A, and we set A := {s, u, w}

and backpoint(w) = s.
3 We select u ∈ A and v ∈ V (G) \ A, and we set

A := {s, u, w , v} and backpoint(v) = u.

4 We select v ∈ A and t ∈ V (G) \ A, and we set
A := {s, u, w , v , t} and backpoint(t) = v .

We now reconstruct our f -augmenting path: s, u, v , t. (It is easy
to see that this really is an f -augmenting path.)

s t

u

v

w

0,2 1,1

1,2

3,3 3,3

0,1

1,1

Solution. We begin with A = {s}. We now iterate several times.
1 We select s ∈ A and u ∈ V (G) \ A, and we set A := {s, u}

and backpoint(u) = s.
2 We select s ∈ A and w ∈ V (G) \ A, and we set A := {s, u, w}

and backpoint(w) = s.
3 We select u ∈ A and v ∈ V (G) \ A, and we set

A := {s, u, w , v} and backpoint(v) = u.
4 We select v ∈ A and t ∈ V (G) \ A, and we set

A := {s, u, w , v , t} and backpoint(t) = v .

We now reconstruct our f -augmenting path: s, u, v , t. (It is easy
to see that this really is an f -augmenting path.)

s t

u

v

w

0,2 1,1

1,2

3,3 3,3

0,1

1,1

Solution. We begin with A = {s}. We now iterate several times.
1 We select s ∈ A and u ∈ V (G) \ A, and we set A := {s, u}

and backpoint(u) = s.
2 We select s ∈ A and w ∈ V (G) \ A, and we set A := {s, u, w}

and backpoint(w) = s.
3 We select u ∈ A and v ∈ V (G) \ A, and we set

A := {s, u, w , v} and backpoint(v) = u.
4 We select v ∈ A and t ∈ V (G) \ A, and we set

A := {s, u, w , v , t} and backpoint(t) = v .
We now reconstruct our f -augmenting path: s, u, v , t. (It is easy
to see that this really is an f -augmenting path.)

s t

u

v

w

1,2 0,1

1,2

0,3 0,3

1,1

1,1

Example 3.2
Consider the flow f in the network (G , s, t, c) as in the figure
above. Either find an f -augmenting path, or find a cut whose
capacity is val(f).

s t

u

v

w

1,2 0,1

1,2

0,3 0,3

1,1

1,1

Solution. We begin with A = {s}. We now iterate several times.

1 We select s ∈ A and u ∈ V (G) \ A, and we set A := {s, u}
and backpoint(u) = s.

2 We select s ∈ A and v ∈ V (G) \ A, and we set A := {s, u, v}
and backpoint(v) = s.

There are now no further vertices that we can select, and t /∈ A.
We now see that S(A, V (G) \ A) = {(u, t), (v , t)} is a cut whose
capacity is 2, which is precisely equal to val(f).

s t

u

v

w

1,2 0,1

1,2

0,3 0,3

1,1

1,1

Solution. We begin with A = {s}. We now iterate several times.
1 We select s ∈ A and u ∈ V (G) \ A, and we set A := {s, u}

and backpoint(u) = s.

2 We select s ∈ A and v ∈ V (G) \ A, and we set A := {s, u, v}
and backpoint(v) = s.

There are now no further vertices that we can select, and t /∈ A.
We now see that S(A, V (G) \ A) = {(u, t), (v , t)} is a cut whose
capacity is 2, which is precisely equal to val(f).

s t

u

v

w

1,2 0,1

1,2

0,3 0,3

1,1

1,1

Solution. We begin with A = {s}. We now iterate several times.
1 We select s ∈ A and u ∈ V (G) \ A, and we set A := {s, u}

and backpoint(u) = s.
2 We select s ∈ A and v ∈ V (G) \ A, and we set A := {s, u, v}

and backpoint(v) = s.

There are now no further vertices that we can select, and t /∈ A.
We now see that S(A, V (G) \ A) = {(u, t), (v , t)} is a cut whose
capacity is 2, which is precisely equal to val(f).

s t

u

v

w

1,2 0,1

1,2

0,3 0,3

1,1

1,1

Solution. We begin with A = {s}. We now iterate several times.
1 We select s ∈ A and u ∈ V (G) \ A, and we set A := {s, u}

and backpoint(u) = s.
2 We select s ∈ A and v ∈ V (G) \ A, and we set A := {s, u, v}

and backpoint(v) = s.
There are now no further vertices that we can select, and t /∈ A.
We now see that S(A, V (G) \ A) = {(u, t), (v , t)} is a cut whose
capacity is 2, which is precisely equal to val(f).

We now describe the Ford-Fulkerson algorithm, which finds a
maximum flow in a network (G , s, t, c). Its steps are as follows:

1 Set f (e) := 0 for all e ∈ E (G).
2 While there exists an f -augmenting path in the network:

1 Find an f -augmenting path v0, . . . , vℓ (with v0 = s and
vℓ = t).

2 Set
ε1 = min

(
{c(vi , vi+1) − f (vi , vi+1) | 0 ≤ i ≤ ℓ − 1,

(vi , vi+1) ∈ E(G)} ∪ {∞}
)

;

ε2 = min
(

{f (vi+1, vi) | 0 ≤ i ≤ ℓ − 1, (vi+1, vi) ∈ E(G)}

∪{∞}
)

;
ε = min{ε1, ε2}.

3 Update f as follows:
f (vi , vi+1) := f (vi , vi+1) + ε for all i ∈ {0, . . . , ℓ − 1} such that
(vi , vi+1) ∈ E(G);
f (vi+1, vi) := f (vi+1, vi) − ε for all i ∈ {0, . . . , ℓ − 1} such that
(vi+1, vi) ∈ E(G).

3 Return f .

s t

u

v

w

2 1

2

3 3

1

1

Example 3.3
Find a maximum flow and an a cut of minimum capacity in the
network represented in the figure above.

s t

u

v

w

2 1

2

3 3

1

1

Solution. We first set f (e) = 0 for all e ∈ E (G).

s t

u

v

w

0,2 0,1

0,2

0,3 0,3

0,1

0,1

We now iterate several times.

s t

u

v

w

0,2 0,1

0,2

0,3 0,3

0,1

0,1

(1) We find an augmenting path s, v , t, we get ε = 1, and we
update f as in the picture below.

s t

u

v

w

0,2 0,1

1,2

0,3 0,3

1,1

0,1

s t

u

v

w

0,2 0,1

1,2

0,3 0,3

1,1

0,1

(2) We find an augmenting path s, u, t, we get ε = 1, and we
update f as in the picture below.

s t

u

v

w

1,2 0,1

1,2

0,3 0,3

1,1

1,1

s t

u

v

w

1,2 0,1

1,2

0,3 0,3

1,1

1,1

(3) We find a cut S({s, u, v}, {w , t}) = {(u, t), (v , t)} of capacity
is 2, which is precisely equal to val(f).

s t

u

v

w

1,2 0,1

1,2

0,3 0,3

1,1

1,1

s t

u

v

w

1,2 0,1

1,2

0,3 0,3

1,1

1,1

The flow f (blue) is a maximum flow.
The cut S({s, u, v}, {w , t}) = {(u, t), (v , t)} is a minimum
capacity cut.

But is the Ford-Fulkerson algorithm correct?

For this, it would need to have the following two properties:
(1) the algorithm terminates for every input network (G , s, t, c);
(2) if, given an input network (G , s, t, c), the algorithm returns a

flow f , then f is indeed a maximum flow in (G , s, t, c).
(2) is definitely holds: the algorithm returns f only if there is
no f -augmenting path in the input network (G , s, t, c), and in
this case, Lemma 2.5 guarantees that f is a maximum flow in
(G , s, t, c).
But (1) may fail!

The good news is that this is only possible if some of the
capacities in the network are irrational.
If all capacities are rational, then the algorithm terminates and
correctly outputs a maximum flow.
We first deal with the case when the capacities are integers.

But is the Ford-Fulkerson algorithm correct?
For this, it would need to have the following two properties:
(1) the algorithm terminates for every input network (G , s, t, c);
(2) if, given an input network (G , s, t, c), the algorithm returns a

flow f , then f is indeed a maximum flow in (G , s, t, c).

(2) is definitely holds: the algorithm returns f only if there is
no f -augmenting path in the input network (G , s, t, c), and in
this case, Lemma 2.5 guarantees that f is a maximum flow in
(G , s, t, c).
But (1) may fail!

The good news is that this is only possible if some of the
capacities in the network are irrational.
If all capacities are rational, then the algorithm terminates and
correctly outputs a maximum flow.
We first deal with the case when the capacities are integers.

But is the Ford-Fulkerson algorithm correct?
For this, it would need to have the following two properties:
(1) the algorithm terminates for every input network (G , s, t, c);
(2) if, given an input network (G , s, t, c), the algorithm returns a

flow f , then f is indeed a maximum flow in (G , s, t, c).
(2) is definitely holds: the algorithm returns f only if there is
no f -augmenting path in the input network (G , s, t, c), and in
this case, Lemma 2.5 guarantees that f is a maximum flow in
(G , s, t, c).

But (1) may fail!

The good news is that this is only possible if some of the
capacities in the network are irrational.
If all capacities are rational, then the algorithm terminates and
correctly outputs a maximum flow.
We first deal with the case when the capacities are integers.

But is the Ford-Fulkerson algorithm correct?
For this, it would need to have the following two properties:
(1) the algorithm terminates for every input network (G , s, t, c);
(2) if, given an input network (G , s, t, c), the algorithm returns a

flow f , then f is indeed a maximum flow in (G , s, t, c).
(2) is definitely holds: the algorithm returns f only if there is
no f -augmenting path in the input network (G , s, t, c), and in
this case, Lemma 2.5 guarantees that f is a maximum flow in
(G , s, t, c).
But (1) may fail!

The good news is that this is only possible if some of the
capacities in the network are irrational.
If all capacities are rational, then the algorithm terminates and
correctly outputs a maximum flow.
We first deal with the case when the capacities are integers.

But is the Ford-Fulkerson algorithm correct?
For this, it would need to have the following two properties:
(1) the algorithm terminates for every input network (G , s, t, c);
(2) if, given an input network (G , s, t, c), the algorithm returns a

flow f , then f is indeed a maximum flow in (G , s, t, c).
(2) is definitely holds: the algorithm returns f only if there is
no f -augmenting path in the input network (G , s, t, c), and in
this case, Lemma 2.5 guarantees that f is a maximum flow in
(G , s, t, c).
But (1) may fail!

The good news is that this is only possible if some of the
capacities in the network are irrational.
If all capacities are rational, then the algorithm terminates and
correctly outputs a maximum flow.

We first deal with the case when the capacities are integers.

But is the Ford-Fulkerson algorithm correct?
For this, it would need to have the following two properties:
(1) the algorithm terminates for every input network (G , s, t, c);
(2) if, given an input network (G , s, t, c), the algorithm returns a

flow f , then f is indeed a maximum flow in (G , s, t, c).
(2) is definitely holds: the algorithm returns f only if there is
no f -augmenting path in the input network (G , s, t, c), and in
this case, Lemma 2.5 guarantees that f is a maximum flow in
(G , s, t, c).
But (1) may fail!

The good news is that this is only possible if some of the
capacities in the network are irrational.
If all capacities are rational, then the algorithm terminates and
correctly outputs a maximum flow.
We first deal with the case when the capacities are integers.

Theorem 3.4
Let (G , s, t, c) be a network in which all capacities are non-negative
integers. Then, for input (G , s, t, c), the Ford-Fulkerson algorithm
terminates and outputs a maximum flow, and furthermore, the
output flow through each edge is a non-negative integer. In
particular, some maximum flow in (G , s, t, c) has the property that
flows through all edges are non-negative integers.

Proof.

If we begin with an integer flow in the network (G , s, t, c),
and we find an augmenting path, then since all capacities are
integers, the number ε (defined as in the description of the
Ford-Fulkerson algorithm) will be a positive integer; so, the
updated flow will still be an integer flow, since the flow through an
edge can either remain unchanged, or increase by ε, or decrease by
ε.

Theorem 3.4
Let (G , s, t, c) be a network in which all capacities are non-negative
integers. Then, for input (G , s, t, c), the Ford-Fulkerson algorithm
terminates and outputs a maximum flow, and furthermore, the
output flow through each edge is a non-negative integer. In
particular, some maximum flow in (G , s, t, c) has the property that
flows through all edges are non-negative integers.

Proof. If we begin with an integer flow in the network (G , s, t, c),
and we find an augmenting path, then since all capacities are
integers, the number ε (defined as in the description of the
Ford-Fulkerson algorithm) will be a positive integer;

so, the
updated flow will still be an integer flow, since the flow through an
edge can either remain unchanged, or increase by ε, or decrease by
ε.

Theorem 3.4
Let (G , s, t, c) be a network in which all capacities are non-negative
integers. Then, for input (G , s, t, c), the Ford-Fulkerson algorithm
terminates and outputs a maximum flow, and furthermore, the
output flow through each edge is a non-negative integer. In
particular, some maximum flow in (G , s, t, c) has the property that
flows through all edges are non-negative integers.

Proof. If we begin with an integer flow in the network (G , s, t, c),
and we find an augmenting path, then since all capacities are
integers, the number ε (defined as in the description of the
Ford-Fulkerson algorithm) will be a positive integer; so, the
updated flow will still be an integer flow, since the flow through an
edge can either remain unchanged, or increase by ε, or decrease by
ε.

Theorem 3.4
Let (G , s, t, c) be a network in which all capacities are non-negative
integers. Then, for input (G , s, t, c), the Ford-Fulkerson algorithm
terminates and outputs a maximum flow, and furthermore, the
output flow through each edge is a non-negative integer. In
particular, some maximum flow in (G , s, t, c) has the property that
flows through all edges are non-negative integers.

Proof (continued). Now, the initial flow created by the
Ford-Fulkerson algorithm for the network (G , s, t, c) is the
zero-flow (and so in particular, an integer flow), and by what we
just proved, after each iteration, the new flow is still an integer
flow.

The algorithm terminates because after each iteration, the
value of the flow increases by a positive integer (namely, by the ε
that we compute for that iteration), and the maximum value of the
flow is bounded (e.g. by the sum of capacities), and so there can
be only finitely many iterations.

Theorem 3.4
Let (G , s, t, c) be a network in which all capacities are non-negative
integers. Then, for input (G , s, t, c), the Ford-Fulkerson algorithm
terminates and outputs a maximum flow, and furthermore, the
output flow through each edge is a non-negative integer. In
particular, some maximum flow in (G , s, t, c) has the property that
flows through all edges are non-negative integers.

Proof (continued). Now, the initial flow created by the
Ford-Fulkerson algorithm for the network (G , s, t, c) is the
zero-flow (and so in particular, an integer flow), and by what we
just proved, after each iteration, the new flow is still an integer
flow. The algorithm terminates because after each iteration, the
value of the flow increases by a positive integer (namely, by the ε
that we compute for that iteration), and the maximum value of the
flow is bounded (e.g. by the sum of capacities), and so there can
be only finitely many iterations.

Theorem 3.4
Let (G , s, t, c) be a network in which all capacities are non-negative
integers. Then, for input (G , s, t, c), the Ford-Fulkerson algorithm
terminates and outputs a maximum flow, and furthermore, the
output flow through each edge is a non-negative integer. In
particular, some maximum flow in (G , s, t, c) has the property that
flows through all edges are non-negative integers.

Proof (continued). The fact that the algorithm returns a correct
answer follows from its stopping criterion: the algorithm
terminates and returns a flow f once there are no f -augmenting
paths, and in this case, Lemma 2.5 from Lecture Notes 6
guarantees that f is a maximum flow.

Theorem 3.4 does not state that every maximum flow in a
network with integer capacities is an integer flow.

It merely guarantees that at least one maximum flow in such a
network is an integer flow.
For instance, the flow in the picture below is maximum for
any value of ε ∈ [0, 1], but only two values of ε (namely,
ε = 0 and ε = 1) yield an integer flow.

1,1

1,1
ε,1

1 + ε,2

1− ε,2

s t val(f) = 2

A
B

c(A,B) = 2

ε ∈ [0, 1]

Theorem 3.4 does not state that every maximum flow in a
network with integer capacities is an integer flow.
It merely guarantees that at least one maximum flow in such a
network is an integer flow.

For instance, the flow in the picture below is maximum for
any value of ε ∈ [0, 1], but only two values of ε (namely,
ε = 0 and ε = 1) yield an integer flow.

1,1

1,1
ε,1

1 + ε,2

1− ε,2

s t val(f) = 2

A
B

c(A,B) = 2

ε ∈ [0, 1]

Theorem 3.4 does not state that every maximum flow in a
network with integer capacities is an integer flow.
It merely guarantees that at least one maximum flow in such a
network is an integer flow.
For instance, the flow in the picture below is maximum for
any value of ε ∈ [0, 1], but only two values of ε (namely,
ε = 0 and ε = 1) yield an integer flow.

1,1

1,1
ε,1

1 + ε,2

1− ε,2

s t val(f) = 2

A
B

c(A,B) = 2

ε ∈ [0, 1]

Theorem 3.4
Let (G , s, t, c) be a network in which all capacities are non-negative
integers. Then, for input (G , s, t, c), the Ford-Fulkerson algorithm
terminates and outputs a maximum flow, and furthermore, the
output flow through each edge is a non-negative integer. In
particular, some maximum flow in (G , s, t, c) has the property that
flows through all edges are non-negative integers.

Theorem 3.4 is important for certain theoretical applications
(e.g. matching theory), as well for certain practical
applications.

Consider, for example, a network that models a transportation
network of trucks, where the capacity of a truck is the number
of containers that it can carry.
Certainly, we would want a maximum flow that is an integer
flow. (A truck should not transport 7

3 or 3
√

π containers!)

Theorem 3.4
Let (G , s, t, c) be a network in which all capacities are non-negative
integers. Then, for input (G , s, t, c), the Ford-Fulkerson algorithm
terminates and outputs a maximum flow, and furthermore, the
output flow through each edge is a non-negative integer. In
particular, some maximum flow in (G , s, t, c) has the property that
flows through all edges are non-negative integers.

Theorem 3.4 is important for certain theoretical applications
(e.g. matching theory), as well for certain practical
applications.

Consider, for example, a network that models a transportation
network of trucks, where the capacity of a truck is the number
of containers that it can carry.
Certainly, we would want a maximum flow that is an integer
flow. (A truck should not transport 7

3 or 3
√

π containers!)

Theorem 3.4
Let (G , s, t, c) be a network in which all capacities are non-negative
integers. Then, for input (G , s, t, c), the Ford-Fulkerson algorithm
terminates and outputs a maximum flow, and furthermore, the
output flow through each edge is a non-negative integer. In
particular, some maximum flow in (G , s, t, c) has the property that
flows through all edges are non-negative integers.

Theorem 3.4 is important for certain theoretical applications
(e.g. matching theory), as well for certain practical
applications.

Consider, for example, a network that models a transportation
network of trucks, where the capacity of a truck is the number
of containers that it can carry.

Certainly, we would want a maximum flow that is an integer
flow. (A truck should not transport 7

3 or 3
√

π containers!)

Theorem 3.4
Let (G , s, t, c) be a network in which all capacities are non-negative
integers. Then, for input (G , s, t, c), the Ford-Fulkerson algorithm
terminates and outputs a maximum flow, and furthermore, the
output flow through each edge is a non-negative integer. In
particular, some maximum flow in (G , s, t, c) has the property that
flows through all edges are non-negative integers.

Theorem 3.4 is important for certain theoretical applications
(e.g. matching theory), as well for certain practical
applications.

Consider, for example, a network that models a transportation
network of trucks, where the capacity of a truck is the number
of containers that it can carry.
Certainly, we would want a maximum flow that is an integer
flow. (A truck should not transport 7

3 or 3
√

π containers!)

Theorem 3.5
Let (G , s, t, c) be a network in which all capacities are
non-negative rational numbers. Then, for input (G , s, t, c), the
Ford-Fulkerson algorithm terminates and outputs a maximum flow,
and furthermore, the output flow through each edge is an
non-negative rational number. In particular, some maximum flow
in (G , s, t, c) has the property that flows through all edges are
non-negative rational numbers.

Proof (outline). Let d be a positive integer such that all capacities
in (G , s, t, c) are integer multiples of 1

d . (To see that d exists, we
can first write all capacities in (G , s, t, c) as fractions, and then we
take d to be the least common multiple of the denominators of the
capacities.) Now the proof is completely analogous to that of
Theorem 3.4, except that instead of integers, we have integer
multiples of 1

d (for flows and capacities) throughout.

Theorem 3.5
Let (G , s, t, c) be a network in which all capacities are
non-negative rational numbers. Then, for input (G , s, t, c), the
Ford-Fulkerson algorithm terminates and outputs a maximum flow,
and furthermore, the output flow through each edge is an
non-negative rational number. In particular, some maximum flow
in (G , s, t, c) has the property that flows through all edges are
non-negative rational numbers.

Proof (outline). Let d be a positive integer such that all capacities
in (G , s, t, c) are integer multiples of 1

d . (To see that d exists, we
can first write all capacities in (G , s, t, c) as fractions, and then we
take d to be the least common multiple of the denominators of the
capacities.)

Now the proof is completely analogous to that of
Theorem 3.4, except that instead of integers, we have integer
multiples of 1

d (for flows and capacities) throughout.

Theorem 3.5
Let (G , s, t, c) be a network in which all capacities are
non-negative rational numbers. Then, for input (G , s, t, c), the
Ford-Fulkerson algorithm terminates and outputs a maximum flow,
and furthermore, the output flow through each edge is an
non-negative rational number. In particular, some maximum flow
in (G , s, t, c) has the property that flows through all edges are
non-negative rational numbers.

Proof (outline). Let d be a positive integer such that all capacities
in (G , s, t, c) are integer multiples of 1

d . (To see that d exists, we
can first write all capacities in (G , s, t, c) as fractions, and then we
take d to be the least common multiple of the denominators of the
capacities.) Now the proof is completely analogous to that of
Theorem 3.4, except that instead of integers, we have integer
multiples of 1

d (for flows and capacities) throughout.

Theorem 3.5
Let (G , s, t, c) be a network in which all capacities are
non-negative rational numbers. Then, for input (G , s, t, c), the
Ford-Fulkerson algorithm terminates and outputs a maximum flow,
and furthermore, the output flow through each edge is an
non-negative rational number. In particular, some maximum flow
in (G , s, t, c) has the property that flows through all edges are
non-negative rational numbers.

The key point of the proof of Theorem 3.5 is that there exists
some positive integer d such that in each iteration, the value
of the flow increases by at least 1

d , and so there cannot be
infinitely many iterations.
If (some of) our capacities are irrational, such a d need not
exist.

For a concrete example, see the Lecture Notes.

Theorem 3.5
Let (G , s, t, c) be a network in which all capacities are
non-negative rational numbers. Then, for input (G , s, t, c), the
Ford-Fulkerson algorithm terminates and outputs a maximum flow,
and furthermore, the output flow through each edge is an
non-negative rational number. In particular, some maximum flow
in (G , s, t, c) has the property that flows through all edges are
non-negative rational numbers.

The key point of the proof of Theorem 3.5 is that there exists
some positive integer d such that in each iteration, the value
of the flow increases by at least 1

d , and so there cannot be
infinitely many iterations.

If (some of) our capacities are irrational, such a d need not
exist.

For a concrete example, see the Lecture Notes.

Theorem 3.5
Let (G , s, t, c) be a network in which all capacities are
non-negative rational numbers. Then, for input (G , s, t, c), the
Ford-Fulkerson algorithm terminates and outputs a maximum flow,
and furthermore, the output flow through each edge is an
non-negative rational number. In particular, some maximum flow
in (G , s, t, c) has the property that flows through all edges are
non-negative rational numbers.

The key point of the proof of Theorem 3.5 is that there exists
some positive integer d such that in each iteration, the value
of the flow increases by at least 1

d , and so there cannot be
infinitely many iterations.
If (some of) our capacities are irrational, such a d need not
exist.

For a concrete example, see the Lecture Notes.

Theorem 3.5
Let (G , s, t, c) be a network in which all capacities are
non-negative rational numbers. Then, for input (G , s, t, c), the
Ford-Fulkerson algorithm terminates and outputs a maximum flow,
and furthermore, the output flow through each edge is an
non-negative rational number. In particular, some maximum flow
in (G , s, t, c) has the property that flows through all edges are
non-negative rational numbers.

The key point of the proof of Theorem 3.5 is that there exists
some positive integer d such that in each iteration, the value
of the flow increases by at least 1

d , and so there cannot be
infinitely many iterations.
If (some of) our capacities are irrational, such a d need not
exist.

For a concrete example, see the Lecture Notes.

