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o For a point x € X and a line P € P s.t. x € P, we say that
the line P is incident with the point x, or that P contains x,
or that P passes through x.

e For distinct points a, b € X, we denote by ab the unique line
in P that contains a and b (the existence and uniqueness of
such a line follow from (P2)).
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A finite projective plane is a set system (X, P) s.t. X is a finite,
and the following three properties are satisfied:

(PO) there exists a 4-element subset Q C X s.t. every P € P
satisfies [P N Q| < 2;

(P1) all distinct Py, Py € P satisfy |P1 N Pp| = 1;

(P2) for all distinct x1,x2 € X, there exists a unique P € P s.t.
x1,X € P.

e (P2) is the same as for points and lines in the Euclidean plane.

e But (P1) is different! There are no “parallel lines” in a finite
projective plane.



(PO) there exists a 4-element subset @ C X s.t. every P € P
satisfies |P N Q| < 2;

(P1) all distinct Py, Py € P satisfy |P1 N Pp| = 1;

(P2) for all distinct x1,x2 € X, there exists a unique P € P s.t.
x1, X € P.

Let X ={1,2,3,4,5,6,7} and P = {a,b,c,d,e,f, g}, where

e a=1{1,2,3}, e d=1{5,7,2}, o g=1{2,4,6}.
e b=1{3,4,5}, o e={1,7,4},
o c= {561}, o f=1{3,7,6},

Then (X, P) is a finite projective plane,? called the Fano plane.

?It is easy to check that (P1) and (P2) are satisfied. For (P0), we can take,
for instance, Q = {1,3,5,7}.
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Figure: The Fano plane.

@ In the picture above, the seven lines of the Fano plane are
represented by six line segments and one circle.

@ However, formally, each line of the Fano plane is simply a set
of three points.

@ Drawings can sometimes be useful for guiding our intuition.
However, formal proofs should never rely on such pictures;
instead, they should rely solely on the definition of a finite
projective plane or on results (propositions, lemmas,
theorems) proven about them.



@ The incidence graph of a finite projective plane (X, P) is a
bipartite graph with bipartition (X, P), in which x € X and
P € P are adjacent if and only if x € P.

Figure: The incidence graph of the Fano plane.
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Let (X, P) be a finite projective plane. Then all lines in P have
the same number of points.

Proof (outline). Fix P1, P> € P. WTS |P1| = |Py|.
Claim. There exists a point z € X s.t. z ¢ Py U Ps.

Proof of the Claim (outline). Using (P0), we fix a 4-element
subset Q C X sit. forall Pe P, |QNP|<2. If QL P1UP;,
then we take any z € Q \ (P1 U P2), and we are done.

So assume that Q C P; U P,. Since |Q| = 4 and

|QN P1l,|QN Pyl <2, we now deduce that QN Py and QN P are
disjoint and each contain exactly two points. Set Q N P; = {a, b}
and QN Py ={c,d}.



Proposition 1.2

Let (X, P) be a finite projective plane. Then all lines in P have
the same number of points.

Proof (outline). Fix Py, P> € P. WTS |P1| = |Py|.
Claim. There exists a point z € X s.t. z ¢ Py U Ps.

Proof of the Claim (outline, continued).

P

This proves the Claim.
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Let (X, P) be a finite projective plane. Then all lines in P have
the same number of points.

Proof(out/ine). Fix Py, P, € P. WTS ‘P1| = ‘P2‘
Claim. There exists a point z € X s.t. z ¢ Py U Ps.

We define ¢ : P — P> as follows: for all x € Py, let ¢(x) be the
unique point in the intersection of the lines Xz and P5.

Py P,

It is not hard to check (detail: Lecture Notes) that ¢ is
well-defined and surjective (i.e. onto). So, |P1| > |P2|. By
symmetry, |P2| > |P1]. So, |P1| = |P2|. Q.E.D.
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Let (X, P) be a finite projective plane. Then all lines in P have
the same number of points.

Definition

The order of a finite projective plane (X, P) is the number |P| — 1,
where P is any line in P.?

So, if (X,P) is a finite projective plane of order n, then each line in P
contains exactly n+ 1 points.

@ By Proposition 1.2, this is well-defined.

@ The Fano plane has order two.
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Proposition 1.3

The order of any finite projective plane is at least two.

Proof (outline). Let (X, P) be a finite projective plane. We just
need to show that some line in (X, P) has at least three points.

Let @ = {a, b, c, d} satisfy (P0). Then the line ab has at least
three points (namely, a, b, and its point of intersection with cd).

o
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e We prove (c) after introducing “duality” (we use (a) and (b)).
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Theorem 1.4

Let (X, P) be a finite projective plane of order n. Then all the
following hold:

@ for each point x € X, exactly n+ 1 lines in P pass through x;
@ |X|=nm+n+1;
@ [Pl=n*+n+1.

Proof (outline).
Claim. For every point x € X, there exists a line P € P
s.t.x ¢ P.

Proof of the Claim (outline). Fix a point x € X. Using (P0) from
the definition of a finite projective plane, we fix a 4-element subset
QC Xst. forall PeP, |[QNP| <2 Then |Q\ {x}| >3 let
a,b,c € Q\ {x} be pairwise distinct.



Claim. For every point x € X, there exists a line P € P
s.t. x ¢ P.

Proof of the Claim (outline, continued).

Then x belongs to at most one of ab and ac. This proves the
Claim.



Theorem 1.4

Let (X, P) be a finite projective plane of order n. Then all the
following hold:

@ for each point x € X, exactly n+ 1 lines in P pass through x;
@ [X|=n?+n+1;
@ [Pl=n°+n+1.

Proof of (a) (outline). Fix a point x € X. By the Claim, there
exists a line P € P s.t. x ¢ P. Since (X, P) is of order n, we know
that |P|=n+1; set P = {xo0,x1,...,Xn}-

P

At least n + 1 lines (namely,

Every line through x intersects

P, so Tz, ..., TT, are the

Ty only lines through z.
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Theorem 1.4

Let (X, 7P) be a finite projective plane of order n. Then all the
following hold:

@ for each point x € X, exactly n+ 1 lines in P pass through x;
@ [X|=n?+n+1;
@ [Pl=n*+n+1

Proof of (b) (outline). Fix any line P € P. Since (X, P) is of order
n, we know that |P| = n+1; set P = {xo, x1,...,Xn}. Since every
line in P has n+ 1 points, the Claim guarantees that |X| > n+2;
consequently, P ; X. Fix any a € X\ P.




Theorem 1.4

Let (X, P) be a finite projective plane of order n. Then all the
following hold:

@ for each point x € X, exactly n+ 1 lines in P pass through x;
@ |X|=nr+n+1;
@ [Pl=n*+n+1.

Proof of (b) (outline, continued).

P




Theorem 1.4

Let (X, P) be a finite projective plane of order n. Then all the
following hold:

@ for each point x € X, exactly n+ 1 lines in P pass through x;
@ |X|=nr+n+1;
@ [Pl=n*+n+1.

Proof of (b) (outline, continued).

By (P1) and (P2), P;n P; = {a} for all distinct i,j € {0,1,...,n};
consequently, Py \ {a}, P1\ {a},..., P, \ {a} are pairwise disjoint.
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Theorem 1.4

Let (X,P) be a finite projective plane of order n. Then all the
following hold:

@ for each point x € X, exactly n+ 1 lines in P pass through x;
@ [X|=n’+n+1;
@ [Pl=n*+n+1.

Proof of (b) (outline, continued). Consequently,

|POUP1U-"UP,,|
= [a}| +IPo\{a}| + [P\ {a}| + -+ [Py \{a}|
1+ (n+1)n
P+ n+1.

It now remains to show that X = P U Py U ---U P,; in fact, we
only need to show that X C PoU Py U---U P,, for the reverse
inclusion is immediate.
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Fix a point x € X; WTS x belongs to at least one of

Po, P1,...,P,. WMA x # a, for otherwise we are done. The line
R :=xa is distinct from P (because a € R, but a ¢ P), and so by
(P1), [IPN R| =1. Since P = {xp, x1,...,Xn}, it follows that there
exists some i € {0,1,...,n} such that PN R = {x;}. Now lines P;
and R have at least two points (namely, a and x;) in common, and
so by (P2), we have that R = P;.



Proof of (b) (outline, continued). Reminder: WTS
XCPbUPLU---UP,.

Fix a point x € X; WTS x belongs to at least one of

Po, P1,...,P,. WMA x # a, for otherwise we are done. The line
R :=xa is distinct from P (because a € R, but a ¢ P), and so by
(P1), [IPN R| =1. Since P = {xp, x1,...,Xn}, it follows that there
exists some i € {0,1,...,n} such that PN R = {x;}. Now lines P;
and R have at least two points (namely, a and x;) in common, and
so by (P2), we have that R = P;. Since x € R, we deduce that

x € P;. Q.E.D.
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@ We next introduce “duality.”

e Essentially, the “dual” of a finite projective plane is another
finite projective plane, but with the roles of points and lines
reveresed.

For a set system (X,S), we define the dual of (X,S) to be the
ordered pair (Y,7T), where Y =S and

T={{SeS|xes} | xex}.

Let X = {1,2,3} and S = {A, B}, where A= {1,2} and
B = {1,3}. Then the dual of (X,S) is (Y,T), where Y = {A, B}

and 7 = {{A, B}, {A}, {B} } .2

*Indeed {S € S|1€ S} ={A B}, {SeS8|2€ S} ={A}, and
{SeS|3eS}={B}.
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xeX, let Re={PeP|xeP} Set Y =P and

R = {Rx | x € X}, then by definition, (Y, R) is the dual of
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Proof (outline). Let (X, P) be a finite projective plane. For each
xeX, let Re={PeP|xeP} Set Y =P and

R = {Rx | x € X}, then by definition, (Y, R) is the dual of
(X,P). WTS (Y, R) satisfies (P0), (P1), and (P3).

Proof of (P0) for (Y, R) (outline): Let Q = {a, b,c,d} be as in
(PO) for (X, P).

/'/
a
/ Py =be

b c

Py =da

Py =ab

Then Q* = {P1, P2, P3, P4} satisfies (P0) for the dual (Y,R).
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Proof (outline, continued). Let (X, P) be a finite projective plane.
For each x € X, let Ry ={P € P | x € P}. Set Y =P and

R = {R« | x € X}, then by definition, (Y, R) is the dual of

(X, P). WTS (Y, R) satisfies (P0), (P1), and (P3).

Proof of (P1) for (Y,R) (outline): For distinct x1,x € X, (P2)
for (X, P) guarantees that there is a unique P € P s.t. x1,x2 € P;



The dual of a finite projective plane is again a finite projective
plane.

Proof (outline, continued). Let (X, P) be a finite projective plane.
For each x € X, let Ry ={P € P | x € P}. Set Y =P and

R = {R« | x € X}, then by definition, (Y, R) is the dual of
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for (X, P) guarantees that there is a unique P € P s.t. x1,x2 € P;
so, Ry, N Ry, ={P}, i.e. |IRyNR,|=1.
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Proof (outline, continued). Let (X, P) be a finite projective plane.
For each x € X, let Ry ={P € P | x € P}. Set Y =P and

R = {R« | x € X}, then by definition, (Y, R) is the dual of

(X, P). WTS (Y, R) satisfies (P0), (P1), and (P3).

Proof of (P1) for (Y, R) (outline): For distinct x1, x> € X, (P2)
for (X, P) guarantees that there is a unique P € P s.t. x1,x2 € P;
so, Ry, N Ry, ={P}, i.e. |IRyNR,|=1.

Proof of (P2) for (Y, R) (outline): For all distinct
P1,Py € Y =P, (P1) for (X, P) guarantees that |P; N Pp| =1,
say PiNnP, = {X};
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Proof (outline, continued). Let (X, P) be a finite projective plane.
For each x € X, let Ry ={P € P | x € P}. Set Y =P and

R = {R« | x € X}, then by definition, (Y, R) is the dual of

(X, P). WTS (Y, R) satisfies (P0), (P1), and (P3).

Proof of (P1) for (Y, R) (outline): For distinct x1, x> € X, (P2)
for (X, P) guarantees that there is a unique P € P s.t. x1,x2 € P;
so, Ry, N Ry, ={P}, i.e. |IRyNR,|=1.

Proof of (P2) for (Y, R) (outline): For all distinct

P1,Py € Y =P, (P1) for (X, P) guarantees that |P; N Pp| =1,
say P1 N P, = {x}; then Ry is the unique line of (Y, R) containing
both P; and P».
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plane.
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Theorem 1.4

Let (X, P) be a finite projective plane of order n. Then all the
following hold:

@ for each point x € X, exactly n+ 1 lines in P pass through x;
@ [X|=n’+n+1;
@ |Pl=r+n+1.

Proof of (c).
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Theorem 1.4

Let (X, P) be a finite projective plane of order n. Then all the
following hold:

@ for each point x € X, exactly n+ 1 lines in P pass through x;
@ [X|=n’+n+1;
@ |Pl=r+n+1.

Proof of (c). By Theorem 2.2, the dual (Y, R) of (X, P) is a finite
projective plane. We have Y =P and R = {R | x € X}, where
R ={P € P |xe P} forall x € X.



The dual of a finite projective plane is again a finite projective
plane.

Theorem 1.4

Let (X, P) be a finite projective plane of order n. Then all the
following hold:
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following hold:

@ for each point x € X, exactly n+ 1 lines in P pass through x;
@ [X|=n’+n+1;
@ |Pl=r+n+1.

Proof of (c). By Theorem 2.2, the dual (Y, R) of (X, P) is a finite
projective plane. We have Y =P and R = {R | x € X}, where
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The dual of a finite projective plane is again a finite projective
plane.

Theorem 1.4

Let (X, P) be a finite projective plane of order n. Then all the
following hold:

@ for each point x € X, exactly n+ 1 lines in P pass through x;
@ [X|=n’+n+1;
@ |Pl=r+n+1.

Proof of (c). By Theorem 2.2, the dual (Y, R) of (X, P) is a finite
projective plane. We have Y =P and R = {R | x € X}, where
R« ={P € P | x € P} for all x € X. By (a), each R, contains
exactly n+ 1 members of P. So, the order of (Y, R) is n. By (b),
|Y|=n?+n+1. So, |P| = n®> + n+ 1. This proves (c).



