
NDMI011: Combinatorics and Graph Theory 1

Lecture #6

Flows and cuts in networks

Irena Penev

1 Network flows and cuts

A network is an ordered four-tuple (G, s, t, c), where G is an oriented graph,
s and t are two distinct vertices of this graph (called the source and sink,
respectively), and c : E(G) → [0,+∞) is a function, called the capacity
function (see Figure 1.1 for an example). The capacity of an edge e ∈ E(G)
is the number c(e).

Networks can be used to model, for example, a system of pipes used
to transport some resource, such as water or oil; capacities would be the
number of units of volume that a given pipe can transport per unit time.

A feasible flow (or simply flow) in a network (G, s, t, c) is a function
f : E(G) → [0,+∞) that satisfies the following two properties (see Figure 1.2
for an example):

� f(e) ≤ c(e) for all e ∈ E(G);1

� for all v ∈ V (G) \ {s, t}, we have
∑

(x,v)∈E(G)

f(x, v) =
∑

(v,y)∈E(G)

f(v, y).2

The value of a flow f is

val(f) =
( ∑

(s,x)∈E(G)

f(s, x)
)
−
( ∑

(x,s)∈E(G)

f(x, s)
)
.

A maximum flow in (G, s, t, c) is a flow f∗ that has maximum value, i.e. one
that satisfies val(f) ≤ val(f∗) for all flows f .

Theorem 1.1. Every network (G, s, t, c) has a maximum flow.

1This means that flow cannot be higher than capacity.
2This means that, for each vertex other than the source and the sink, the in-flow is

equal to the out-flow. This condition is called the conservation of flow condition.

1



π

2π

6

2

1
2

3

5
4

9 6

8s t

Figure 1.1: A network with capacities in red.

π,π

π,2π

6,6

1
2 ,2

1
2 ,

1
2

1,3

9
2 ,5

7
2 ,4

√
2,9 π +

√
2,6

2−
√
2,8s t

Figure 1.2: A network flow. Flows are in blue and capacities are in red.

s t

Figure 1.3: A cut in a network. (The edges of the cut are in red.)

Proof. Omitted.

Theorem 1.1 should certainly seem plausible, and yet it is not entirely
obvious how one might prove it (since the number of flows is, typically,
infinite). The proof relies on certain results from analysis, which we omit.

An s, t-cut, or simply cut, in a network (G, s, t, c) is a set R ⊆ E(G)
such that G \R contains no directed path from s to t (see Figure 1.3 for an
example). The capacity of the cut R is c(R) =

∑
e∈R

c(e).

Our main theorem (proven in the next section) is the following.

Max-flow min-cut theorem. The maximum value of a flow in a network
is equal to the minimum capacity of a cut in that network.

2



s t

A

B

Figure 2.1: A cut S(A,B) in a network. (The edges of the cut are in red.)

2 Proof of the Max-flow min-cut theorem

We now need some terminology and notation. First, for a network (G, s, t, c),
a flow f in that network, and a set of edges R ⊆ E(G), we write

� c(R) =
∑
e∈R

c(e);

� f(R) =
∑
e∈R

f(e).

Next, for a directed graph G and disjoint sets A,B ⊆ V (G), we set

S(A,B) = {(a, b) ∈ E | a ∈ A, b ∈ B}.

Thus, S(A,B) is the set of all arcs from A to B (see Figure 2.1 for an
example).3

For a network (G, s, t, c), disjoint sets A,B ⊆ V (G), and a flow f , we
write

� c(A,B) = c(S(A,B));4

� f(A,B) = f(S(A,B)).

Proposition 2.1. Let (G, s, t, c) be a network, and let (A,B) be a partition
of V (G) such that s ∈ A and t ∈ B. Then S(A,B) is a cut in (G, s, t, c).

Proof. Let P = p0, p1, . . . , pℓ, with p0 = s and pℓ = t, be a directed path
in G. By hypothesis, p0 = s ∈ A and pℓ = t ∈ B; let i ∈ {0, . . . , ℓ − 1}
be maximum with the property that pi ∈ A. Then pi+1 ∈ B, and see that

3S(A,B) does not contain arcs from B to A!
4According to our notation, c(S(A,B)) =

∑
e∈S(A,B)

c(e), i.e. c(A,B) is the sum of

capacities of all the edges from A to B.

3



(pi, pi+1) ∈ S(A,B), i.e. the directed path P uses an edge of S(A,B). Since
the path P was chosen arbitrarily, it follows G \R contains no directed paths
from s to t, and so S(A,B) is indeed a cut of (G, s, t, c).

Proposition 2.2. Let (G, s, t, c) be a network, and let R be a cut in this
network. Then there exists a partition (A,B) of V (G) such that s ∈ A, t ∈ B,
and S(A,B) ⊆ R.5

Proof. Let A be the set of all vertices v ∈ V (G) such that G \ R contains
a directed path from s to v, and set B = V (G) \ A. Clearly, s ∈ A and
t ∈ B.6 We now claim that S(A,B) ⊆ R. Suppose otherwise, and fix an
edge (x, y) ∈ S(A,B) \R. (In particular, y ∈ B.) Let P = p0, . . . , pℓ, with
p0 = s and pℓ = x, be a directed path in G \ R. Since (x, y) /∈ R, we then
have that p0, . . . , pℓ, y is a directed path from s to y in G \ R, and so by
construction, we have that y ∈ A, contrary to the fact that y ∈ B.

Lemma 2.3. Let f be a flow in a network (G, s, t, c), and let (A,B) be a parti-
tion of V (G) such that s ∈ A and t ∈ B. Then val(f) = f(A,B)−f(B,A). In

particular,7 we have that val(f) =
( ∑

(x,t)∈E(G)

f(x, t)
)
−
( ∑

(t,x)∈E(G)

f(t, x)
)
.

Proof. By the definition of a flow, for all vertices v ∈ A \ {s}, we have that( ∑
(v,x)∈E(G)

f(v, x)
)
−
( ∑

(x,v)∈E(G)

f(x, v)
)
= 0,

and consequently,

∑
v∈A\{s}

(( ∑
(v,x)∈E(G)

f(v, x)
)
−
( ∑

(x,v)∈E(G)

f(x, v)
))

= 0,

On the other hand, for the source s, we have that( ∑
(s,x)∈E(G)

f(s, x)
)
−
( ∑

(x,s)∈E(G)

f(x, s)
)
= val(f).

By adding the last two equalities, we get

∑
v∈A

(( ∑
(v,x)∈E(G)

f(v, x)
)
−
( ∑

(x,v)∈E(G)

f(x, v)
))

= val(f).

5Note that this implies that c(A,B) ≤ c(R). Thus, our proof of the Max-flow min-cut
theorem, it will be enough to consider cuts of the form S(A,B), where (A,B) is a partition
of V (G), with s ∈ A and t ∈ B; cuts of this form are sometimes called elementary cuts.

6The fact that t /∈ A follows from the fact that R is a cut in (G, s, t, c), and so there
are no directed paths from s to t in G \R; so, t ∈ B.

7This happens if we take A = V (G) \ {t} and B = {t}.

4



Note that for each edge (u1, u2) ∈ E(G) such that u1, u2 ∈ A, the term
f(u1, u2) appears exactly twice in the sum above: once with the + sign,8

and one with the − sign.9 After we cancel out such terms, what remains is
precisely f(A,B)− f(B,A) = val(f), which is what we needed to show.

Corollary 2.4. Let f be a flow in a network (G, s, t, c), and let R be a cut.
Then val(f) ≤ c(R).

Proof. By Proposition 2.2, there exists a partition (A,B) of V (G) such that
s ∈ A, t ∈ B, and S(A,B) ⊆ R. Then

val(f) = f(A,B)− f(B,A) by Lemma 2.3

≤ f(A,B) because f(e) ≥ 0 for all e ∈ E(G)

≤ c(A,B) because f(e) ≤ c(e) for all e ∈ E(G)

≤ c(R) because S(A,B) ⊆ R and
and c(e) ≥ 0 for all e ∈ E(G)

which is what we needed to show.

We now introduce a key new concept: that of an “augmenting path.” First,
an (s, t)-path in a network (G, s, t, c) is a sequence v0, v1, . . . , vℓ of pairwise
distinct vertices of G such that v0 = s, vℓ = t, and for all i ∈ {0, . . . , ℓ− 1},
we have that one of (vi, vi+1) and (vi+1, vi) belongs to E(G). Note that an
(s, t)-path may, but need not be, a directed (s, t)-path (see the figure below
for an example).

s t

Now, given a flow f in the network (G, s, t, c), an (s, t)-path v0, v1, . . . , vℓ in
(G, s, t, c) is said to be an f -augmenting path if the following two conditions
are satisfied (see Figure 2.2 for an example):

� for all i ∈ {1, . . . , ℓ − 1} such that (vi, vi+1) ∈ E(G), we have that
f(vi, vi+1) < c(vi, vi+1);

� for all i ∈ {1, . . . , ℓ − 1} such that (vi+1, vi) ∈ E(G), we have that
f(vi+1, vi) > 0.

8For this, we take v = u1, x = u2, and (v, x) ∈ E(G) to add f(u1, u2) (via the first
sum).

9For this, we take v = u2, x = u1, and (x, v) ∈ E(G) to subtract f(u1, u2) (via the
second sum).

5



π,π

π,2π

6,6

1
2 ,2

1
2 ,

1
2

1,3

9
2 ,5

7
2 ,4

√
2,9 π +

√
2,6

2−
√
2,8s t

Figure 2.2: An f -augmenting path (edges in blue) in a network (G, s, t, c).
(Flow is in blue and capacities are in red.)

Lemma 2.5. Let f be a flow in a network (G, s, t, c). Then f is a maximum
flow if and only if there does not exist an f-augmenting path in (G, s, t, c).
Furthermore, if f is a maximum flow, then there exists a cut R in (G, s, t, c)
such that val(f) = c(R).

Proof. It suffices the prove the following two statements:

(a) if there exists an f -augmenting path in (G, s, t, c), then f is not a
maximum flow in (G, s, t, c);

(b) if there does not exist an f -augmenting path in (G, s, t, c), then f is a
maximum flow in (G, s, t, c), and furthermore, there exists a cut R in
(G, s, t, c) such that val(f) = c(R).

We first prove (a). Suppose that v0, . . . , vℓ (with v0 = s and vℓ = t) is an
f -augmenting path in (G, s, t, c). Now, set

� ε1 = min
(
{c(vi, vi+1)− f(vi, vi+1) | 0 ≤ i ≤ ℓ− 1, (vi, vi+1) ∈ E(G)}∪

{∞}
)
;

� ε2 = min
(
{f(vi+1, vi) | 0 ≤ i ≤ ℓ− 1, (vi+1, vi) ∈ E(G)} ∪ {∞}

)
;

� ε = min{ε1, ε2}.10

Since v0, . . . , vℓ is an f -augmenting path, we have that ε1, ε2 > 0, and
consequently, ε > 0. We now define a new flow f ′ as follows:

� f ′(vi, vi+1) = f(vi, vi+1)+ε for all i ∈ {0, . . . , ℓ−1} such that (vi, vi+1) ∈
E(G);11

10The reason we have ∞ in the definition of ε1 and ε2 is because our f -augmenting path
may have only “with-the-flow” or only “against-the-flow” edges, and we cannot take the
minimum of an empty set. Note, however, that at least one of ε1 and ε2 is a real number
(and not ∞), and consequently, ε is a real number.

11So, for edges on our augmenting path directed with the flow, we increase the flow by ε.

6



� f ′(vi+1, vi) = f(vi+1, vi)−ε for all i ∈ {0, . . . , ℓ−1} such that (vi+1, vi) ∈
E(G);12

� f ′(e) = f(e) for all other edges e.

It is easy to verify that f ′ is indeed a feasible flow.13 Furthermore, by
construction, val(f ′) = val(f) + ε, and so (since ε > 0) we have that
val(f ′) > val(f), and so f is not a maximum flow in (G, s, t, c).

It remains to prove (b). For this, we suppose that (G, s, t, c) does not
admit an f -augmenting path, and we show that f is a maximum flow. Let
A be the set of all vertices v ∈ V (G) such that there exists a path v0, . . . , vℓ
with v0 = s and vℓ = v, and satisfying the following properties:14

� for all i ∈ {1, . . . , ℓ − 1} such that (vi, vi+1) ∈ E(G), we have that
f(vi, vi+1) < c(vi, vi+1);

� for all i ∈ {1, . . . , ℓ − 1} such that (vi+1, vi) ∈ E(G), we have that
f(vi+1, vi) > 0.

Set B = V (G) \ A. Clearly, s ∈ A and t ∈ B.15 Further, for all x ∈ A and
y ∈ B,

� if (x, y) ∈ E(G), then f(x, y) = c(x, y), and

� if (y, x) ∈ E(G), then f(y, x) = 0.16

Note that this implies that f(A,B) = c(A,B) and f(B,A) = 0. But now we
have that

val(f) = f(A,B)− f(B,A) by Lemma 2.3

= c(A,B) because f(A,B) = c(A,B)
and f(B,A) = 0

By Proposition 2.1, we know that R := S(A,B) is a cut, and by what we
just showed, val(f) = c(A,B) = c(R). It now follows from Corollary 2.4
that f is a maximum flow in (G, s, t, c).17

12So, for edges on our augmenting path directed against the flow, we decrease the flow
by ε.

13Check this!
14Essentially, but somewhat informally, we are choosing A to be the set of all vertices

v ∈ V (G) such that there exists an f -augmenting path from s to v.
15If we had t ∈ A, then by the construction of A, there would be an f -augmenting path

in (G, s, t, c).
16Otherwise, there would be an f -augmenting path from s to y, contrary to the fact

that y /∈ A.
17Indeed, suppose f ′ is any flow in (G, s, t, c). Then by Corollary 2.4, we have that

val(f ′) ≤ c(A,B), and so by what we just showed, val(f ′) ≤ val(f).

7



We are now ready to prove the Max-flow min-cut theorem, restated below.

Max-flow min-cut theorem. The maximum value of a flow in a network
is equal to the minimum capacity of a cut in that network.

Proof. Let (G, s, t, c) be a network, and let f be a maximum flow in it (the
existence of such a flow is guaranteed by Theorem 1.1). By Lemma 2.5,
there exists a cut R in (G, s, t, c) such that val(f) = c(R). Furthermore,
for any cut R′ in (G, s, t, c), Corollary 2.4 guarantees that val(f) ≤ c(R′),
and consequently, c(R) ≤ c(R′); thus, R is a cut of minimum capacity in
(G, s, t, c).

3 The Ford-Fulkerson algorithm

The proof of Lemma 2.5 can easily be converted into an algorithm that finds
a maximum flow and a minimum capacity of a cut in an input network. The
idea is to repeatedly find augmenting paths and update the flow (increasing
its value). When no augmenting path exists, we instead find a cut whose
capacity is equal to the value of our flow, which (by Corollary 2.4) guarantees
that this cut is of minimum capacity.

Before we describe the algorithm, a couple of remarks are in order. First
of all, the term “algorithm” is not entirely appropriate here because for
some networks, the procedure might not terminate. This, however, can only
happen if the capacities are irrational (a concrete example is given at the
end of this section).18 If all capacities are rational, then the algorithm will
indeed terminate (see Theorems 3.4 and 3.5). We also emphasize that, if the
algorithm does terminate, then its output is correct.

Let us now describe the algorithm.
Suppose that f is a flow in a network (G, s, t, c). We now either find an

f -augmenting path in (G, s, t, c), or we find a cut whose capacity is val(f),
as follows:

1. Set A := {s}.

2. While t /∈ A:

(a) Either find vertices x ∈ A and y ∈ V (G) \A such that

� (x, y) ∈ E(G) and f(x, y) < c(x, y), or

� (y, x) ∈ E(G) and f(y, x) > 0,

or determine that such x and y do not exist.

(b) If we found x and y, then we set backpoint(y) = x, and we update
A := A ∪ {y}.

18Note, however, that it is possible that the algorithm terminates even if some (or all)
capacities are irrational.

8



s t

u

v

w

0,2 1,1

1,2

3,3 3,3

0,1

1,1

Figure 3.1: The network and flow from Example 3.1. Flows are in blue and
capacities in red.

(c) Otherwise, we stop and return the cut S(A, V (G) \A).19

3. Construct an f -augmenting path by following backpoints starting from
t, and return this path.

Example 3.1. Consider the flow f in the network (G, s, t, c) in Figure 3.1.
Either find an f -augmenting path, or find a cut whose capacity is val(f).

Solution. We begin with A = {s}. We now iterate several times.

1. We select s ∈ A and u ∈ V (G) \ A, and we set A := {s, u} and
backpoint(u) = s.

2. We select s ∈ A and w ∈ V (G) \ A, and we set A := {s, u, w} and
backpoint(w) = s.

3. We select u ∈ A and v ∈ V (G) \ A, and we set A := {s, u, w, v} and
backpoint(v) = u.

4. We select v ∈ A and t ∈ V (G) \A, and we set A := {s, u, w, v, t} and
backpoint(t) = v.

We now reconstruct our f -augmenting path: s, u, v, t. (It is easy to see that
this really is an f -augmenting path.)

Example 3.2. Consider the flow f in the network (G, s, t, c) in Figure 3.2.
Either find an f -augmenting path, or find a cut whose capacity is val(f).

Solution. We begin with A = {s}. We now iterate several times.

1. We select s ∈ A and u ∈ V (G) \ A, and we set A := {s, u} and
backpoint(u) = s.

19In this case, an argument analogous to the proof of Lemma 2.5 guarantees that
c(A, V (G) \A) = val(f).

9



s t

u

v

w

1,2 0,1

1,2

0,3 0,3

1,1

1,1

Figure 3.2: The network and flow from Example 3.2. Flows are in blue and
capacities in red.

2. We select s ∈ A and v ∈ V (G) \ A, and we set A := {s, u, v} and
backpoint(v) = s.

There are now no further vertices that we can select, and t /∈ A. We now see
that S(A, V (G) \ A) = {(u, t), (v, t)} is a cut whose capacity is 2, which is
precisely equal to val(f).

We now describe the Ford-Fulkerson algorithm, which finds a maximum
flow in a network (G, s, t, c). Its steps are as follows:

1. Set f(e) := 0 for all e ∈ E(G).

2. While there exists an f -augmenting path in the network:

(a) Find an f -augmenting path v0, . . . , vℓ (with v0 = s and vℓ = t).

(b) Set

� ε1 = min
(
{c(vi, vi+1)−f(vi, vi+1) | 0 ≤ i ≤ ℓ−1, (vi, vi+1) ∈

E(G)} ∪ {∞}
)
;

� ε2 = min
(
{f(vi+1, vi) | 0 ≤ i ≤ ℓ − 1, (vi+1, vi) ∈ E(G)} ∪

{∞}
)
;

� ε = min{ε1, ε2}.
(c) Update f as follows:

� f(vi, vi+1) := f(vi, vi+1)+ε for all i ∈ {0, . . . , ℓ−1} such that
(vi, vi+1) ∈ E(G);20

� f(vi+1, vi) := f(vi+1, vi)−ε for all i ∈ {0, . . . , ℓ−1} such that
(vi+1, vi) ∈ E(G).21

3. Return f .

10



s t

u

v

w

2 1

2

3 3

1

1

Figure 3.3: The network from Example 3.3.

Example 3.3. Find a maximum flow and an a cut of minimum capacity in
the network represented in Figure 3.3.

Solution. We first set f(e) = 0 for all e ∈ E(G) (see the figure below, with
flow in blue and capacities in red).

s t

u

v

w

0,2 0,1

0,2

0,3 0,3

0,1

0,1

We now iterate several times.

1. We find an augmenting path s, v, t, we get ε = 1, and we update f as
in the picture below (flow in blue and capacities in red).

s t

u

v

w

0,2 0,1

1,2

0,3 0,3

1,1

0,1

2. We find an augmenting path s, u, t, we get ε = 1, and we update f as
in the picture below (flow in blue and capacities in red).

20So, for edges on our augmenting path directed with the flow, we increase the flow by ε.
21So, for edges on our augmenting path directed against the flow, we decrease the flow

by ε.

11



s t

u

v

w

1,2 0,1

1,2

0,3 0,3

1,1

1,1

3. We find a cut S({s, u, v}, {w, t}) = {(u, t), (v, t)} of capacity is 2, which
is precisely equal to val(f).

s t

u

v

w

1,2 0,1

1,2

0,3 0,3

1,1

1,1

The flow f is a maximum flow, and the cut S({s, u, v}, {w, t}) = {(u, t), (v, t)}
is a minimum capacity cut.

As we already mentioned, if all capacities of the input network are rational,
then the Ford-Fulkerson algorithm terminates. Moreover, the output flow
through each edge is rational. We first prove this for integer capacities
(see Theorem 3.4), and then more generally for rational capacities (see
Theorem 3.5).

Theorem 3.4. Let (G, s, t, c) be a network in which all capacities are non-
negative integers. Then, for input (G, s, t, c), the Ford-Fulkerson algorithm
terminates and outputs a maximum flow, and furthermore, the output flow
through each edge is a non-negative integer. In particular, some maximum
flow in (G, s, t, c) has the property that flows through all edges are non-
negative integers.

Proof. If we begin with an integer flow (i.e. a flow f such that f(e) is an
integer for each edge e in our network) in the network (G, s, t, c), and we
find an augmenting path, then since all capacities are integers, the number
ε (defined as in the description of the Ford-Fulkerson algorithm) will be
a positive integer; so, the updated flow will still be an integer flow, since
the flow through an edge can either remain unchanged, or increase by ε, or
decrease by ε. Now, the initial flow created by the Ford-Fulkerson algorithm
for the network (G, s, t, c) is the zero-flow (and so in particular, an integer

12



flow), and by what we just proved, after each iteration, the new flow is still an
integer flow. The algorithm terminates because after each iteration, the value
of the flow increases by a positive integer (namely, by the ε that we compute
for that iteration), and the maximum value of the flow is bounded (e.g. by
the sum of capacities), and so there can be only finitely many iterations. The
fact that the algorithm returns a correct answer follows from its stopping
criterion: the algorithm terminates and returns a flow f once there are no
f -augmenting paths, and in this case, Lemma 2.5 from Lecture Notes 6
guarantees that f is a maximum flow.

Note that Theorem 3.4 does not state that every maximum flow in a
network with integer capacities is an integer flow. It merely guarantees
that at least one maximum flow in such a network is an integer flow.22 For
instance, the flow in the picture below is maximum for any value of ε ∈ [0, 1],
but only two values of ε (namely, ε = 0 and ε = 1) yield an integer flow.

1,1

1,1
ε,1

1 + ε,2

1− ε,2

s t val(f) = 2

A
B

c(A,B) = 2

ε ∈ [0, 1]

Theorem 3.4 is important for certain theoretical applications (we will see
this in our next lecture), as well for certain practical applications.23

If we replace the word “integer” by the word “rational” in the statemnent
of Theorem 3.4, we still get a correct statement.

Theorem 3.5. Let (G, s, t, c) be a network in which all capacities are non-
negative rational numbers. Then, for input (G, s, t, c), the Ford-Fulkerson
algorithm terminates and outputs a maximum flow, and furthermore, the
output flow through each edge is an non-negative rational number. In partic-
ular, some maximum flow in (G, s, t, c) has the property that flows through
all edges are non-negative rational numbers.

Proof. Let d be a positive integer such that all capacities in (G, s, t, c) are
integer multiples of 1

d .
24 Now the proof is completely analogous to that of

Theorem 3.4, except that instead of integers, we have integer multiples of 1
d

(for flows and capacities) throughout.25

22While the maximum value of a flow in a network is unique, there may be many (possibly
infinitely many) flows in the network that have that value, and by definition, all such flows
are maximum.

23Consider, for example, a network that models a transportation network of trucks,
where the capacity of a truck is the number of containers that it can carry. Certainly, we
would want a maximum flow that is an integer flow. (A truck should not transport 7

3
or

3
√
π containers!)
24To see that d exists, we can first write all capacities in (G, s, t, c) as fractions, and then

we take d to be the least common multiple of the denominators of the capacities.
25Check this!

13



The key point of the proof of Theorem 3.5 is that there exists some
positive integer d such that in each iteration, the value of the flow increases
by at least 1

d , and so there cannot be infinitely many iterations. If (some
of) our capacities are irrational, such a d need not exist. Let us give an

example of this.26 First, let r = −1+
√
5

2 , and let the sequence {rn}∞n=0 be
defined recursively as follows:

� r0 = 1 and r1 = r;

� rn+2 = rn − rn+1 for all integers n ≥ 0.

It is easy to check that rn = rn for all integers n ≥ 0.27 Let M be some large
number (say, M = 100). We now consider the network flow below.

M

M

M

M

M

M

1

1 = r0

r = r1s t

b

c

a

d

The maximum value of a flow in this network is 2M , as certified by the flow
represented below, and the cut ({s, a, b, c, d}, {t}) of capacity 2M .

M ,M

0,M

M ,M

M ,M

M ,M

M ,M

0,1

0,1

0,rs t

b

c

a

d

We note that the flow above can easily be obtained in two iterations of the
Ford-Fulkerson algorithm: we start with the zero flow, then we choose the
augmenting path s, d, t (with ε = M), and then we choose the augmenting

26We give only describe the construction. If you’d like a challenge, prove that it actually
works. (It’s a slightly messy induction.)

27This formula can be obtained using, for example, generating functions. Correctness is
easily verified by induction.

14



path s, b, c, t (again with ε = M). However, if we choose “bad” augmenting
paths, the algorithm may continue forever, as we describe below.

Let P1 be the s, t-path s, b, a, d, c, t; let P2 be the s, t-path s, a, b, c, d, t;
and let P3 be the s, t-path s, d, a, b, c, t.

M

M

M

M

M

M

1

1

rs t

b

c

a

d

P1 = s, b, a, d, c, t

M

M

M

M

M

M

1

1

rs t

b

c

a

d

P2 = s, a, b, c, d, t

M

M

M

M

M

M

1

1

rs t

b

c

a

d

P3 = s, d, a, b, c, t

We start with the zero flow f0, and then we use the augmenting path s, a, b, c, t
(with ε = 1), thus obtaining the flow f1, represented below.

15



0,M

1,M

0,M

1,M

0,M

1,M

1,1

0,1

0,rs t

b

c

a

d

From now on, we cyclically select augmenting paths P1, P2, P3. It can be then
shown by induction that the algorithm never terminates,28 and furthermore,

the value of the flows that the algorithm produces converges to 1+2
∞∑
n=2

rn = 3,

whereas the maximum flow in our network has value 2M > 3.29

28This is, essentially, because ε tends to zero as we keep iterating. Recall that in the
case of rational capacities (see Theorem 3.5), we could always find an integer d ≥ 1 such
that in each iteration, we had ε ≥ 1

d
. This need not be the case if (some of) our capacities

are irrational.
29If you want a bit of a challenge, try to prove (by induction) that this is indeed correct.

16


