NDMIO011: Combinatorics and Graph Theory 1

Lecture #b5

Finite projective planes (part Il)

Irena Penev

November 4, 2021



This lecture consists of three parts:



This lecture consists of three parts:

@ A brief review of the previous lecture;



This lecture consists of three parts:
@ A brief review of the previous lecture;

@ A construction of a finite projective plane from orthogonal
Latin squares;



This lecture consists of three parts:
@ A brief review of the previous lecture;
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@ An algebraic construction of a (not necessarily finite)
projective plane.



Part I: A brief review of the previous lecture



A projective plane is a set system (X, P)? that satisfies the
following three properties:

(PO) there exists a 4-element subset @ C X s.t. every P € P
satisfies [P N Q| < 2;

(P1) all distinct Py, P, € P satisfy |P1 N Py| = 1;

(P2) for all distinct x1,x2 € X, there exists a unique P € P s.t.
x1,Xp € P.

Elements of X are called points, and elements of P are called lines
of the projective plane (X, P).
A projective plane (X, P) is finite if X is finite.

“This means that X is a set and P C Z(X), where Z2(X) is the power set
(i.e. the set of all subsets) of X.



Proposition 1.2 from Lecture Notes 4
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Proposition 1.3 from Lecture Notes 4

The order of any finite projective plane is at least two.




Theorem 1.4 from Lecture Notes 4

Let (X, P) be a finite projective plane of order n. Then all the
following hold:

@ for each point x € X, exactly n+ 1 lines in P pass through x;
@ |X|=nr+n+1;
@ [Pl=n*+n+1.




Part Il: A construction of a finite projective plane from orthogonal
Latin squares



Definition

For a positive integer n, an n x n Latin square is an n x n array (or

matrix) whose entries are numbers 1,...,n, and in which each
number 1, ... n occurs exactly once in each row and in each
column.

1 2 3 1 2 |3

2 3 1 3] 1 2

3 1 2 2 |3 |1

Figure: Two 3 x 3 Latin squares.



Definition

Two n x n Latin squares, say [aj jlnxn and [bjjlnxn, are orthogonal
if each entry of the matrix matrix obtained by superimposing A on
B, i.e. of the matrix [(ajj, bj j)]nxn, is different.

@ The red and the blue Latin square (below) are orthogonal.
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Definition

Two n x n Latin squares, say [a; j|nxn and [b;j|nxn, are orthogonal
if each entry of the matrix matrix obtained by superimposing A on
B, i.e. of the matrix [(aj, bjj)]nxn, is different.

@ An n X n matrix has n? entries.

o The Cartesian product {1,...,n} x {1,...,n} has exactly n?
elements.
@ So, two n x n Latin squares are orthogonal if and only if each

element of {1,...,n} x {1,..., n} appears exactly once in the
matrix obtained by superimposing the two n x n Latin squares.



@ For a positive integer n, a Latin square A = [a,-,j],,x,, and a
permutation 7 of the set {1,...,n}, we set
7(A) = [m(aij)]nxn; obviously, 7(A) is a Latin square.

e For example, if




Proposition 2.1

Let A = [aij]nxn and B = [b;i j|nxn be orthogonal n x n Latin
squares, and let w4, mg be permutations of the set {1,..., n}.
Then wa(A) and wg(B) are orthogonal Latin squares.

Proof. Obvious.
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Proof (outline). WMA M % () (otherwise it's obvious). Set
t=|M|and M ={A1,...,As}. WIS t<n-—-1

For each i € {1,...,t}, we let 7r; be the permutation of {1,...,n}
that transforms the first row of A; into 1,...,n, and let

A = 7;i(A;). By Proposition 2.1, A, ..., A} are pairwise
orthogonal.
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So, no A’ can have 1 in the (2,1)-th spot, and no two of
AL, ..., A} can have the same (2, 1)-th entry.
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So, no A’ can have 1 in the (2,1)-th spot, and no two of

AL, ..., A} can have the same (2,1)-th entry. Thus, we have n —1
choices (namely, 2, ..., n) for the (2,1)-th entry, and each choice
gets used on at most one of Aj,..., AL



Let n > 2 be an integer, and let M be a set of pairwise orthogonal
n x n Latin squares. Then |[M| < n—1.

Proof (outline, continued). For distinct i,j € {1,...,t}, the matrix
obtained by superimposing A} onto A’ looks like this:

(1,1) ((2,2) (n,n)

(2,2) (2.7) R (X

2.2 77) . 2.2)

So, no A’ can have 1 in the (2,1)-th spot, and no two of

AL, ..., A} can have the same (2,1)-th entry. Thus, we have n —1
choices (namely, 2, ..., n) for the (2,1)-th entry, and each choice

gets used on at most one of A, ..., A, It follows that t < n— 1.
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Let n > 2 be an integer. Then the following are equivalent:
(a) 3 afinite projective plane of order n;

(b) 3 a collection of n— 1 pairwise orthogonal n x n Latin squares.

Proof of “(b) = (a)” (outline, continued). Reminder:
Li,...,L,—1 are pairwise orthogonal n x n Latin squares.

Tn1 Tn2 Tn.n

S S ... S,

° LJ,: = {{;} U{xp 4 | the (p, q)-th entry of L; is j}, for
ie{l,...,n—1} andj e {1,...,n}.



%]
—

L=

w

w
—

o For example, for L1, L, as above, we get points

r,s, 01,02, x1,1,X1,2,X1,3,X2,1, X2,2, X2.3, X3,1, X3,2, X3 3.

and lines

o B={r,s,{1,la};

Ri={r,x11,x12, %13}
Ry ={r,x21,%.2,x3};
Rs ={r,xs1,x32,x33};
S ={s,x11,x,1,X31};
Sy ={s,x12,%,2,x32};
S3={s,x13,%,3,X33}

L = {l1,x11,%,3,X32};
L3 ={l1,x12,%,1,%x33};
L% = {51,X1,3,X2,2,X3,1};
L% = {52,X1,17X2,2,X3,3};
L3 = {la,x12,%2,3,X31};
L3 ={tr,x13,%,1,x32}.



Part I1l: An algebraic construction of a (not necessarily finite)
projective plane
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@ Let F be any field.

e + and - are, respectively, addition and multiplication in F.
e 0 and 1 are, respectively, the additive and multiplicative
identity in F.
@ We construct the projective plane FP? as follows.
o Let T:=TF3\ {(0,0,0)}.
o For (x1,y1,21), (%2, y2,22) € T: (x1,y1,21) ~ (%2, y2, 22) if
and only if there exists a scalar A € F \ {0} s.t.
(x2,¥2,22) = A(x1,y1,21), i-e. xa = Ax1, y2 = Ay1, 22 = Azt
o Obviously, ~ is an equivalence relation on T.
o The equivalence class of (x,y,z) € T is
(x,y,2) = {(Ax, Ay, Az) | A e F\ {0}}.
@ Points of FP? are the equivalence classes of ~.
e For each (a,b,c) € T:
P(a,b,c) ={(x,y,z) | (x,y,z) € T,ax + by + cz = 0}.
o For all (a1, by, c1), (a2, b2, c2) € T, we have that
P(a1, b1, c1) = P(az, by, &) if and only if
(31, bl, Cl) ~ (22, b2, CQ).
@ Lines are the sets P(a, b, c) with (a,b,c) € T.
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Proof (continued). Reminder: for (a,b,c) € T,
P(a,b,c) = {(x,y,2) | (x,y,2) € T,ax + by + cz = 0}.

Next, we check that (P1) is satisfied. We fix distinct lines Py, P,
of FP2, and we show that |P; N P,| = 1. By construction, there
exist (a1, b1, c1), (a2, b2, ) € T s.t. P = P(ay, b1, c1) and

P, = P(az, by, cz). Since Py # Py, we have that

(a1, b1, c1) # (a2, bp, ¢2), that is, neither one of

(a1, b1, c1), (a2, ba, o) is a scalar multiple of the other. We now
use Linear Algebra.
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Since neither row of A is a scalar multiple of the other,
rank(A) = 2. By the Rank-Nullity Theorem, we have that
rank(A) + dim ker(A) = 3. So, dim ker(A) = 1.

Let {(x,y,z)"} be a basis for ker(A), so that
ker(A) = {(\x, Ay, \2)T [ A € F}. Then Py Py = {(x,y,2)},
and we deduce |P; N Py| = 1. Thus, (P1) is satisfied.
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Proof (continued). Reminder: for (a,b,c) € T,
P(a,b,c) ={(x,y,2) | (x,y,2) € T,ax + by + cz = 0}.

o fame]

a2 b o

Since neither row of A is a scalar multiple of the other,
rank(A) = 2. By the Rank-Nullity Theorem, we have that
rank(A) + dim ker(A) = 3. So, dim ker(A) = 1.

Let {(x,y,z)"} be a basis for ker(A), so that
ker(A) = {(\x, Ay, \2)T [ A € F}. Then Py Py = {(x,y,2)},
and we deduce |P; N Py| = 1. Thus, (P1) is satisfied.

The proof of (P2) is similar.



For each field F, FP? is a projective plane.

Theorem 1.4 from Lecture Notes 4

Let (X, P) be a finite projective plane of order n. Then all the
following hold:

@ for each point x € X, exactly n+ 1 lines in P pass through x;
@ [X|=n?+n+1;

@ [Pl=n"+n+1.
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Theorem 1.4 from Lecture Notes 4

Let (X, P) be a finite projective plane of order n. Then all the
following hold:

@ for each point x € X, exactly n+ 1 lines in P pass through x;
@ [X|=n?+n+1;

@ [Pl=n"+n+1.

If F is a finite field, with [F| = n, then FP? is a finite projective
plane of order n.

Proof. By Theorem 3.1, FP? is a projective plane.



For each field F, FP? is a projective plane.

Theorem 1.4 from Lecture Notes 4

Let (X, P) be a finite projective plane of order n. Then all the
following hold:

@ for each point x € X, exactly n+ 1 lines in P pass through x;
@ [X|=n?+n+1;
@ [Pl=n"+n+1.

If F is a finite field, with [F| = n, then FP? is a finite projective
plane of order n.

Proof. By Theorem 3.1, FP? is a projective plane. Since I is
finite, so is FP2.



For each field F, FP? is a projective plane.

Theorem 1.4 from Lecture Notes 4

Let (X, P) be a finite projective plane of order n. Then all the
following hold:

@ for each point x € X, exactly n+ 1 lines in P pass through x;
@ [X|=n?+n+1;

@ [Pl=n"+n+1.

If F is a finite field, with [F| = n, then FP? is a finite projective
plane of order n.

Proof. By Theorem 3.1, FP? is a projective plane. Since I is
finite, so is FP2. In view of Theorem 1.4 from Lecture Notes 4, it
suffices to show that FP? has precisely n> + n+ 1 points.



If F is a finite field, with |F| = n, then FP? is a finite projective
plane of order n.

Proof (continued). Reminder: WTS FP? has n? 4+ n+ 1 points.



If F is a finite field, with |F| = n, then FP? is a finite projective
plane of order n.

Proof (continued). Reminder: WTS FP? has n? 4+ n+ 1 points.
Note that for all (x,y,z) € T, there exists a unique triple
(x',y',2') € T s.t. the last non-zero coordinate of (x/,y’,2') is 1
and (x,y,z) ~ (x',y', Z).



If F is a finite field, with |F| = n, then FP? is a finite projective
plane of order n.

Proof (continued). Reminder: WTS FP? has n? 4+ n+ 1 points.
Note that for all (x,y,z) € T, there exists a unique triple
(x',y',2') € T s.t. the last non-zero coordinate of (x/,y’,2') is 1
and (x,y,z) ~ (x',y',Z'). Indeed, for existence:

o if z#0, then (x,y,z) ~ (z71x,z71y, 1);

e if z=0and y #0, then (x,y,2) ~ (y"1x,1,0);

e if y=2z=0, then x # 0 (since x, y, z cannot all be zero) and

(X7.y7 Z) ~ (17 07 0)

(Uniqueness is easy.)



If F is a finite field, with |F| = n, then FP? is a finite projective
plane of order n.

Proof (continued). Reminder: WTS FP? has n? 4+ n+ 1 points.
Note that for all (x,y,z) € T, there exists a unique triple
(x',y',2') € T s.t. the last non-zero coordinate of (x/,y’,2') is 1
and (x,y,z) ~ (x',y',Z'). Indeed, for existence:

o if z#0, then (x,y,z) ~ (z71x,z71y, 1);

e if z=0and y #0, then (x,y,2) ~ (y"1x,1,0);

e if y=2z=0, then x # 0 (since x, y, z cannot all be zero) and

(X7.y7 Z) ~ (17 07 0)

(Uniqueness is easy.)
There are n? triples of the form (x,y,1) in T; there are n triples of
the form (x,1,0) in T; and there is one triple (1,0,0) in T.



If F is a finite field, with |F| = n, then FP? is a finite projective
plane of order n.

Proof (continued). Reminder: WTS FP? has n? 4+ n+ 1 points.
Note that for all (x,y,z) € T, there exists a unique triple
(x',y',2') € T s.t. the last non-zero coordinate of (x/,y’,2') is 1
and (x,y,z) ~ (x',y',Z'). Indeed, for existence:

o if z#0, then (x,y,z) ~ (z71x,z71y, 1);

e if z=0and y #0, then (x,y,2) ~ (y 1x,1,0);

e if y=2z=0, then x # 0 (since x, y, z cannot all be zero) and

(X7.y7 Z) ~ (17 07 0)

(Uniqueness is easy.)
There are n? triples of the form (x,y,1) in T; there are n triples of
the form (x,1,0) in T; and there is one triple (1,0,0) in T. So,
there are n? + n + 1 equivalence classes of ~, that is, FP? has
n?> + n+ 1 points.



If F is a finite field, with |F| = n, then FP? is a finite projective
plane of order n.

Proof (continued). Reminder: WTS FP? has n? 4+ n+ 1 points.
Note that for all (x,y,z) € T, there exists a unique triple
(x',y',2') € T s.t. the last non-zero coordinate of (x/,y’,2') is 1
and (x,y,z) ~ (x',y',Z'). Indeed, for existence:

o if z#0, then (x,y,z) ~ (z71x,z71y, 1);

e if z=0and y #0, then (x,y,2) ~ (y"1x,1,0);

e if y=2z=0, then x # 0 (since x, y, z cannot all be zero) and

(X7.y7 Z) ~ (17 07 0)

(Uniqueness is easy.)
There are n? triples of the form (x,y,1) in T; there are n triples of
the form (x,1,0) in T; and there is one triple (1,0,0) in T. So,
there are n? + n + 1 equivalence classes of ~, that is, FP? has
P +n+1 points. So, FP2 is of order n.



If F is a finite field, with [F| = n, then FP? is a finite projective
plane of order n.




If F is a finite field, with [F| = n, then FP? is a finite projective
plane of order n.

@ It is well-known that for all integers n > 2, there exists a field
of size n if and only if n is a power of a prime (that is, if and
only if there exist a prime number p and a positive integer k

s.t. n = pk).
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@ This, together with Theorem 3.2, implies that if n > 2 is a
power of a prime, then there is a finite projective plane of
order n.
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@ However, it is not known whether there exists a finite
projective plane whose order is not a power of a prime.
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projective plane whose order is not a power of a prime.

@ It is, however, known that there are no finite projective planes
of order 6 or 10.



If F is a finite field, with [F| = n, then FP? is a finite projective
plane of order n.

It is well-known that for all integers n > 2, there exists a field
of size n if and only if n is a power of a prime (that is, if and
only if there exist a prime number p and a positive integer k
s.t. n = pk).

This, together with Theorem 3.2, implies that if n > 2 is a
power of a prime, then there is a finite projective plane of
order n.

However, it is not known whether there exists a finite
projective plane whose order is not a power of a prime.

It is, however, known that there are no finite projective planes
of order 6 or 10.

It is not known whether there are finite projective planes of
order 12.



