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This lecture consists of three parts:

1 Basic operations with generating functions;
2 Application #1: counting binary trees;
3 Application #2: random walks.
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Part I: Basic operations with generating functions

Definition
Suppose {an}∞

n=0 is some infinite sequence of real (or complex)
numbers. The generating function of this sequence is the power
series ∞∑

n=0
anxn.

Let {an}∞
n=0 and {bn}∞

n=0 be sequences with corresponding
generating functions a(x) =

∞∑
n=0

anxn and b(x) =
∞∑

n=0
bnxn,

and let α be a constant.

(1) The generating function of the sequence {an + bn}∞
n=0 is

a(x) + b(x).
(2) The generating function of the sequence {an − bn}∞

n=0 is
a(x) − b(x).

(3) The generating function of the sequence {αan}∞
n=0 is αa(x).
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generating functions a(x) =
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n=0
bnxn,

and let α be a constant.

(4) For an integer k ≥ 1, the generating function of the sequence
0, . . . , 0︸ ︷︷ ︸

k

, a0, a1, a2, . . . is xka(x).

(5) For an integer k ≥ 1, the generating function of the sequence
{an+k}∞

n=0, i.e. the sequence ak , ak+1, ak+2, . . . , is
1

xk

(
a(x) −

k−1∑
i=0

aix i
)

.

For example, the generating function of the sequence
a3, a4, a5, . . . is 1

x3

(
a(x) − (a0 + a1x + a2x2)

)
.

(6) The generating function of the sequence {αnan}∞
n=0 is

c(x) = a(αx).

For instance, since
∞∑

n=0
xn = 1

1−x is the generating function of

1, 1, 1, 1, 1, . . . , we see that 1
1−2x (=

∞∑
n=0

2nxn) is the

generating function of 1, 2, 4, 8, 16, . . . .
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So, c0 = a0b0, c1 = a0b1 + a1b0, c2 = a0b2 + a1b1 + a2b0, etc.
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Reminder: For a sequence {an}∞
n=0 with generating function

a(x) =
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n=0
anxn and a constant α:

(6) The generating function of the sequence {αnan}∞
n=0 is

c(x) = a(αx).

Example 1.1
Let {an}∞

n=0 be a sequence, and let a(x) be its generating function.
Find the generating function of the sequence a0, 0, a2, 0, a4, . . . in
terms of the function a(x).

Solution. a0, 0, a2, 0, a4, . . . is the sum of {an
2 }∞

n=0 and
{ (−1)nan

2 }∞
n=0. The generating function of {an

2 }∞
n=0 is 1

2a(x), and
the generating function of { (−1)nan

2 }∞
n=0 is 1

2a(−x). So, the
generating function of a0, 0, a2, 0, a4, . . . is a(x)+a(−x)

2 .
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Example 1.2
Find (the closed form of) the generating function of the sequence
1, 1, 2, 2, 4, 4, 8, 8, 16, 16, . . . , i.e. the sequence {2⌊n/2⌋}∞

n=0.

Solution.

Recall that the generating function of the sequence
1, 2, 4, 8, 16, . . . is 1

1−2x . The generating function of
1, 0, 2, 0, 4, 0, 8, 0, . . . is 1

1−2x2 , and the generating function of
0, 1, 0, 2, 0, 4, 0, 8, 0, . . . is x

1−2x2 . So, the generating function of
1, 1, 2, 2, 4, 4, 8, 8, 16, 16, . . . is the sum of these two functions, i.e.

1+x
1−2x2 .
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Example 1.3
Find (the closed form of) the generating function of the sequence
12, 22, 32, 42, . . . , i.e. the sequence {(n + 1)2}∞

n=0.

Solution.

The generating function of the sequence 1, 1, 1, 1, . . . is
1

1−x . By differentiating, we see that d
dx ( 1

1−x ) = 1
(1−x)2 is the

generating function of the sequence 1, 2, 3, 4, . . . , i.e. the sequence
{n + 1}∞

n=0. By differentiating again, we see that
d
dx ( 1

(1−x)2 ) = 2
(1−x)3 is the generating sequence of the sequence

1 · 2, 2 · 3, 3 · 4, 4 · 5, . . . , i.e. the sequence {(n + 1)(n + 2)}∞
n=0.

Now, (n + 1)2 = (n + 1)(n + 2) − (n + 1) for all integers n ≥ 0,
and we have computed the generating functions for the sequences
{(n + 1)(n + 2)}∞

n=0 and {n + 1}∞
n=0. So, the generating function

of {(n + 1)}∞
n=0 is

a(x) = 2
(1 − x)3 − 1

(1 − x)2 .
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Part II: Application #1: counting binary trees

We define binary trees recursively as follows: a binary tree is
either empty (i.e. contains no nodes), or consists of
designated node r (called the root), plus an ordered pair
(TL, TR) of binary trees, where TL and TR (called the left
subtree and the right subtree) have disjoint sets of nodes and
do not contain the node r .

r

rL

rLL rLR

rR

rRR

TL TR

TLL TLR TRR
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Remark: The empty binary tree has zero nodes, and if a
binary tree T consists of a root r and an ordered pair
(TL, TR) of binary trees, then the number of nodes of T is
1 + nL + nR , where nL is the number of nodes of TL, and nR
is the number of nodes of TR .

Goal: Count the number of binary trees on n nodes (n ≥ 0).
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For each integer n ≥ 0, let bn be the number of binary trees
on n nodes, and let b(x) =

∞∑
n=0

bnxn be the generating

function of the sequence {bn}∞
n=0.

It is easy to check that b0 = 1, b1 = 1, b2 = 2, and b3 = 5.
Here are all the binary trees on three nodes:
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Reminder: bn be the number of binary trees on n nodes
(n ≥ 0), and b(x) =

∞∑
n=0

bnxn.

Let’s find a recursive formula for bn (n ≥ 1).
The number of binary trees on n ≥ 1 nodes is equal to the
number of ordered pairs (TL, TR) of binary trees s.t. TL, TR
together have n − 1 nodes.
Thus, for all integers n ≥ 1, we have that

bn = b0bn−1 + b1bn−2 + · · · + bn−1b0 =
n−1∑
k=0

bkbn−k−1.

Since b0 = 1, this implies that b(x) = 1 + xb(x)2.
By the quadratic equation (with b(x) treated as a variable
and x as a constant), either

b(x) = 1−
√

1−4x
2x or b(x) = 1+

√
1−4x

2x .

Which formula is the correct one??
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Reminder: bn be the number of binary trees on n nodes
(n ≥ 0), and b(x) =

∞∑
n=0

bnxn is its generating sequence.

Reminder: Either

b(x) = 1−
√

1−4x
2x or b(x) = 1+

√
1−4x

2x .

Since b0 = 1, we have that lim
x→0+

b(x) = 1.

We can compute (check this!):

lim
x→0+

1−
√

1−4x
2x = 1;

lim
x→0+

1+
√

1−4x
2x = ∞.

So,

b(x) = 1 −
√

1 − 4x
2x .
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Reminder: b(x) = 1−
√

1−4x
2x .

By the Generalized Binomial Theorem:

√
1 − 4x =

∞∑
n=0

(1/2
n

)
(−4x)n

= 1 + x
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n=0
(−4)n+1( 1/2

n+1
)
xn by algebra

So,
b(x) = 1−

√
1−4x

2x

=
1−

(
1+x
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n=0

(−4)n+1(1/2
n+1)xn

)
2x

=
∞∑

n=0
(−1

2)(−4)n+1( 1/2
n+1

)
xn.
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Reminder: bn be the number of binary trees on n nodes
(n ≥ 0), and b(x) =

∞∑
n=0

bnxn is its generating sequence.

Reminder: b(x) =
∞∑

n=0
(−1

2)(−4)n+1( 1/2
n+1

)
xn.

So, for all non-negative integers n, we have that

bn = (−1
2)(−4)n+1( 1/2

n+1
)
.

After a bit of algebra (see the Lecture Notes), we can get a
nicer formula:

bn = 1
n+1

(2n
n

)
for all integers n ≥ 0.
Numbers 1

n+1
(2n

n
)

are called the Catalan numbers.
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Part III: Application #2: random walks

We consider the following infinite random walk on the integer
line Z: we begin our walk at 1, and at each step, we move at
random either two units to the right (+2) or one unit to the
left (−1).

0 1 2 3−1−2−3 4−4 5 6 7 8

start here

We would like to determine the probability that we reach the
origin at some point in our walk.
For each integer n ≥ 0, let Pn be the probability that we reach
the origin after at most n steps.
Obviously, {Pn}∞

n=0 is a non-decreasing sequence, and it is
bounded above by 1. So, by the Monotone Sequence
Theorem, it converges.
Let P = lim

n→∞
Pn.

Then P is the probability that we need to compute.
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Then P is the probability that we need to compute.



Part III: Application #2: random walks
We consider the following infinite random walk on the integer
line Z: we begin our walk at 1, and at each step, we move at
random either two units to the right (+2) or one unit to the
left (−1).
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For each integer n ≥ 0, let an be the number of n-step walks
in which we reach the origin for the first time after precisely n
steps.
The total number of n-step walks is 2n.

So, Pn =
n∑

i=0
ai
2i = a0 + a1

2 + a2
4 + · · · + an

2n .

Therefore, P =
∞∑

n=0
an
2n .

Let a(x) =
∞∑

n=0
anxn be the generating function for {an}∞

n=0.

Then P = a
(

1
2

)
.
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For our solution, it will be useful to consider random walks
that start at points other than 1, but still proceed according
to the same rules:

at each step, we move at random either two units to the right
(+2) or one unit to the left (−1).
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For an integer n ≥ 0, let bn be the number of n-step random
walks (following our rules) starting at 2 and ending at the
origin, without reaching the origin at any point during the
walk (except at the very end).

In such a walk, we cannot reach the origin without first
reaching 1, and then reaching the origin from there.
There must be some k ∈ {1, . . . , n − 1} s.t.:

we reach 1 for the first time after precisely k steps (there are
ak ways to do that),
and then starting at 1, we reach the origin for the first time
after n − k steps (there are an−k ways to do that).

So, bn =
n−1∑
k=1

akan−k
a0=0=

n∑
k=0

akan−k .
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Reminder: For an integer n ≥ 0, bn is the number of n-step
random walks (following our rules) starting at 2 and ending at
the origin, without reaching the origin at any point during the
walk (except at the very end).

Reminder: bn =
n−1∑
k=1

akan−k
a0=0=

n∑
k=0

akan−k for all integers
n ≥ 0.

So, if b(x) =
∞∑

n=0
bnxn is the generating function for the

sequence {bn}∞
n=0, then we get that

b(x) = a(x)2.
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For an integer n ≥ 0, let cn be the number of n-step random
walks (following our rules) starting at 3 and ending at the
origin, without reaching the origin at any point during the
walk (except at the very end).

Let c(x) =
∞∑

n=0
cnxn be the generating function for the

sequence {cn}∞
n=0.

Similarly to the above: c(x) = a(x)b(x).

Details: Lecture Notes.

Since b(x) = a(x)2, we get

c(x) = a(x)3.
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Reminder: For an integer n ≥ 0:
an is the number of ways to reach the origin for the first time
after precisely n steps, starting from 1.
cn is the number of ways to reach the origin for the first time
after precisely n steps, starting from 3.

Obviously, a0 = 0 and a1 = 1.
If we start at 1, then for an integer n ≥ 2, there are precisely
cn−1 ways to reach the origin for the first time after precisely
n steps: we must first move two units to the right, and then
reach the origin from 3 for the first time after precisely n − 1
steps.

Thus, an = cn−1 for all integers n ≥ 2.
We now compute...
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a(x) = a0 + a1x +
∞∑

n=2
anxn

= x + x
∞∑

n=2
anxn−1 because a0 = 0 and a1 = 1

= x + x
∞∑

n=2
cn−1xn−1 because an = cn−1 for n ≥ 2

= x + x
∞∑

n=1
cnxn

= x + x
∞∑

n=0
cnxn because c0 = 0 (obvious)

= x + xc(x).



We now have the following two equations:

c(x) = a(x)3;

a(x) = x + xc(x).

So, a(x) = x + xa(x)3.

Reminder: P = a
(

1
2

)
.

So, P = 1
2 + 1

2P3.

The equation above has three solutions: 1, −1+
√

5
2 , −1−

√
5

2 .

Reminder: φ := −1+
√

5
2 is called the golden ratio.

So, our equation has three solutions: 1, φ, −1−
√

5
2 .

Obviously, P ≥ 0, and so P ̸= −1−
√

5
2 .

Let’s show that P ̸= 1, so that P = φ.
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Reminder: a(x) =
∞∑

n=0
anxn; a(x) = x + xa(x)3; P = a

(
1
2

)
.

Suppose P = 1, i.e. a
(

1
2

)
= 1.

a(x) =
∞∑

n=0
anxn has non-negative coefficients and converges

for x = 1
2 .

So, the function a is continuous and increasing on [0, 1
2 ].

We have that a(0) = a0 = 0 and a
(

1
2

)
= 1, and we have that

0 < φ < 1.
So, by the Intermediate Value Theorem, there exists some
x0 ∈ (0, 1

2) s.t. a(x0) = φ.
But a(x0) = x0 + x0a(x0)3, and so φ = x0 + x0φ3.
But also, φ = 1

2 + 1
2φ3.

Thus, 1
2 + 1

2φ3 = x0 + x0φ3, and so (x0 − 1
2)(φ3 + 1) = 0, a

contradiction.
So, P ̸= 1.
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Reminder:
We proved that P satisfies P = 1

2 + 1
2 P3.

This equation has exactly three solutions: 1, −1+
√

5
2 (=: φ),

−1−
√

5
2 .

We proved that P ̸= −1−
√

5
2 and P ̸= 1.

So, P = φ, i.e.

P = −1 +
√

5
2 .

Thus, the probability that we ever reach the origin in our walk
is −1+

√
5

2 (the golden ratio).
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