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This lecture consists of three parts:

1 A brief review of the previous lecture;
2 A construction of a finite projective plane from orthogonal

Latin squares;
3 An algebraic construction of a (not necessarily finite)

projective plane.



This lecture consists of three parts:
1 A brief review of the previous lecture;

2 A construction of a finite projective plane from orthogonal
Latin squares;

3 An algebraic construction of a (not necessarily finite)
projective plane.



This lecture consists of three parts:
1 A brief review of the previous lecture;
2 A construction of a finite projective plane from orthogonal

Latin squares;

3 An algebraic construction of a (not necessarily finite)
projective plane.



This lecture consists of three parts:
1 A brief review of the previous lecture;
2 A construction of a finite projective plane from orthogonal

Latin squares;
3 An algebraic construction of a (not necessarily finite)

projective plane.



Part I: A brief review of the previous lecture



Definition
A projective plane is a set system (X , P)a that satisfies the
following three properties:

(P0) there exists a 4-element subset Q ⊆ X s.t. every P ∈ P
satisfies |P ∩ Q| ≤ 2;

(P1) all distinct P1, P2 ∈ P satisfy |P1 ∩ P2| = 1;
(P2) for all distinct x1, x2 ∈ X , there exists a unique P ∈ P s.t.

x1, x2 ∈ P.
Elements of X are called points, and elements of P are called lines
of the projective plane (X , P).
A projective plane (X , P) is finite if X is finite.

aThis means that X is a set and P ⊆ P(X), where P(X) is the power set
(i.e. the set of all subsets) of X .



Proposition 1.2 from Lecture Notes 4
Let (X , P) be a finite projective plane. Then all lines in P have
the same number of points.

Definition
The order of a finite projective plane (X , P) is the number |P| − 1,
where P is any line in P.a

aSo, if (X , P) is a finite projective plane of order n, then each line in P
contains exactly n + 1 points.

By Proposition 1.2 from Lecture Notes 4, this is well-defined.

Proposition 1.3 from Lecture Notes 4
The order of any finite projective plane is at least two.
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Theorem 1.4 from Lecture Notes 4
Let (X , P) be a finite projective plane of order n. Then all the
following hold:

(a) for each point x ∈ X , exactly n + 1 lines in P pass through x ;
(b) |X | = n2 + n + 1;
(c) |P| = n2 + n + 1.



Part II: A construction of a finite projective plane from orthogonal
Latin squares



Definition
For a positive integer n, an n × n Latin square is an n × n array (or
matrix) whose entries are numbers 1, . . . , n, and in which each
number 1, . . . , n occurs exactly once in each row and in each
column.

1 2 3

2 3 1

3 1 2

1 2 3

3 1 2

2 3 1

Figure: Two 3 × 3 Latin squares.



Definition
Two n × n Latin squares, say [ai ,j ]n×n and [bi ,j ]n×n, are orthogonal
if each entry of the matrix matrix obtained by superimposing A on
B, i.e. of the matrix [(ai ,j , bi ,j)]n×n, is different.

The red and the blue Latin square (below) are orthogonal.
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Definition
Two n × n Latin squares, say [ai ,j ]n×n and [bi ,j ]n×n, are orthogonal
if each entry of the matrix matrix obtained by superimposing A on
B, i.e. of the matrix [(ai ,j , bi ,j)]n×n, is different.

An n × n matrix has n2 entries.
The Cartesian product {1, . . . , n} × {1, . . . , n} has exactly n2

elements.
So, two n × n Latin squares are orthogonal if and only if each
element of {1, . . . , n} × {1, . . . , n} appears exactly once in the
matrix obtained by superimposing the two n × n Latin squares.
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For a positive integer n, a Latin square A = [ai ,j ]n×n and a
permutation π of the set {1, . . . , n}, we set
π(A) = [π(ai ,j)]n×n; obviously, π(A) is a Latin square.
For example, if

1 3 2

3 2 1

2 1 3

A =

and if π =
(

1 2 3
1 3 2

)
, then

1 2 3

2 3 1

3 1 2

π(A) = .



Proposition 2.1
Let A = [ai ,j ]n×n and B = [bi ,j ]n×n be orthogonal n × n Latin
squares, and let πA, πB be permutations of the set {1, . . . , n}.
Then πA(A) and πB(B) are orthogonal Latin squares.

Proof. Obvious.



Theorem 2.2
Let n ≥ 2 be an integer, and let M be a set of pairwise orthogonal
n × n Latin squares. Then |M| ≤ n − 1.

Proof (outline). WMA M ̸= ∅ (otherwise it’s obvious). Set
t = |M| and M = {A1, . . . , At}. WTS t ≤ n − 1.

For each i ∈ {1, . . . , t}, we let πi be the permutation of {1, . . . , n}
that transforms the first row of Ai into 1, . . . , n, and let
A′

i = πi(Ai). By Proposition 2.1, A′
1, . . . , A′

t are pairwise
orthogonal.
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Theorem 2.2
Let n ≥ 2 be an integer, and let M be a set of pairwise orthogonal
n × n Latin squares. Then |M| ≤ n − 1.

Proof (outline, continued). For distinct i , j ∈ {1, . . . , t}, the matrix
obtained by superimposing A′

i onto A′
j looks like this:
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So, no A′
i can have 1 in the (2, 1)-th spot, and no two of

A′
1, . . . , A′

t can have the same (2, 1)-th entry. Thus, we have n − 1
choices (namely, 2, . . . , n) for the (2, 1)-th entry, and each choice
gets used on at most one of A′

1, . . . , A′
t . It follows that t ≤ n − 1.
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Theorem 2.3
Let n ≥ 2 be an integer. Then the following are equivalent:
(a) ∃ a finite projective plane of order n;
(b) ∃ a collection of n − 1 pairwise orthogonal n × n Latin squares.

Proof of “(b) =⇒ (a)” (outline). Assume that (b) is true, and let
L1, . . . , Ln−1 be pairwise orthogonal n × n Latin squares. We will
give a construction of the corresponding finite projective plane of
order n (proof that it works: exercise).

There are n2 + n + 1 points:
points r and s;
points ℓi for i ∈ {1, . . . , n − 1};
points xi,j for i , j ∈ {1, . . . , n}.

There are n2 + n + 1 lines:
line B
lines Ri for i ∈ {1, . . . , n};
lines Sj for j ∈ {1, . . . , n};
lines Lj

i for i ∈ {1, . . . , n − 1} and j ∈ {1, . . . , n}.
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Let n ≥ 2 be an integer. Then the following are equivalent:
(a) ∃ a finite projective plane of order n;
(b) ∃ a collection of n − 1 pairwise orthogonal n × n Latin squares.

Proof of “(b) =⇒ (a)” (outline, continued). Reminder:
L1, . . . , Ln−1 are pairwise orthogonal n × n Latin squares.

s

r

`1
`2

`n−1

x1,1

x2,1

xn,1

x1,2

x2,2

xn,2

x1,n

x2,n

xn,n

B

R1

R2

Rn

S1 S2 Sn. . .

...

Lj
i = {ℓi} ∪ {xp,q | the (p, q)-th entry of Li is j}, for

i ∈ {1, . . . , n − 1} and j ∈ {1, . . . , n}.



1 2 3

2 3 1

3 1 2

1 2 3

3 1 2

2 3 1

L1 = L2 =

For example, for L1, L2 as above, we get points

r , s, ℓ1, ℓ2, x1,1, x1,2, x1,3, x2,1, x2,2, x2,3, x3,1, x3,2, x3,3.

and lines

B = {r , s, ℓ1, ℓ2};
R1 = {r , x1,1, x1,2, x1,3};
R2 = {r , x2,1, x2,2, x2,3};
R3 = {r , x3,1, x3,2, x3,3};
S1 = {s, x1,1, x2,1, x3,1};
S2 = {s, x1,2, x2,2, x3,2};
S3 = {s, x1,3, x2,3, x3,3};

L1
1 = {ℓ1, x1,1, x2,3, x3,2};

L2
1 = {ℓ1, x1,2, x2,1, x3,3};

L3
1 = {ℓ1, x1,3, x2,2, x3,1};

L1
2 = {ℓ2, x1,1, x2,2, x3,3};

L2
2 = {ℓ2, x1,2, x2,3, x3,1};

L3
2 = {ℓ2, x1,3, x2,1, x3,2}.



Part III: An algebraic construction of a (not necessarily finite)
projective plane



Let F be any field.

+ and · are, respectively, addition and multiplication in F.
0 and 1 are, respectively, the additive and multiplicative
identity in F.

We construct the projective plane FP2 as follows.
Let T := F3 \ {(0, 0, 0)}.
For (x1, y1, z1), (x2, y2, z2) ∈ T : (x1, y1, z1) ∼ (x2, y2, z2) if
and only if there exists a scalar λ ∈ F \ {0} s.t.
(x2, y2, z2) = λ(x1, y1, z1), i.e. x2 = λx1, y2 = λy1, z2 = λz1.

Obviously, ∼ is an equivalence relation on T .
The equivalence class of (x , y , z) ∈ T is
(x , y , z) = {(λx , λy , λz) | λ ∈ F \ {0}}.

Points of FP2 are the equivalence classes of ∼.
For each (a, b, c) ∈ T :
P(a, b, c) = {(x , y , z) | (x , y , z) ∈ T , ax + by + cz = 0}.

For all (a1, b1, c1), (a2, b2, c2) ∈ T , we have that
P(a1, b1, c1) = P(a2, b2, c2) if and only if
(a1, b1, c1) ∼ (a2, b2, c2).

Lines are the sets P(a, b, c) with (a, b, c) ∈ T .
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Theorem 3.1
For each field F, FP2 is a projective plane.

Proof. Reminder: for (a, b, c) ∈ T ,
P(a, b, c) = {(x , y , z) | (x , y , z) ∈ T , ax + by + cz = 0}.

First, we check that (P0) is satisfied for

Q = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}.

We note that each of the following four matrices 1 0 0
0 1 0
0 0 1

 ,

 0 1 0
0 0 1
1 1 1

 ,

 0 0 1
1 1 1
1 0 0

 ,

 1 1 1
1 0 0
0 1 0


has rank three. So, if A is any one of the four matrices above, then
Ax = 0 has only the trivial solution, and consequently, no line of
FP2 contains three (or more) points of Q. So, (P0) is satisfied.
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Theorem 3.1
For each field F, FP2 is a projective plane.

Proof (continued). Reminder: for (a, b, c) ∈ T ,
P(a, b, c) = {(x , y , z) | (x , y , z) ∈ T , ax + by + cz = 0}.

Next, we check that (P1) is satisfied. We fix distinct lines P1, P2
of FP2, and we show that |P1 ∩ P2| = 1. By construction, there
exist (a1, b1, c1), (a2, b2, c2) ∈ T s.t. P1 = P(a1, b1, c1) and
P2 = P(a2, b2, c2). Since P1 ̸= P2, we have that
(a1, b1, c1) ̸∼ (a2, b2, c2), that is, neither one of
(a1, b1, c1), (a2, b2, c2) is a scalar multiple of the other. We now
use Linear Algebra.
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Theorem 3.1
For each field F, FP2 is a projective plane.

Proof (continued). Reminder: for (a, b, c) ∈ T ,
P(a, b, c) = {(x , y , z) | (x , y , z) ∈ T , ax + by + cz = 0}.

A :=
[

a1 b1 c1
a2 b2 c2

]
.

Since neither row of A is a scalar multiple of the other,
rank(A) = 2. By the Rank-Nullity Theorem, we have that
rank(A) + dim ker(A) = 3. So, dim ker(A) = 1.

Let {(x , y , z)T } be a basis for ker(A), so that
ker(A) =

{
(λx , λy , λz)T | λ ∈ F

}
. Then P1 ∩ P2 =

{
(x , y , z)

}
,

and we deduce |P1 ∩ P2| = 1. Thus, (P1) is satisfied.

The proof of (P2) is similar.
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Theorem 3.1
For each field F, FP2 is a projective plane.

Theorem 1.4 from Lecture Notes 4
Let (X , P) be a finite projective plane of order n. Then all the
following hold:

(a) for each point x ∈ X , exactly n + 1 lines in P pass through x ;
(b) |X | = n2 + n + 1;
(c) |P| = n2 + n + 1.

Theorem 3.2
If F is a finite field, with |F| = n, then FP2 is a finite projective
plane of order n.

Proof. By Theorem 3.1, FP2 is a projective plane. Since F is
finite, so is FP2. In view of Theorem 1.4 from Lecture Notes 4, it
suffices to show that FP2 has precisely n2 + n + 1 points.
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Theorem 3.2
If F is a finite field, with |F| = n, then FP2 is a finite projective
plane of order n.

Proof (continued). Reminder: WTS FP2 has n2 + n + 1 points.

Note that for all (x , y , z) ∈ T , there exists a unique triple
(x ′, y ′, z ′) ∈ T s.t. the last non-zero coordinate of (x ′, y ′, z ′) is 1
and (x , y , z) ∼ (x ′, y ′, z ′). Indeed, for existence:

if z ̸= 0, then (x , y , z) ∼ (z−1x , z−1y , 1);
if z = 0 and y ̸= 0, then (x , y , z) ∼ (y−1x , 1, 0);
if y = z = 0, then x ̸= 0 (since x , y , z cannot all be zero) and
(x , y , z) ∼ (1, 0, 0).

(Uniqueness is easy.)
There are n2 triples of the form (x , y , 1) in T ; there are n triples of
the form (x , 1, 0) in T ; and there is one triple (1, 0, 0) in T . So,
there are n2 + n + 1 equivalence classes of ∼, that is, FP2 has
n2 + n + 1 points. So, FP2 is of order n.
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Theorem 3.2
If F is a finite field, with |F| = n, then FP2 is a finite projective
plane of order n.

It is well-known that for all integers n ≥ 2, there exists a field
of size n if and only if n is a power of a prime (that is, if and
only if there exist a prime number p and a positive integer k
s.t. n = pk).
This, together with Theorem 3.2, implies that if n ≥ 2 is a
power of a prime, then there is a finite projective plane of
order n.
However, it is not known whether there exists a finite
projective plane whose order is not a power of a prime.
It is, however, known that there are no finite projective planes
of order 6 or 10.
It is not known whether there are finite projective planes of
order 12.
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