NDMI011: Combinatorics and Graph Theory 1

Lecture #4

Finite projective planes (part I)

Irena Penev

October 13, 2021

• For a set X, the *power set* of X, denoted by $\mathcal{P}(X)$, is the set of all subsets of X.

- For a set X, the *power set* of X, denoted by $\mathcal{P}(X)$, is the set of all subsets of X.
- For example, if $X = \{1, 2, 3\}$, then

$$\mathscr{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$$

- For a set X, the *power set* of X, denoted by $\mathscr{P}(X)$, is the set of all subsets of X.
- ullet For example, if $X = \{1, 2, 3\}$, then

$$\mathscr{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$$

• A set system is an ordered pair (X, S) s.t. X is a set (called the ground set) and $S \subseteq \mathcal{P}(X)$.

- For a set X, the *power set* of X, denoted by $\mathcal{P}(X)$, is the set of all subsets of X.
- For example, if $X = \{1, 2, 3\}$, then

$$\mathscr{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$$

• A set system is an ordered pair (X, S) s.t. X is a set (called the ground set) and $S \subseteq \mathcal{P}(X)$.

Definition

- (P0) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| < 2$;
- (P1) all distinct $P_1, P_2 \in \mathcal{P}$ satisfy $|P_1 \cap P_2| = 1$;
- (P2) for all distinct $x_1, x_2 \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$.

- (P0) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| \le 2$;
- (P1) all distinct $P_1, P_2 \in \mathcal{P}$ satisfy $|P_1 \cap P_2| = 1$;
- (P2) for all distinct $x_1, x_2 \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$.

- (P0) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| \le 2$;
- (P1) all distinct $P_1, P_2 \in \mathcal{P}$ satisfy $|P_1 \cap P_2| = 1$;
- (P2) for all distinct $x_1, x_2 \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$.
 - If (X, \mathcal{P}) is a finite projective plane, then members of X are called *points*, and members of \mathcal{P} are called *lines*.

- (P0) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| \le 2$;
- (P1) all distinct $P_1, P_2 \in \mathcal{P}$ satisfy $|P_1 \cap P_2| = 1$;
- (P2) for all distinct $x_1, x_2 \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$.
 - If (X, \mathcal{P}) is a finite projective plane, then members of X are called *points*, and members of \mathcal{P} are called *lines*.
 - For a point $x \in X$ and a line $P \in \mathcal{P}$ s.t. $x \in P$, we say that the line P is *incident* with the point x, or that P contains x, or that P passes through x.

- (P0) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| \le 2$;
- (P1) all distinct $P_1, P_2 \in \mathcal{P}$ satisfy $|P_1 \cap P_2| = 1$;
- (P2) for all distinct $x_1, x_2 \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$.
 - If (X, \mathcal{P}) is a finite projective plane, then members of X are called *points*, and members of \mathcal{P} are called *lines*.
 - For a point $x \in X$ and a line $P \in \mathcal{P}$ s.t. $x \in P$, we say that the line P is *incident* with the point x, or that P contains x, or that P passes through x.
 - For distinct points $a, b \in X$, we denote by \overline{ab} the unique line in \mathcal{P} that contains a and b (the existence and uniqueness of such a line follow from (P2)).

- (P0) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| \le 2$;
- (P1) all distinct $P_1, P_2 \in \mathcal{P}$ satisfy $|P_1 \cap P_2| = 1$;
- (P2) for all distinct $x_1, x_2 \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$.

- A finite projective plane is a set system (X, \mathcal{P}) s.t. X is a finite, and the following three properties are satisfied:
- (P0) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| \le 2$;
- (P1) all distinct $P_1, P_2 \in \mathcal{P}$ satisfy $|P_1 \cap P_2| = 1$;
- (P2) for all distinct $x_1, x_2 \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$.
 - (P2) is the same as for points and lines in the Euclidean plane.

- (P0) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| \le 2$;
- (P1) all distinct $P_1, P_2 \in \mathcal{P}$ satisfy $|P_1 \cap P_2| = 1$;
- (P2) for all distinct $x_1, x_2 \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$.
 - (P2) is the same as for points and lines in the Euclidean plane.
 - But (P1) is different! There are no "parallel lines" in a finite projective plane.

- (P0) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| \le 2$;
- (P1) all distinct $P_1, P_2 \in \mathcal{P}$ satisfy $|P_1 \cap P_2| = 1$;
- (P2) for all distinct $x_1, x_2 \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$.

Example 1.1

Let $X = \{1, 2, 3, 4, 5, 6, 7\}$ and $P = \{a, b, c, d, e, f, g\}$, where

- $a = \{1, 2, 3\},$ $d = \{5, 7, 2\},$ $g = \{2, 4, 6\}.$
- $b = \{3, 4, 5\},$ $e = \{1, 7, 4\},$
- $c = \{5, 6, 1\},$ $f = \{3, 7, 6\},$

Then (X, \mathcal{P}) is a finite projective plane, a called the *Fano plane*.

^aIt is easy to check that (P1) and (P2) are satisfied. For (P0), we can take, for instance, $Q=\{1,3,5,7\}$.

Figure: The Fano plane.

Figure: The Fano plane.

• In the picture above, the seven lines of the Fano plane are represented by six line segments and one circle.

Figure: The Fano plane.

- In the picture above, the seven lines of the Fano plane are represented by six line segments and one circle.
- However, formally, each line of the Fano plane is simply a set of three points.

Figure: The Fano plane.

- In the picture above, the seven lines of the Fano plane are represented by six line segments and one circle.
- However, formally, each line of the Fano plane is simply a set of three points.
- Drawings can sometimes be useful for guiding our intuition. However, formal proofs should never rely on such pictures; instead, they should rely solely on the definition of a finite projective plane or on results (propositions, lemmas, theorems) proven about them.

• The *incidence graph* of a finite projective plane (X, \mathcal{P}) is a bipartite graph with bipartition (X, \mathcal{P}) , in which $x \in X$ and $P \in \mathcal{P}$ are adjacent if and only if $x \in P$.

Figure: The Fano plane.

Figure: The incidence graph of the Fano plane.

Figure: The Fano plane.

 Note that each line of the Fano plane contains the same number of points.

Figure: The Fano plane.

- Note that each line of the Fano plane contains the same number of points.
- This is not an accident!

Figure: The Fano plane.

- Note that each line of the Fano plane contains the same number of points.
- This is not an accident!

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_1, P_2 \in \mathcal{P}$. WTS $|P_1| = |P_2|$.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_1, P_2 \in \mathcal{P}$. WTS $|P_1| = |P_2|$. Claim. There exists a point $z \in X$ s.t. $z \notin P_1 \cup P_2$.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_1, P_2 \in \mathcal{P}$. WTS $|P_1| = |P_2|$. **Claim.** There exists a point $z \in X$ s.t. $z \notin P_1 \cup P_2$.

Proof of the Claim (outline). Using (P0), we fix a 4-element subset $Q \subseteq X$ s.t. for all $P \in \mathcal{P}$, $|Q \cap P| \leq 2$.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_1, P_2 \in \mathcal{P}$. WTS $|P_1| = |P_2|$. **Claim.** There exists a point $z \in X$ s.t. $z \notin P_1 \cup P_2$.

Proof of the Claim (outline). Using (P0), we fix a 4-element subset $Q \subseteq X$ s.t. for all $P \in \mathcal{P}$, $|Q \cap P| \leq 2$. If $Q \not\subseteq P_1 \cup P_2$, then we take any $z \in Q \setminus (P_1 \cup P_2)$, and we are done.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_1, P_2 \in \mathcal{P}$. WTS $|P_1| = |P_2|$. **Claim.** There exists a point $z \in X$ s.t. $z \notin P_1 \cup P_2$.

Proof of the Claim (outline). Using (P0), we fix a 4-element subset $Q\subseteq X$ s.t. for all $P\in \mathcal{P}, |Q\cap P|\leq 2$. If $Q\not\subseteq P_1\cup P_2$, then we take any $z\in Q\setminus (P_1\cup P_2)$, and we are done. So assume that $Q\subseteq P_1\cup P_2$.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_1, P_2 \in \mathcal{P}$. WTS $|P_1| = |P_2|$. **Claim.** There exists a point $z \in X$ s.t. $z \notin P_1 \cup P_2$.

Proof of the Claim (outline). Using (P0), we fix a 4-element subset $Q\subseteq X$ s.t. for all $P\in \mathcal{P},\ |Q\cap P|\leq 2$. If $Q\not\subseteq P_1\cup P_2$, then we take any $z\in Q\setminus (P_1\cup P_2)$, and we are done. So assume that $Q\subseteq P_1\cup P_2$. Since |Q|=4 and $|Q\cap P_1|, |Q\cap P_2|\leq 2$, we now deduce that $Q\cap P_1$ and $Q\cap P_2$ are disjoint and each contain exactly two points.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_1, P_2 \in \mathcal{P}$. WTS $|P_1| = |P_2|$. **Claim.** There exists a point $z \in X$ s.t. $z \notin P_1 \cup P_2$.

Proof of the Claim (outline). Using (P0), we fix a 4-element subset $Q\subseteq X$ s.t. for all $P\in\mathcal{P},\ |Q\cap P|\leq 2$. If $Q\not\subseteq P_1\cup P_2$, then we take any $z\in Q\setminus (P_1\cup P_2)$, and we are done. So assume that $Q\subseteq P_1\cup P_2$. Since |Q|=4 and $|Q\cap P_1|, |Q\cap P_2|\leq 2$, we now deduce that $Q\cap P_1$ and $Q\cap P_2$ are disjoint and each contain exactly two points. Set $Q\cap P_1=\{a,b\}$ and $Q\cap P_2=\{c,d\}$.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_1, P_2 \in \mathcal{P}$. WTS $|P_1| = |P_2|$.

Claim. There exists a point $z \in X$ s.t. $z \notin P_1 \cup P_2$.

Proof of the Claim (outline, continued).

This proves the Claim.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_1, P_2 \in \mathcal{P}$. WTS $|P_1| = |P_2|$. **Claim.** There exists a point $z \in X$ s.t. $z \notin P_1 \cup P_2$.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_1, P_2 \in \mathcal{P}$. WTS $|P_1| = |P_2|$.

Claim. There exists a point $z \in X$ s.t. $z \notin P_1 \cup P_2$.

We define $\varphi: P_1 \to P_2$ as follows: for all $x \in P_1$, let $\varphi(x)$ be the unique point in the intersection of the lines \overline{xz} and P_2 .

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_1, P_2 \in \mathcal{P}$. WTS $|P_1| = |P_2|$.

Claim. There exists a point $z \in X$ s.t. $z \notin P_1 \cup P_2$.

We define $\varphi: P_1 \to P_2$ as follows: for all $x \in P_1$, let $\varphi(x)$ be the unique point in the intersection of the lines \overline{xz} and P_2 .

It is not hard to check (detail: Lecture Notes) that φ is well-defined and surjective (i.e. onto).

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix $P_1, P_2 \in \mathcal{P}$. WTS $|P_1| = |P_2|$.

Claim. There exists a point $z \in X$ s.t. $z \notin P_1 \cup P_2$.

We define $\varphi: P_1 \to P_2$ as follows: for all $x \in P_1$, let $\varphi(x)$ be the unique point in the intersection of the lines \overline{xz} and P_2 .

It is not hard to check (detail: Lecture Notes) that φ is well-defined and surjective (i.e. onto). So, $|P_1| \ge |P_2|$.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proof (outline). Fix
$$P_1, P_2 \in \mathcal{P}$$
. WTS $|P_1| = |P_2|$.

Claim. There exists a point $z \in X$ s.t. $z \notin P_1 \cup P_2$.

We define $\varphi: P_1 \to P_2$ as follows: for all $x \in P_1$, let $\varphi(x)$ be the unique point in the intersection of the lines \overline{xz} and P_2 .

It is not hard to check (detail: Lecture Notes) that φ is well-defined and surjective (i.e. onto). So, $|P_1| \geq |P_2|$. By symmetry, $|P_2| \geq |P_1|$. So, $|P_1| = |P_2|$. Q.E.D.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Definition

The *order* of a finite projective plane (X, \mathcal{P}) is the number |P|-1, where P is any line in \mathcal{P} .

^aSo, if (X, \mathcal{P}) is a finite projective plane of order n, then each line in \mathcal{P} contains exactly n+1 points.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Definition

The *order* of a finite projective plane (X, \mathcal{P}) is the number |P|-1, where P is any line in \mathcal{P} .^a

 a So, if (X, \mathcal{P}) is a finite projective plane of order n, then each line in \mathcal{P} contains exactly n+1 points.

• By Proposition 1.2, this is well-defined.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Definition

The *order* of a finite projective plane (X, \mathcal{P}) is the number |P|-1, where P is any line in \mathcal{P} .

^aSo, if (X, \mathcal{P}) is a finite projective plane of order n, then each line in \mathcal{P} contains exactly n+1 points.

- By Proposition 1.2, this is well-defined.
- The Fano plane has order two.

The order of any finite projective plane is at least two.

Proof (outline).

The order of any finite projective plane is at least two.

Proof (outline). Let (X, \mathcal{P}) be a finite projective plane. We just need to show that some line in (X, \mathcal{P}) has at least three points.

The order of any finite projective plane is at least two.

Proof (outline). Let (X, \mathcal{P}) be a finite projective plane. We just need to show that some line in (X, \mathcal{P}) has at least three points.

Let $Q = \{a, b, c, d\}$ satisfy (P0). Then the line \overline{ab} has at least three points (namely, a, b, and its point of intersection with \overline{cd}).

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- \bullet for each point $x \in X$, exactly n+1 lines in $\mathcal P$ pass through x;
 - $|X| = n^2 + n + 1;$
 - $|\mathcal{X}| = n + n + 1,$ $|\mathcal{P}| = n^2 + n + 1.$

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- $|X| = n^2 + n + 1;$
- $|\mathcal{P}| = n^2 + n + 1.$

• We give an outline of the proofs of (a) and (b).

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- $|X| = n^2 + n + 1;$
- $|\mathcal{P}| = n^2 + n + 1.$
 - We give an outline of the proofs of (a) and (b).
 - We prove (c) after introducing "duality" (we use (a) and (b)).

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- lacktriangledown for each point $x \in X$, exactly n+1 lines in $\mathcal P$ pass through x;
- $|X| = n^2 + n + 1;$
- $|\mathcal{P}| = n^2 + n + 1.$

Proof (outline).

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- ① for each point $x \in X$, exactly n+1 lines in \mathcal{P} pass through x;
- $|X| = n^2 + n + 1;$
- $|\mathcal{P}| = n^2 + n + 1.$

Proof (outline).

Claim. For every point $x \in X$, there exists a line $P \in \mathcal{P}$ s.t. $x \notin P$.

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- ① for each point $x \in X$, exactly n+1 lines in \mathcal{P} pass through x;
- $|X| = n^2 + n + 1;$
- $|\mathcal{P}| = n^2 + n + 1.$

Proof (outline).

Claim. For every point $x \in X$, there exists a line $P \in \mathcal{P}$ s.t. $x \notin P$.

Proof of the Claim (outline). Fix a point $x \in X$. Using (P0) from the definition of a finite projective plane, we fix a 4-element subset $Q \subseteq X$ s.t. for all $P \in \mathcal{P}$, $|Q \cap P| \le 2$.

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- of for each point $x \in X$, exactly n+1 lines in \mathcal{P} pass through x;
- $|X| = n^2 + n + 1;$
- $|\mathcal{P}| = n^2 + n + 1.$

Proof (outline).

Claim. For every point $x \in X$, there exists a line $P \in \mathcal{P}$ s.t. $x \notin P$.

Proof of the Claim (outline). Fix a point $x \in X$. Using (P0) from the definition of a finite projective plane, we fix a 4-element subset $Q \subseteq X$ s.t. for all $P \in \mathcal{P}$, $|Q \cap P| \le 2$. Then $|Q \setminus \{x\}| \ge 3$; let $a,b,c \in Q \setminus \{x\}$ be pairwise distinct.

Claim. For every point $x \in X$, there exists a line $P \in \mathcal{P}$ s.t. $x \notin P$.

Proof of the Claim (outline, continued).

Then x belongs to at most one of \overline{ab} and \overline{ac} . This proves the Claim.

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- \bullet for each point $x \in X$, exactly n+1 lines in \mathcal{P} pass through x;
- $|X| = n^2 + n + 1;$
- $|\mathcal{P}| = n^2 + n + 1.$

Proof of (a) (outline). Fix a point $x \in X$. By the Claim, there exists a line $P \in \mathcal{P}$ s.t. $x \notin P$. Since (X, \mathcal{P}) is of order n, we know that |P| = n + 1; set $P = \{x_0, x_1, \dots, x_n\}$.

At least n+1 lines (namely,

 $\overline{xx_0}, \dots, \overline{xx_n}$) pass through x. Every line through x intersects

P, so $\overline{xx_0}, \ldots, \overline{xx_n}$ are the

only lines through x.

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- $|X| = n^2 + n + 1;$
- $|\mathcal{P}| = n^2 + n + 1.$

Proof of (b) (outline).

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- 0 for each point $x \in X$, exactly n+1 lines in \mathcal{P} pass through x;
- $|X| = n^2 + n + 1;$
- $|\mathcal{P}| = n^2 + n + 1.$

Proof of (b) (outline). Fix any line $P \in \mathcal{P}$. Since (X,\mathcal{P}) is of order n, we know that |P| = n+1; set $P = \{x_0, x_1, \ldots, x_n\}$. Since every line in \mathcal{P} has n+1 points, the Claim guarantees that $|X| \ge n+2$; consequently, $P \subsetneq X$. Fix any $a \in X \setminus P$.

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- lacktriangledown for each point $x \in X$, exactly n+1 lines in $\mathcal P$ pass through x;
- $|X| = n^2 + n + 1;$
- $|\mathcal{P}| = n^2 + n + 1.$

Proof of (b) (outline, continued).

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- **6** for each point $x \in X$, exactly n+1 lines in \mathcal{P} pass through x;
- $|X| = n^2 + n + 1;$
- $|\mathcal{P}| = n^2 + n + 1.$

Proof of (b) (outline, continued).

By (P1) and (P2), $P_i \cap P_j = \{a\}$ for all distinct $i, j \in \{0, 1, ..., n\}$; consequently, $P_0 \setminus \{a\}, P_1 \setminus \{a\}, ..., P_n \setminus \{a\}$ are pairwise disjoint.

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- $|X| = n^2 + n + 1;$
- $|\mathcal{P}| = n^2 + n + 1.$

Proof of (b) (outline, continued). Consequently,

$$|P_0 \cup P_1 \cup \dots \cup P_n|$$
= $|\{a\}| + |P_0 \setminus \{a\}| + |P_1 \setminus \{a\}| + \dots + |P_n \setminus \{a\}|$
= $1 + (n+1)n$
= $n^2 + n + 1$.

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- ① for each point $x \in X$, exactly n+1 lines in \mathcal{P} pass through x;
- $|X| = n^2 + n + 1$;
- $|\mathcal{P}| = n^2 + n + 1.$

Proof of (b) (outline, continued). Consequently,

$$|P_0 \cup P_1 \cup \dots \cup P_n|$$
= $|\{a\}| + |P_0 \setminus \{a\}| + |P_1 \setminus \{a\}| + \dots + |P_n \setminus \{a\}|$
= $1 + (n+1)n$
= $n^2 + n + 1$.

It now remains to show that $X = P_0 \cup P_1 \cup \cdots \cup P_n$;

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- o for each point $x \in X$, exactly n+1 lines in \mathcal{P} pass through x;
- $|X| = n^2 + n + 1$;
- $|\mathcal{P}| = n^2 + n + 1.$

Proof of (b) (outline, continued). Consequently,

$$|P_0 \cup P_1 \cup \dots \cup P_n|$$
= $|\{a\}| + |P_0 \setminus \{a\}| + |P_1 \setminus \{a\}| + \dots + |P_n \setminus \{a\}|$
= $1 + (n+1)n$
= $n^2 + n + 1$.

It now remains to show that $X = P_0 \cup P_1 \cup \cdots \cup P_n$; in fact, we only need to show that $X \subseteq P_0 \cup P_1 \cup \cdots \cup P_n$, for the reverse inclusion is immediate.

Fix a point $x \in X$; WTS x belongs to at least one of P_0, P_1, \ldots, P_n .

Fix a point $x \in X$; WTS x belongs to at least one of P_0, P_1, \ldots, P_n . WMA $x \neq a$, for otherwise we are done.

Fix a point $x \in X$; WTS x belongs to at least one of P_0, P_1, \ldots, P_n . WMA $x \neq a$, for otherwise we are done. The line $R := \overline{xa}$ is distinct from P (because $a \in R$, but $a \notin P$), and so by (P1), $|P \cap R| = 1$.

Fix a point $x \in X$; WTS x belongs to at least one of P_0, P_1, \ldots, P_n . WMA $x \neq a$, for otherwise we are done. The line $R := \overline{xa}$ is distinct from P (because $a \in R$, but $a \notin P$), and so by (P1), $|P \cap R| = 1$. Since $P = \{x_0, x_1, \ldots, x_n\}$, it follows that there exists some $i \in \{0, 1, \ldots, n\}$ such that $P \cap R = \{x_i\}$.

Fix a point $x \in X$; WTS x belongs to at least one of P_0, P_1, \ldots, P_n . WMA $x \neq a$, for otherwise we are done. The line $R := \overline{xa}$ is distinct from P (because $a \in R$, but $a \notin P$), and so by (P1), $|P \cap R| = 1$. Since $P = \{x_0, x_1, \ldots, x_n\}$, it follows that there exists some $i \in \{0, 1, \ldots, n\}$ such that $P \cap R = \{x_i\}$. Now lines P_i and R have at least two points (namely, a and x_i) in common, and so by (P2), we have that $R = P_i$.

Fix a point $x \in X$; WTS x belongs to at least one of P_0, P_1, \ldots, P_n . WMA $x \neq a$, for otherwise we are done. The line $R := \overline{xa}$ is distinct from P (because $a \in R$, but $a \notin P$), and so by (P1), $|P \cap R| = 1$. Since $P = \{x_0, x_1, \ldots, x_n\}$, it follows that there exists some $i \in \{0, 1, \ldots, n\}$ such that $P \cap R = \{x_i\}$. Now lines P_i and R have at least two points (namely, a and x_i) in common, and so by (P2), we have that $R = P_i$. Since $x \in R$, we deduce that $x \in P_i$. Q.E.D.

• We next introduce "duality."

- We next introduce "duality."
- Essentially, the "dual" of a finite projective plane is another finite projective plane, but with the roles of points and lines reveresed.

- We next introduce "duality."
- Essentially, the "dual" of a finite projective plane is another finite projective plane, but with the roles of points and lines reveresed.

Definition

For a set system (X, S), we define the *dual* of (X, S) to be the ordered pair (Y, T), where Y = S and

$$\mathcal{T} = \Big\{ \{ S \in \mathcal{S} \mid x \in S \} \mid x \in X \Big\}.$$

- We next introduce "duality."
- Essentially, the "dual" of a finite projective plane is another finite projective plane, but with the roles of points and lines reveresed.

Definition

For a set system (X, S), we define the *dual* of (X, S) to be the ordered pair (Y, T), where Y = S and

$$\mathcal{T} = \left\{ \{ S \in \mathcal{S} \mid x \in S \} \mid x \in X \right\}.$$

Example 2.1

Let $X=\{1,2,3\}$ and $\mathcal{S}=\{A,B\}$, where $A=\{1,2\}$ and $B=\{1,3\}$. Then the dual of (X,\mathcal{S}) is (Y,\mathcal{T}) , where $Y=\{A,B\}$ and $\mathcal{T}=\Big\{\{A,B\},\{A\},\{B\}\Big\}.^a$

^aIndeed
$$\{S \in S \mid 1 \in S\} = \{A, B\}, \{S \in S \mid 2 \in S\} = \{A\}, \text{ and } \{S \in S \mid 3 \in S\} = \{B\}.$$

The dual of a finite projective plane is again a finite projective plane.

Proof (outline).

The dual of a finite projective plane is again a finite projective plane.

Proof (outline). Let (X, \mathcal{P}) be a finite projective plane.

The dual of a finite projective plane is again a finite projective plane.

Proof (outline). Let (X, \mathcal{P}) be a finite projective plane. For each $x \in X$, let $R_x = \{P \in \mathcal{P} \mid x \in P\}$.

The dual of a finite projective plane is again a finite projective plane.

Proof (outline). Let (X, \mathcal{P}) be a finite projective plane. For each $x \in X$, let $R_x = \{P \in \mathcal{P} \mid x \in P\}$. Set $Y = \mathcal{P}$ and $\mathcal{R} = \{R_x \mid x \in X\}$; then by definition, (Y, \mathcal{R}) is the dual of (X, \mathcal{P}) .

The dual of a finite projective plane is again a finite projective plane.

Proof (outline). Let (X, \mathcal{P}) be a finite projective plane. For each $x \in X$, let $R_x = \{P \in \mathcal{P} \mid x \in P\}$. Set $Y = \mathcal{P}$ and $\mathcal{R} = \{R_x \mid x \in X\}$; then by definition, (Y, \mathcal{R}) is the dual of (X, \mathcal{P}) . WTS (Y, \mathcal{R}) satisfies (P0), (P1), and (P3).

The dual of a finite projective plane is again a finite projective plane.

Proof (outline). Let (X, \mathcal{P}) be a finite projective plane. For each $x \in X$, let $R_x = \{P \in \mathcal{P} \mid x \in P\}$. Set $Y = \mathcal{P}$ and $\mathcal{R} = \{R_x \mid x \in X\}$; then by definition, (Y, \mathcal{R}) is the dual of (X, \mathcal{P}) . WTS (Y, \mathcal{R}) satisfies (P0), (P1), and (P3).

Proof of (P0) for (Y, \mathcal{R}) (outline): Let $Q = \{a, b, c, d\}$ be as in (P0) for (X, \mathcal{P}) .

Then $Q^* = \{P_1, P_2, P_3, P_4\}$ satisfies (P0) for the dual (Y, \mathcal{R}) .

The dual of a finite projective plane is again a finite projective plane.

Proof (outline, continued). Let (X, \mathcal{P}) be a finite projective plane. For each $x \in X$, let $R_x = \{P \in \mathcal{P} \mid x \in P\}$. Set $Y = \mathcal{P}$ and $\mathcal{R} = \{R_x \mid x \in X\}$; then by definition, (Y, \mathcal{R}) is the dual of (X, \mathcal{P}) . WTS (Y, \mathcal{R}) satisfies (P0), (P1), and (P3).

The dual of a finite projective plane is again a finite projective plane.

Proof (outline, continued). Let (X, \mathcal{P}) be a finite projective plane. For each $x \in X$, let $R_x = \{P \in \mathcal{P} \mid x \in P\}$. Set $Y = \mathcal{P}$ and $\mathcal{R} = \{R_x \mid x \in X\}$; then by definition, (Y, \mathcal{R}) is the dual of (X, \mathcal{P}) . WTS (Y, \mathcal{R}) satisfies (P0), (P1), and (P3).

Proof of (P1) for (Y, \mathcal{R}) (outline): For distinct $x_1, x_2 \in X$, (P2) for (X, \mathcal{P}) guarantees that there is a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$;

The dual of a finite projective plane is again a finite projective plane.

Proof (outline, continued). Let (X, \mathcal{P}) be a finite projective plane. For each $x \in X$, let $R_x = \{P \in \mathcal{P} \mid x \in P\}$. Set $Y = \mathcal{P}$ and $\mathcal{R} = \{R_x \mid x \in X\}$; then by definition, (Y, \mathcal{R}) is the dual of (X, \mathcal{P}) . WTS (Y, \mathcal{R}) satisfies (P0), (P1), and (P3).

Proof of (P1) for (Y, \mathcal{R}) (outline): For distinct $x_1, x_2 \in X$, (P2) for (X, \mathcal{P}) guarantees that there is a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$; so, $R_{x_1} \cap R_{x_2} = \{P\}$, i.e. $|R_{x_1} \cap R_{x_2}| = 1$.

The dual of a finite projective plane is again a finite projective plane.

Proof (outline, continued). Let (X, \mathcal{P}) be a finite projective plane. For each $x \in X$, let $R_x = \{P \in \mathcal{P} \mid x \in P\}$. Set $Y = \mathcal{P}$ and $\mathcal{R} = \{R_x \mid x \in X\}$; then by definition, (Y, \mathcal{R}) is the dual of (X, \mathcal{P}) . WTS (Y, \mathcal{R}) satisfies (P0), (P1), and (P3).

Proof of (P1) for (Y, \mathcal{R}) (outline): For distinct $x_1, x_2 \in X$, (P2) for (X, \mathcal{P}) guarantees that there is a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$; so, $R_{x_1} \cap R_{x_2} = \{P\}$, i.e. $|R_{x_1} \cap R_{x_2}| = 1$.

Proof of (P2) for (Y, \mathcal{R}) (outline): For all distinct $P_1, P_2 \in Y = \mathcal{P}$, (P1) for (X, \mathcal{P}) guarantees that $|P_1 \cap P_2| = 1$, say $P_1 \cap P_2 = \{x\}$;

The dual of a finite projective plane is again a finite projective plane.

Proof (outline, continued). Let (X, \mathcal{P}) be a finite projective plane. For each $x \in X$, let $R_x = \{P \in \mathcal{P} \mid x \in P\}$. Set $Y = \mathcal{P}$ and $\mathcal{R} = \{R_x \mid x \in X\}$; then by definition, (Y, \mathcal{R}) is the dual of (X, \mathcal{P}) . WTS (Y, \mathcal{R}) satisfies (P0), (P1), and (P3).

Proof of (P1) for (Y, \mathcal{R}) (outline): For distinct $x_1, x_2 \in X$, (P2) for (X, \mathcal{P}) guarantees that there is a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$; so, $R_{x_1} \cap R_{x_2} = \{P\}$, i.e. $|R_{x_1} \cap R_{x_2}| = 1$.

Proof of (P2) for (Y, \mathcal{R}) (outline): For all distinct $P_1, P_2 \in Y = \mathcal{P}$, (P1) for (X, \mathcal{P}) guarantees that $|P_1 \cap P_2| = 1$, say $P_1 \cap P_2 = \{x\}$; then R_x is the unique line of (Y, \mathcal{R}) containing both P_1 and P_2 .

The dual of a finite projective plane is again a finite projective plane.

The dual of a finite projective plane is again a finite projective plane.

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- \bullet for each point $x \in X$, exactly n+1 lines in \mathcal{P} pass through x;
- $|X| = n^2 + n + 1;$
- $|\mathcal{P}| = n^2 + n + 1.$

Proof of (c).

The dual of a finite projective plane is again a finite projective plane.

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- \bullet for each point $x \in X$, exactly n+1 lines in \mathcal{P} pass through x;
- $|X| = n^2 + n + 1;$
- $|\mathcal{P}| = n^2 + n + 1.$

Proof of (c). By Theorem 2.2, the dual (Y, \mathcal{R}) of (X, \mathcal{P}) is a finite projective plane.

The dual of a finite projective plane is again a finite projective plane.

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- \bullet for each point $x \in X$, exactly n+1 lines in \mathcal{P} pass through x;
- $|X| = n^2 + n + 1;$
- $|\mathcal{P}| = n^2 + n + 1.$

Proof of (c). By Theorem 2.2, the dual (Y, \mathcal{R}) of (X, \mathcal{P}) is a finite projective plane. We have $Y = \mathcal{P}$ and $\mathcal{R} = \{R_x \mid x \in X\}$, where $R_x = \{P \in \mathcal{P} \mid x \in P\}$ for all $x \in X$.

The dual of a finite projective plane is again a finite projective plane.

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- \bigcirc for each point $x \in X$, exactly n+1 lines in \mathcal{P} pass through x;
- $|X| = n^2 + n + 1;$
- $|\mathcal{P}| = n^2 + n + 1.$

Proof of (c). By Theorem 2.2, the dual (Y,\mathcal{R}) of (X,\mathcal{P}) is a finite projective plane. We have $Y=\mathcal{P}$ and $\mathcal{R}=\{R_x\mid x\in X\}$, where $R_x=\{P\in\mathcal{P}\mid x\in P\}$ for all $x\in X$. By (a), each R_x contains exactly n+1 members of \mathcal{P} .

The dual of a finite projective plane is again a finite projective plane.

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- \bigcirc for each point $x \in X$, exactly n+1 lines in \mathcal{P} pass through x;
- $|X| = n^2 + n + 1;$
- $|\mathcal{P}| = n^2 + n + 1.$

Proof of (c). By Theorem 2.2, the dual (Y,\mathcal{R}) of (X,\mathcal{P}) is a finite projective plane. We have $Y=\mathcal{P}$ and $\mathcal{R}=\{R_x\mid x\in X\}$, where $R_x=\{P\in\mathcal{P}\mid x\in P\}$ for all $x\in X$. By (a), each R_x contains exactly n+1 members of \mathcal{P} . So, the order of (Y,\mathcal{R}) is n.

The dual of a finite projective plane is again a finite projective plane.

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- \bigcirc for each point $x \in X$, exactly n+1 lines in \mathcal{P} pass through x;
- $|X| = n^2 + n + 1$;
- $|\mathcal{P}| = n^2 + n + 1.$

Proof of (c). By Theorem 2.2, the dual (Y,\mathcal{R}) of (X,\mathcal{P}) is a finite projective plane. We have $Y=\mathcal{P}$ and $\mathcal{R}=\{R_x\mid x\in X\}$, where $R_x=\{P\in\mathcal{P}\mid x\in P\}$ for all $x\in X$. By (a), each R_x contains exactly n+1 members of \mathcal{P} . So, the order of (Y,\mathcal{R}) is n. By (b), $|Y|=n^2+n+1$.

The dual of a finite projective plane is again a finite projective plane.

Theorem 1.4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- \bullet for each point $x \in X$, exactly n+1 lines in \mathcal{P} pass through x;
- $|X| = n^2 + n + 1;$
- $|\mathcal{P}| = n^2 + n + 1.$

Proof of (c). By Theorem 2.2, the dual (Y,\mathcal{R}) of (X,\mathcal{P}) is a finite projective plane. We have $Y=\mathcal{P}$ and $\mathcal{R}=\{R_x\mid x\in X\}$, where $R_x=\{P\in\mathcal{P}\mid x\in P\}$ for all $x\in X$. By (a), each R_x contains exactly n+1 members of \mathcal{P} . So, the order of (Y,\mathcal{R}) is n. By (b), $|Y|=n^2+n+1$. So, $|\mathcal{P}|=n^2+n+1$. This proves (c).