NDMI011: Combinatorics and Graph Theory 1

Lecture #3

Generating functions (part II)

Irena Penev

October 6, 2021

This lecture consists of three parts:

Basic operations with generating functions;

This lecture consists of three parts:

- Basic operations with generating functions;
- Application #1: counting binary trees;

This lecture consists of three parts:

- Basic operations with generating functions;
- 2 Application #1: counting binary trees;
- Application #2: random walks.

Definition

$$\sum_{n=0}^{\infty} a_n x^n.$$

Definition

Suppose $\{a_n\}_{n=0}^{\infty}$ is some infinite sequence of real (or complex) numbers. The *generating function* of this sequence is the power series

$$\sum_{n=0}^{\infty} a_n x^n.$$

• Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.

Definition

$$\sum_{n=0}^{\infty} a_n x^n.$$

- Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.
 - (1) The generating function of the sequence $\{a_n + b_n\}_{n=0}^{\infty}$ is a(x) + b(x).

Definition

$$\sum_{n=0}^{\infty} a_n x^n.$$

- Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.
 - (1) The generating function of the sequence $\{a_n + b_n\}_{n=0}^{\infty}$ is a(x) + b(x).
 - (2) The generating function of the sequence $\{a_n b_n\}_{n=0}^{\infty}$ is a(x) b(x).

Definition

$$\sum_{n=0}^{\infty} a_n x^n.$$

- Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.
 - (1) The generating function of the sequence $\{a_n + b_n\}_{n=0}^{\infty}$ is a(x) + b(x).
 - (2) The generating function of the sequence $\{a_n b_n\}_{n=0}^{\infty}$ is a(x) b(x).
 - (3) The generating function of the sequence $\{\alpha a_n\}_{n=0}^{\infty}$ is $\alpha a(x)$.

generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.

generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$,

and let α be a constant.

(4) For an integer $k \ge 1$, the generating function of the sequence

(4) For an integer
$$k \ge 1$$
, the generating function of the sequence $\underbrace{0,\ldots,0}_{k}$, a_0,a_1,a_2,\ldots is $x^ka(x)$.

generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.

- (4) For an integer $k \geq 1$, the generating function of the sequence
- $\underbrace{0,\ldots,0}_{},a_0,a_1,a_2,\ldots$ is $x^{\bar{k}}a(x)$.
- (5) For an integer $k \geq 1$, the generating function of the sequence $\{a_{n+k}\}_{n=0}^{\infty}$, i.e. the sequence $a_k, a_{k+1}, a_{k+2}, \ldots$, is $\frac{1}{x^k}\Big(a(x)-\sum_{i=0}^{k-1}a_ix^i\Big).$

generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.

- (4) For an integer $k \geq 1$, the generating function of the sequence $0, \ldots, 0, a_0, a_1, a_2, \ldots$ is $x^k a(x)$.
- (5) For an integer k > 1, the generating function of the sequence $\{a_{n+k}\}_{n=0}^{\infty}$, i.e. the sequence $a_k, a_{k+1}, a_{k+2}, \ldots$, is $\frac{1}{x^k}\Big(a(x)-\sum_{i=1}^{k-1}a_ix^i\Big).$
- For example, the generating function of the sequence a_3, a_4, a_5, \ldots is $\frac{1}{x^3} (a(x) - (a_0 + a_1x + a_2x^2))$.

generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.

(4) For an integer $k \ge 1$, the generating function of the sequence $0, \ldots, 0, a_0, a_1, a_2, \ldots$ is $x^k a(x)$.

$$\underbrace{0,\ldots,0}_{k},a_{0},a_{1},a_{2},\ldots \text{ is } x^{\overline{k}}a(x).$$

(5) For an integer $k \ge 1$, the generating function of the sequence $\{a_{n+k}\}_{n=0}^{\infty}$, i.e. the sequence $a_k, a_{k+1}, a_{k+2}, \ldots$, is

$$\frac{1}{x^k} \left(a(x) - \sum_{i=0}^{k-1} a_i x^i \right).$$
• For example, the generating function of the sequence

- For example, the generating function of the sequence a_3, a_4, a_5, \ldots is $\frac{1}{x^3} \left(a(x) (a_0 + a_1x + a_2x^2) \right)$.
- (6) The generating function of the sequence $\{\alpha^n a_n\}_{n=0}^{\infty}$ is $c(x) = a(\alpha x)$.

generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.

- (4) For an integer $k \ge 1$, the generating function of the sequence $\underbrace{0,\ldots,0}_{},a_0,a_1,a_2,\ldots$ is $x^ka(x)$.
- (5) For an integer $k \ge 1$, the generating function of the sequence $\{a_{n+k}\}_{n=0}^{\infty}$, i.e. the sequence $a_k, a_{k+1}, a_{k+2}, \ldots$, is
 - $\frac{1}{x^k} \left(a(x) \sum_{i=0}^{k-1} a_i x^i \right).$ For example, the generating function of the sequence
- a_3, a_4, a_5, \dots is $\frac{1}{x^3} \left(a(x) (a_0 + a_1 x + a_2 x^2) \right)$. (6) The generating function of the sequence $\{\alpha^n a_n\}_{n=0}^{\infty}$ is $c(x) = a(\alpha x)$.
 - For instance, since $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ is the generating function of
 - $1,1,1,1,1,\ldots$, we see that $\frac{1}{1-2x}$ (= $\sum_{n=0}^{\infty} 2^n x^n$) is the generating function of $1,2,4,8,16,\ldots$

generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.

• Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$,

and let α be a constant.

(7) For an integer $k \ge 1$, the generating function of the sequence

$$a_0, \underbrace{0, \ldots, 0}_{k}, a_1, \underbrace{0, \ldots, 0}_{k}, a_2, \underbrace{0, \ldots, 0}_{k}, a_3, \ldots$$

is $a(x^{k+1})$.

• Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$,

and let α be a constant. (7) For an integer $k \geq 1$, the generating function of the sequence

$$a_0, \underbrace{0,\ldots,0}_{k}, a_1, \underbrace{0,\ldots,0}_{k}, a_2, \underbrace{0,\ldots,0}_{k}, a_3,\ldots$$

is $a(x^{k+1})$.

• For instance, the generating function of the sequence $a_0, 0, 0, a_1, 0, 0, a_2, 0, 0, a_3, \dots$ is $a(x^3) (= \sum_{n=0}^{\infty} a_n x^{3n})$.

$$a(x^3) (= \sum_{n=0}^{\infty} a_n x^{3n}).$$

generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$, and let α be a constant.

• Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$,

and let α be a constant.

(8) The generating function of the sequence $\{(n+1)a_{n+1}\}_{n=0}^{\infty}$, i.e. the sequence $a_1, 2a_2, 3a_3, 4a_4, \ldots$, is a'(x).

The generating function for the sequence $0, a_0, \frac{1}{2}a_1, \frac{1}{3}a_2, \frac{1}{4}a_3, \dots$ is $\int_0^x a(t)dt$.

(We differentiate and integrate power series term-by-term.)

- Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be sequences with corresponding generating functions $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and $b(x) = \sum_{n=0}^{\infty} b_n x^n$,
 - and let α be a constant. (8) The generating function of the sequence $\{(n+1)a_{n+1}\}_{n=0}^{\infty}$, i.e.

the sequence $a_1, 2a_2, 3a_3, 4a_4, \ldots$, is a'(x). The generating function for the sequence

 $0, a_0, \frac{1}{2}a_1, \frac{1}{2}a_2, \frac{1}{4}a_3, \dots$ is $\int_0^x a(t)dt$. (We differentiate and integrate power series term-by-term.)

- (9) The function c(x) = a(x)b(x) is the generating function of the sequence $\{c_n\}_{n=0}^{\infty}$, where $c_n = \sum_{i=0}^{n} a_i b_{n-i}$ for each integer
- n > 0.
- So, $c_0 = a_0 b_0$, $c_1 = a_0 b_1 + a_1 b_0$, $c_2 = a_0 b_2 + a_1 b_1 + a_2 b_0$, etc.

Reminder: For a sequence $\{a_n\}_{n=0}^{\infty}$ with generating function

$$a(x) = \sum_{n=0}^{\infty} a_n x^n$$
 and a constant α :

(6) The generating function of the sequence $\{\alpha^n a_n\}_{n=0}^{\infty}$ is $c(x) = a(\alpha x)$.

Reminder: For a sequence $\{a_n\}_{n=0}^{\infty}$ with generating function $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and a constant α :

(6) The generating function of the sequence $\{\alpha^n a_n\}_{n=0}^{\infty}$ is $c(x) = a(\alpha x)$.

Example 1.1

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence, and let a(x) be its generating function. Find the generating function of the sequence $a_0, 0, a_2, 0, a_4, \ldots$ in terms of the function a(x).

Solution. $a_0,0,a_2,0,a_4,\ldots$ is the sum of $\{\frac{a_n}{2}\}_{n=0}^\infty$ and $\{\frac{(-1)^na_n}{2}\}_{n=0}^\infty$.

Reminder: For a sequence $\{a_n\}_{n=0}^{\infty}$ with generating function $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and a constant α :

(6) The generating function of the sequence $\{\alpha^n a_n\}_{n=0}^{\infty}$ is $c(x) = a(\alpha x)$.

Example 1.1

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence, and let a(x) be its generating function. Find the generating function of the sequence $a_0, 0, a_2, 0, a_4, \ldots$ in terms of the function a(x).

Solution. $a_0, 0, a_2, 0, a_4, \ldots$ is the sum of $\{\frac{a_n}{2}\}_{n=0}^{\infty}$ and $\{\frac{(-1)^n a_n}{2}\}_{n=0}^{\infty}$. The generating function of $\{\frac{a_n}{2}\}_{n=0}^{\infty}$ is $\frac{1}{2}a(x)$, and the generating function of $\{\frac{(-1)^n a_n}{2}\}_{n=0}^{\infty}$ is $\frac{1}{2}a(-x)$.

Reminder: For a sequence $\{a_n\}_{n=0}^{\infty}$ with generating function $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and a constant α :

(6) The generating function of the sequence $\{\alpha^n a_n\}_{n=0}^{\infty}$ is $c(x) = a(\alpha x)$.

Example 1.1

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence, and let a(x) be its generating function. Find the generating function of the sequence $a_0,0,a_2,0,a_4,\ldots$ in terms of the function a(x).

Solution. $a_0,0,a_2,0,a_4,\ldots$ is the sum of $\{\frac{a_n}{2}\}_{n=0}^{\infty}$ and $\{\frac{(-1)^n a_n}{2}\}_{n=0}^{\infty}$. The generating function of $\{\frac{a_n}{2}\}_{n=0}^{\infty}$ is $\frac{1}{2}a(x)$, and the generating function of $\{\frac{(-1)^n a_n}{2}\}_{n=0}^{\infty}$ is $\frac{1}{2}a(-x)$. So, the generating function of $a_0,0,a_2,0,a_4,\ldots$ is $\frac{a(x)+a(-x)}{2}$.

Find (the closed form of) the generating function of the sequence $1,1,2,2,4,4,8,8,16,16,\ldots$, i.e. the sequence $\{2^{\lfloor n/2\rfloor}\}_{n=0}^{\infty}$.

Solution.

Find (the closed form of) the generating function of the sequence $1,1,2,2,4,4,8,8,16,16,\ldots$, i.e. the sequence $\{2^{\lfloor n/2\rfloor}\}_{n=0}^{\infty}$.

Solution. Recall that the generating function of the sequence $1,2,4,8,16,\ldots$ is $\frac{1}{1-2x}$.

Find (the closed form of) the generating function of the sequence $1,1,2,2,4,4,8,8,16,16,\ldots$, i.e. the sequence $\{2^{\lfloor n/2\rfloor}\}_{n=0}^{\infty}$.

Solution. Recall that the generating function of the sequence $1,2,4,8,16,\ldots$ is $\frac{1}{1-2x}$. The generating function of $1,0,2,0,4,0,8,0,\ldots$ is $\frac{1}{1-2x^2}$,

Find (the closed form of) the generating function of the sequence $1,1,2,2,4,4,8,8,16,16,\ldots$, i.e. the sequence $\{2^{\lfloor n/2\rfloor}\}_{n=0}^{\infty}$.

Solution. Recall that the generating function of the sequence $1,2,4,8,16,\ldots$ is $\frac{1}{1-2x}$. The generating function of $1,0,2,0,4,0,8,0,\ldots$ is $\frac{1}{1-2x^2}$, and the generating function of $0,1,0,2,0,4,0,8,0,\ldots$ is $\frac{x}{1-2x^2}$.

Find (the closed form of) the generating function of the sequence $1,1,2,2,4,4,8,8,16,16,\ldots$, i.e. the sequence $\{2^{\lfloor n/2\rfloor}\}_{n=0}^{\infty}$.

Solution. Recall that the generating function of the sequence $1,2,4,8,16,\ldots$ is $\frac{1}{1-2x}$. The generating function of $1,0,2,0,4,0,8,0,\ldots$ is $\frac{1}{1-2x^2}$, and the generating function of $0,1,0,2,0,4,0,8,0,\ldots$ is $\frac{x}{1-2x^2}$. So, the generating function of $1,1,2,2,4,4,8,8,16,16,\ldots$ is the sum of these two functions, i.e. $\frac{1+x}{1-2x^2}$.

Find (the closed form of) the generating function of the sequence $1^2, 2^2, 3^2, 4^2, \ldots$, i.e. the sequence $\{(n+1)^2\}_{n=0}^{\infty}$.

Solution.

Find (the closed form of) the generating function of the sequence $1^2, 2^2, 3^2, 4^2, \ldots$, i.e. the sequence $\{(n+1)^2\}_{n=0}^{\infty}$.

Solution. The generating function of the sequence $1, 1, 1, 1, \ldots$ is $\frac{1}{1-x}$.

Find (the closed form of) the generating function of the sequence $1^2, 2^2, 3^2, 4^2, \ldots$, i.e. the sequence $\{(n+1)^2\}_{n=0}^{\infty}$.

Solution. The generating function of the sequence $1,1,1,1,\ldots$ is $\frac{1}{1-x}$. By differentiating, we see that $\frac{d}{dx}(\frac{1}{1-x})=\frac{1}{(1-x)^2}$ is the generating function of the sequence $1,2,3,4,\ldots$, i.e. the sequence $\{n+1\}_{n=0}^{\infty}$.

Find (the closed form of) the generating function of the sequence $1^2, 2^2, 3^2, 4^2, \ldots$, i.e. the sequence $\{(n+1)^2\}_{n=0}^{\infty}$.

Solution. The generating function of the sequence $1,1,1,1,\ldots$ is $\frac{1}{1-x}$. By differentiating, we see that $\frac{d}{dx}(\frac{1}{1-x})=\frac{1}{(1-x)^2}$ is the generating function of the sequence $1,2,3,4,\ldots$, i.e. the sequence $\{n+1\}_{n=0}^{\infty}$. By differentiating again, we see that $\frac{d}{dx}(\frac{1}{(1-x)^2})=\frac{2}{(1-x)^3}$ is the generating sequence of the sequence $1\cdot 2,2\cdot 3,3\cdot 4,4\cdot 5,\ldots$, i.e. the sequence $\{(n+1)(n+2)\}_{n=0}^{\infty}$.

Example 1.3

Find (the closed form of) the generating function of the sequence $1^2, 2^2, 3^2, 4^2, \ldots$, i.e. the sequence $\{(n+1)^2\}_{n=0}^{\infty}$.

Solution. The generating function of the sequence $1, 1, 1, 1, \ldots$ is $\frac{1}{1-x}$. By differentiating, we see that $\frac{d}{dx}(\frac{1}{1-x}) = \frac{1}{(1-x)^2}$ is the generating function of the sequence $1, 2, 3, 4, \ldots$, i.e. the sequence $\{n+1\}_{n=0}^{\infty}$. By differentiating again, we see that $\frac{d}{dx}(\frac{1}{(1-x)^2}) = \frac{2}{(1-x)^3}$ is the generating sequence of the sequence $1 \cdot 2, 2 \cdot 3, 3 \cdot 4, 4 \cdot 5, \ldots$, i.e. the sequence $\{(n+1)(n+2)\}_{n=0}^{\infty}$. Now, $(n+1)^2 = (n+1)(n+2) - (n+1)$ for all integers n > 0, and we have computed the generating functions for the sequences $\{(n+1)(n+2)\}_{n=0}^{\infty}$ and $\{n+1\}_{n=0}^{\infty}$. So, the generating function of $\{(n+1)\}_{n=0}^{\infty}$ is

$$a(x) = \frac{2}{(1-x)^3} - \frac{1}{(1-x)^2}.$$

Part II: Application #1: counting binary trees

• We define binary trees recursively as follows: a binary tree is either empty (i.e. contains no nodes), or consists of designated node r (called the root), plus an ordered pair (T_L, T_R) of binary trees, where T_L and T_R (called the left subtree and the right subtree) have disjoint sets of nodes and do not contain the node r.

• Remark: The empty binary tree has zero nodes, and if a binary tree T consists of a root r and an ordered pair (T_L, T_R) of binary trees, then the number of nodes of T is $1 + n_L + n_R$, where n_L is the number of nodes of T_L , and n_R is the number of nodes of T_R .

- Remark: The empty binary tree has zero nodes, and if a binary tree T consists of a root r and an ordered pair (T_L, T_R) of binary trees, then the number of nodes of T is $1 + n_L + n_R$, where n_L is the number of nodes of T_L , and n_R is the number of nodes of T_R .
- Goal: Count the number of binary trees on n nodes ($n \ge 0$).

ullet For each integer $n\geq 0$, let b_n be the number of binary trees

on *n* nodes, and let $b(x) = \sum_{n=0}^{\infty} b_n x^n$ be the generating function of the sequence $\{b_n\}_{n=0}^{\infty}$.

- For each integer $n \ge 0$, let b_n be the number of binary trees
- on n nodes, and let $b(x) = \sum_{n=0}^{\infty} b_n x^n$ be the generating function of the sequence $\{b_n\}_{n=0}^{\infty}$.
- It is easy to check that $b_0 = 1$, $b_1 = 1$, $b_2 = 2$, and $b_3 = 5$.

- For each integer $n \ge 0$, let b_n be the number of binary trees on *n* nodes, and let $b(x) = \sum_{n=0}^{\infty} b_n x^n$ be the generating function of the sequence $\{b_n\}_{n=0}^{\infty}$.
- It is easy to check that $b_0 = 1$, $b_1 = 1$, $b_2 = 2$, and $b_3 = 5$.
- Here are all the binary trees on three nodes:

- ullet Reminder: b_n be the number of binary trees on n nodes
- $(n \ge 0)$, and $b(x) = \sum_{n=0}^{\infty} b_n x^n$.

- Reminder: b_n be the number of binary trees on n nodes
 - $(n \ge 0)$, and $b(x) = \sum_{n=0}^{\infty} b_n x^n$.
- Let's find a recursive formula for b_n ($n \ge 1$).

- Reminder: b_n be the number of binary trees on n nodes $(n \ge 0)$, and $b(x) = \sum_{n=0}^{\infty} b_n x^n$.
- Let's find a recursive formula for b_n $(n \ge 1)$.
- The number of binary trees on $n \ge 1$ nodes is equal to the number of ordered pairs (T_L, T_R) of binary trees s.t. T_L, T_R together have n-1 nodes.

- Reminder: b_n be the number of binary trees on n nodes $(n \ge 0)$, and $b(x) = \sum_{n=0}^{\infty} b_n x^n$.
- Let's find a recursive formula for b_n $(n \ge 1)$.
- The number of binary trees on $n \ge 1$ nodes is equal to the number of ordered pairs (T_L, T_R) of binary trees s.t. T_L, T_R together have n-1 nodes.
- Thus, for all integers $n \ge 1$, we have that

$$b_n = b_0 b_{n-1} + b_1 b_{n-2} + \cdots + b_{n-1} b_0 = \sum_{k=0}^{n-1} b_k b_{n-k-1}.$$

- Reminder: b_n be the number of binary trees on n nodes $(n \ge 0)$, and $b(x) = \sum_{n=0}^{\infty} b_n x^n$.
- Let's find a recursive formula for b_n ($n \ge 1$).
- The number of binary trees on $n \ge 1$ nodes is equal to the number of ordered pairs (T_L, T_R) of binary trees s.t. T_L, T_R together have n-1 nodes.
- Thus, for all integers $n \ge 1$, we have that

$$b_n = b_0 b_{n-1} + b_1 b_{n-2} + \cdots + b_{n-1} b_0 = \sum_{k=0}^{n-1} b_k b_{n-k-1}.$$

• Since
$$b_0 = 1$$
, this implies that $b(x) = 1 + xb(x)^2$.

- Reminder: b_n be the number of binary trees on n nodes $(n \ge 0)$, and $b(x) = \sum_{n=0}^{\infty} b_n x^n$.
- Let's find a recursive formula for b_n ($n \ge 1$).
- The number of binary trees on $n \ge 1$ nodes is equal to the number of ordered pairs (T_L, T_R) of binary trees s.t. T_L, T_R together have n-1 nodes.
- Thus, for all integers $n \ge 1$, we have that

$$b_n = b_0 b_{n-1} + b_1 b_{n-2} + \cdots + b_{n-1} b_0 = \sum_{k=0}^{n-1} b_k b_{n-k-1}.$$

- Since $b_0 = 1$, this implies that $b(x) = 1 + xb(x)^2$.
- By the quadratic equation (with b(x) treated as a variable and x as a constant), either

$$b(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$
 or $b(x) = \frac{1 + \sqrt{1 - 4x}}{2x}$.

• Reminder: b_n be the number of binary trees on n nodes $(n \ge 0)$, and $b(x) = \sum_{n=0}^{\infty} b_n x^n$.

- Let's find a recursive formula for b_n $(n \ge 1)$.
- The number of binary trees on $n \ge 1$ nodes is equal to the number of ordered pairs (T_L, T_R) of binary trees s.t. T_L, T_R together have n-1 nodes.
- Thus, for all integers $n \ge 1$, we have that

$$b_n = b_0 b_{n-1} + b_1 b_{n-2} + \cdots + b_{n-1} b_0 = \sum_{k=0}^{n-1} b_k b_{n-k-1}.$$

- Since $b_0 = 1$, this implies that $b(x) = 1 + xb(x)^2$.
- By the quadratic equation (with b(x) treated as a variable and x as a constant), either

$$b(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$
 or $b(x) = \frac{1 + \sqrt{1 - 4x}}{2x}$.

• Which formula is the correct one??

- Reminder: b_n be the number of binary trees on n nodes
 - $(n \ge 0)$, and $b(x) = \sum_{n=0}^{\infty} b_n x^n$ is its generating sequence.
- Reminder: Either

$$b(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$
 or $b(x) = \frac{1 + \sqrt{1 - 4x}}{2x}$.

- Reminder: b_n be the number of binary trees on n nodes $(n \ge 0)$, and $b(x) = \sum_{n=0}^{\infty} b_n x^n$ is its generating sequence.
- Reminder: Either

$$b(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$
 or $b(x) = \frac{1 + \sqrt{1 - 4x}}{2x}$.

• Since $b_0=1$, we have that $\lim_{x\to 0^+}b(x)=1$.

- Reminder: b_n be the number of binary trees on n nodes $(n \ge 0)$, and $b(x) = \sum_{n=0}^{\infty} b_n x^n$ is its generating sequence.
- Reminder: Either

$$b(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$
 or $b(x) = \frac{1 + \sqrt{1 - 4x}}{2x}$.

- Since $b_0 = 1$, we have that $\lim_{x \to 0^+} b(x) = 1$.
- We can compute (check this!):

$$\lim_{x \to 0^+} \frac{1 - \sqrt{1 - 4x}}{2x} = 1;$$

$$\lim_{x \to 0^+} \frac{1+\sqrt{1-4x}}{2x} = \infty.$$

- Reminder: b_n be the number of binary trees on n nodes $(n \ge 0)$, and $b(x) = \sum_{n=0}^{\infty} b_n x^n$ is its generating sequence.
- Reminder: Either

$$b(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$
 or $b(x) = \frac{1 + \sqrt{1 - 4x}}{2x}$.

- Since $b_0=1$, we have that $\lim_{x\to 0^+}b(x)=1$.
- We can compute (check this!):

$$\lim_{x \to 0^+} \frac{1 - \sqrt{1 - 4x}}{2x} = 1;$$

$$\lim_{x \to 0^+} \frac{1 + \sqrt{1 - 4x}}{2x} = \infty.$$

• So, $1 - \sqrt{1 - 4}$

$$b(x) = \frac{1 - \sqrt{1 - 4x}}{2x}.$$

• Reminder: $b(x) = \frac{1-\sqrt{1-4x}}{2x}$.

- Reminder: $b(x) = \frac{1 \sqrt{1 4x}}{2x}$.
- By the Generalized Binomial Theorem:

$$\sqrt{1-4x} = \sum_{n=0}^{\infty} {\binom{1/2}{n}} (-4x)^n$$

$$= 1 + x \sum_{n=0}^{\infty} (-4)^{n+1} {1/2 \choose n+1} x^n$$
 by algebra

- Reminder: $b(x) = \frac{1-\sqrt{1-4x}}{2x}$.
- By the Generalized Binomial Theorem:

$$\sqrt{1-4x} = \sum_{n=0}^{\infty} {1/2 \choose n} (-4x)^n$$

So.

$$= 1 + x \sum_{n=0}^{\infty} (-4)^{n+1} {1/2 \choose n+1} x^n$$
 by algebra

 $= 1 + x \sum_{n=0}^{\infty} (-4)^{n+2} {n+1 \choose n+1} x^n$ by algebra

$$b(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$

$$= \frac{1 - \left(1 + x \sum_{n=0}^{\infty} (-4)^{n+1} {\binom{1/2}{n+1}} x^n\right)}{2x}$$

$$= \sum_{n=0}^{\infty} (-\frac{1}{2})(-4)^{n+1} {\binom{1/2}{n+1}} x^n.$$

- Reminder: b_n be the number of binary trees on n nodes
- $(n \ge 0)$, and $b(x) = \sum_{n=0}^{\infty} b_n x^n$ is its generating sequence.
- Reminder: $b(x) = \sum_{n=0}^{\infty} (-\frac{1}{2})(-4)^{n+1} {\binom{1/2}{n+1}} x^n$.

- Reminder: b_n be the number of binary trees on n nodes
- $(n \ge 0)$, and $b(x) = \sum_{n=0}^{\infty} b_n x^n$ is its generating sequence.
- Reminder: $b(x) = \sum_{n=0}^{\infty} (-\frac{1}{2})(-4)^{n+1} {\binom{1/2}{n+1}} x^n$.
- So, for all non-negative integers n, we have that

 $b_n = (-\frac{1}{2})(-4)^{n+1}\binom{1/2}{n+1}.$

- Reminder: b_n be the number of binary trees on n nodes $(n \ge 0)$, and $b(x) = \sum_{n=0}^{\infty} b_n x^n$ is its generating sequence.
- Reminder: $b(x) = \sum_{n=0}^{\infty} (-\frac{1}{2})(-4)^{n+1} {\binom{1/2}{n+1}} x^n$.
- \bullet So, for all non-negative integers n, we have that

$$b_n = (-\frac{1}{2})(-4)^{n+1}\binom{1/2}{n+1}.$$

 After a bit of algebra (see the Lecture Notes), we can get a nicer formula:

$$b_n = \frac{1}{n+1} \binom{2n}{n}$$

for all integers $n \ge 0$.

- Reminder: b_n be the number of binary trees on n nodes $(n \ge 0)$, and $b(x) = \sum_{n=0}^{\infty} b_n x^n$ is its generating sequence.
- Reminder: $b(x) = \sum_{n=0}^{\infty} (-\frac{1}{2})(-4)^{n+1} {\binom{1/2}{n+1}} x^n$.
- \bullet So, for all non-negative integers n, we have that

$$b_n = (-\frac{1}{2})(-4)^{n+1}\binom{1/2}{n+1}.$$

 After a bit of algebra (see the Lecture Notes), we can get a nicer formula:

$$b_n = \frac{1}{n+1} \binom{2n}{n}$$

for all integers $n \ge 0$.

• Numbers $\frac{1}{n+1}\binom{2n}{n}$ are called the *Catalan numbers*.

• We consider the following infinite random walk on the integer line \mathbb{Z} : we begin our walk at 1, and at each step, we move at random either two units to the right (+2) or one unit to the left (-1).

 We would like to determine the probability that we reach the origin at some point in our walk.

- We would like to determine the probability that we reach the origin at some point in our walk.
- For each integer $n \ge 0$, let P_n be the probability that we reach the origin after at most n steps.

- We would like to determine the probability that we reach the origin at some point in our walk.
- For each integer $n \ge 0$, let P_n be the probability that we reach the origin after at most n steps.
- Obviously, $\{P_n\}_{n=0}^{\infty}$ is a non-decreasing sequence, and it is bounded above by 1. So, by the Monotone Sequence Theorem, it converges.

- We would like to determine the probability that we reach the origin at some point in our walk.
- For each integer $n \ge 0$, let P_n be the probability that we reach the origin after at most n steps.
- Obviously, $\{P_n\}_{n=0}^{\infty}$ is a non-decreasing sequence, and it is bounded above by 1. So, by the Monotone Sequence Theorem, it converges.
- Let $P = \lim_{n \to \infty} P_n$.

• We consider the following infinite random walk on the integer line \mathbb{Z} : we begin our walk at 1, and at each step, we move at random either two units to the right (+2) or one unit to the left (-1).

- We would like to determine the probability that we reach the origin at some point in our walk.
 For each integer n ≥ 0, let P_n be the probability that we reach
- the origin after at most n steps.

• Obviously, $\{P_n\}_{n=0}^{\infty}$ is a non-decreasing sequence, and it is bounded above by 1. So, by the Monotone Sequence Theorem, it converges.

- Let $P = \lim_{n \to \infty} P_n$.
- Then P is the probability that we need to compute.

• For each integer $n \ge 0$, let a_n be the number of n-step walks in which we reach the origin for the first time after precisely n steps.

- For each integer $n \ge 0$, let a_n be the number of n-step walks in which we reach the origin for the first time after precisely n steps.
- The total number of n-step walks is 2^n .

- For each integer $n \ge 0$, let a_n be the number of n-step walks in which we reach the origin for the first time after precisely n steps.
- The total number of n-step walks is 2^n .

• So,
$$P_n = \sum_{i=0}^n \frac{a_i}{2^i} = a_0 + \frac{a_1}{2} + \frac{a_2}{4} + \dots + \frac{a_n}{2^n}$$
.

start here

- For each integer $n \ge 0$, let a_n be the number of n-step walks in which we reach the origin for the first time after precisely n steps.
- The total number of n-step walks is 2^n .
- So, $P_n = \sum_{i=0}^n \frac{a_i}{2^i} = a_0 + \frac{a_1}{2} + \frac{a_2}{4} + \dots + \frac{a_n}{2^n}$.
- Therefore, $P = \sum_{n=0}^{\infty} \frac{a_n}{2^n}$.

start here

- For each integer $n \ge 0$, let a_n be the number of n-step walks in which we reach the origin for the first time after precisely n steps.
- The total number of n-step walks is 2^n .

• So,
$$P_n = \sum_{i=0}^n \frac{a_i}{2^i} = a_0 + \frac{a_1}{2} + \frac{a_2}{4} + \dots + \frac{a_n}{2^n}$$
.

• Therefore,
$$P = \sum_{n=0}^{\infty} \frac{a_n}{2^n}$$
.

• Let $a(x) = \sum_{n=0}^{\infty} a_n x^n$ be the generating function for $\{a_n\}_{n=0}^{\infty}$.

- For each integer $n \ge 0$, let a_n be the number of n-step walks in which we reach the origin for the first time after precisely n steps.
- The total number of n-step walks is 2^n .

• So,
$$P_n = \sum_{i=0}^n \frac{a_i}{2^i} = a_0 + \frac{a_1}{2} + \frac{a_2}{4} + \dots + \frac{a_n}{2^n}$$
.

- Therefore, $P = \sum_{n=0}^{\infty} \frac{a_n}{2^n}$.
- Let $a(x) = \sum_{n=0}^{\infty} a_n x^n$ be the generating function for $\{a_n\}_{n=0}^{\infty}$.
- Then $P = a(\frac{1}{2})$.

- For our solution, it will be useful to consider random walks that start at points other than 1, but still proceed according to the same rules:
 - at each step, we move at random either two units to the right (+2) or one unit to the left (-1).

• For an integer $n \ge 0$, let b_n be the number of n-step random walks (following our rules) starting at 2 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).

- For an integer $n \ge 0$, let b_n be the number of n-step random walks (following our rules) starting at 2 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).
- In such a walk, we cannot reach the origin without first reaching 1, and then reaching the origin from there.

- For an integer $n \ge 0$, let b_n be the number of n-step random walks (following our rules) starting at 2 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).
- In such a walk, we cannot reach the origin without first reaching 1, and then reaching the origin from there.
- There must be some $k \in \{1, ..., n-1\}$ s.t.:
 - we reach 1 for the first time after precisely k steps (there are a_k ways to do that),
 - and then starting at 1, we reach the origin for the first time after n k steps (there are a_{n-k} ways to do that).

- For an integer $n \ge 0$, let b_n be the number of n-step random walks (following our rules) starting at 2 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).
- In such a walk, we cannot reach the origin without first reaching 1, and then reaching the origin from there.
- There must be some $k \in \{1, \dots, n-1\}$ s.t.:
 - we reach 1 for the first time after precisely k steps (there are a_k ways to do that),
 - and then starting at 1, we reach the origin for the first time after n-k steps (there are a_{n-k} ways to do that).

• So,
$$b_n = \sum_{k=1}^{n-1} a_k a_{n-k} \stackrel{a_0=0}{=} \sum_{k=0}^n a_k a_{n-k}$$
.

- Reminder: For an integer n > 0, b_n is the number of n-step random walks (following our rules) starting at 2 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).
- Reminder: $b_n = \sum_{k=1}^{n-1} a_k a_{n-k} \stackrel{a_0=0}{=} \sum_{k=0}^n a_k a_{n-k}$ for all integers n > 0.

- Reminder: For an integer $n \ge 0$, b_n is the number of n-step random walks (following our rules) starting at 2 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).
- Reminder: $b_n = \sum_{k=1}^{n-1} a_k a_{n-k} \stackrel{a_0=0}{=} \sum_{k=0}^n a_k a_{n-k}$ for all integers n > 0.
- So, if $b(x) = \sum_{n=0}^{\infty} b_n x^n$ is the generating function for the sequence $\{b_n\}_{n=0}^{\infty}$, then we get that

$$b(x) = a(x)^2.$$

• For an integer $n \ge 0$, let c_n be the number of n-step random walks (following our rules) starting at 3 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).

- For an integer $n \ge 0$, let c_n be the number of n-step random walks (following our rules) starting at 3 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).
- Let $c(x) = \sum_{n=0}^{\infty} c_n x^n$ be the generating function for the sequence $\{c_n\}_{n=0}^{\infty}$.

- For an integer $n \ge 0$, let c_n be the number of n-step random walks (following our rules) starting at 3 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).
- Let $c(x) = \sum_{n=0}^{\infty} c_n x^n$ be the generating function for the sequence $\{c_n\}_{n=0}^{\infty}$.
- Similarly to the above: c(x) = a(x)b(x).
 - Details: Lecture Notes.

- For an integer $n \ge 0$, let c_n be the number of n-step random walks (following our rules) starting at 3 and ending at the origin, without reaching the origin at any point during the walk (except at the very end).
- Let $c(x) = \sum_{n=0}^{\infty} c_n x^n$ be the generating function for the sequence $\{c_n\}_{n=0}^{\infty}$.
- Similarly to the above: c(x) = a(x)b(x).
 - Details: Lecture Notes.
- Since $b(x) = a(x)^2$, we get

$$c(x) = a(x)^3.$$

- Reminder: For an integer $n \ge 0$:
 - a_n is the number of ways to reach the origin for the first time after precisely n steps, starting from 1.
 - c_n is the number of ways to reach the origin for the first time after precisely n steps, starting from 3.

- Reminder: For an integer $n \ge 0$:
 - a_n is the number of ways to reach the origin for the first time after precisely n steps, starting from 1.
 - c_n is the number of ways to reach the origin for the first time after precisely n steps, starting from 3.
- Obviously, $a_0 = 0$ and $a_1 = 1$.

$$-4$$
 -3 -2 -1 0 1 2 3 4 5 6 7 8

- Reminder: For an integer $n \ge 0$:
 - a_n is the number of ways to reach the origin for the first time after precisely n steps, starting from 1.
 - c_n is the number of ways to reach the origin for the first time after precisely n steps, starting from 3.
- Obviously, $a_0 = 0$ and $a_1 = 1$.
- If we start at 1, then for an integer $n \geq 2$, there are precisely c_{n-1} ways to reach the origin for the first time after precisely n steps: we must first move two units to the right, and then reach the origin from 3 for the first time after precisely n-1 steps.
 - Thus, $a_n = c_{n-1}$ for all integers $n \ge 2$.

- Reminder: For an integer $n \ge 0$:
 - a_n is the number of ways to reach the origin for the first time after precisely n steps, starting from 1.
 - c_n is the number of ways to reach the origin for the first time after precisely n steps, starting from 3.
- Obviously, $a_0 = 0$ and $a_1 = 1$.
- If we start at 1, then for an integer $n \ge 2$, there are precisely c_{n-1} ways to reach the origin for the first time after precisely n steps: we must first move two units to the right, and then reach the origin from 3 for the first time after precisely n-1 steps.
 - Thus, $a_n = c_{n-1}$ for all integers $n \ge 2$.
- We now compute...

$$a(x) = a_0 + a_1 x + \sum_{n=2}^{\infty} a_n x^n$$

$$= x + x \sum_{n=2}^{\infty} a_n x^{n-1}$$
 because $a_0 = 0$ and $a_1 = 1$

$$= x + x \sum_{n=2}^{\infty} a_n x^{n-1} \qquad \text{because } a_0 = 0 \text{ and } a_1 = 1$$

$$= x + x \sum_{n=2}^{\infty} c_{n-1} x^{n-1} \qquad \text{because } a_n = c_{n-1} \text{ for } n \ge 2$$

$$= x + x \sum_{n=1}^{\infty} c_n x^n$$

$$-x + x \sum_{n=1}^{\infty} c_n x^n$$
 herause $c_0 = 0$ (obvious)

$$= x + x \sum_{n=0}^{\infty} c_n x^n$$
 because $c_0 = 0$ (obvious)

$$= x + xc(x).$$

$$c(x) = a(x)^3;$$

$$a(x) = x + xc(x).$$

$$c(x) = a(x)^3;$$
$$a(x) = x + xc(x).$$

• So, $a(x) = x + xa(x)^3$.

$$c(x) = a(x)^3;$$

$$a(x) = x + xc(x).$$

- So, $a(x) = x + xa(x)^3$.
- Reminder: $P = a(\frac{1}{2})$.

$$c(x) = a(x)^3;$$

a(x) = x + xc(x).

- So, $a(x) = x + xa(x)^3$.
- Reminder: $P = a(\frac{1}{2})$.
- So, $P = \frac{1}{2} + \frac{1}{2}P^3$.

$$c(x) = a(x)^{3};$$
$$a(x) = x + xc(x).$$

- So, $a(x) = x + xa(x)^3$.
- Reminder: $P = a(\frac{1}{2})$.
- So, $P = \frac{1}{2} + \frac{1}{2}P^3$.
- The equation above has three solutions: 1, $\frac{-1+\sqrt{5}}{2}$, $\frac{-1-\sqrt{5}}{2}$.

$$c(x) = a(x)^3;$$
$$a(x) = x + xc(x).$$

- So, $a(x) = x + xa(x)^3$.
- Reminder: $P = a(\frac{1}{2})$.
- So, $P = \frac{1}{2} + \frac{1}{2}P^3$.
- The equation above has three solutions: 1, $\frac{-1+\sqrt{5}}{2}$, $\frac{-1-\sqrt{5}}{2}$.
 - Reminder: $\varphi:=\frac{-1+\sqrt{5}}{2}$ is called the *golden ratio*.

$$c(x) = a(x)^3;$$

$$a(x) = x + xc(x).$$

- So, $a(x) = x + xa(x)^3$.
- Reminder: $P = a(\frac{1}{2})$.
- So, $P = \frac{1}{2} + \frac{1}{2}P^3$.
- The equation above has three solutions: 1, $\frac{-1+\sqrt{5}}{2}$, $\frac{-1-\sqrt{5}}{2}$.
 - Reminder: $\varphi:=\frac{-1+\sqrt{5}}{2}$ is called the *golden ratio*.
 - So, our equation has three solutions: $1, \varphi, \frac{-1-\sqrt{5}}{2}$.

$$c(x) = a(x)^3;$$

$$a(x) = x + xc(x).$$

- So, $a(x) = x + xa(x)^3$.
- Reminder: $P = a(\frac{1}{2})$.
- So, $P = \frac{1}{2} + \frac{1}{2}P^3$.
- The equation above has three solutions: 1, $\frac{-1+\sqrt{5}}{2}$, $\frac{-1-\sqrt{5}}{2}$.
 - Reminder: $\varphi := \frac{-1+\sqrt{5}}{2}$ is called the *golden ratio*.
 - So, our equation has three solutions: $1, \varphi, \frac{-1-\sqrt{5}}{2}$.
- Obviously, $P \ge 0$, and so $P \ne \frac{-1-\sqrt{5}}{2}$.

$$c(x) = a(x)^3;$$

$$a(x) = x + xc(x).$$

- So, $a(x) = x + xa(x)^3$.
- Reminder: $P = a(\frac{1}{2})$.
- So, $P = \frac{1}{2} + \frac{1}{2}P^3$.
- The equation above has three solutions: 1, $\frac{-1+\sqrt{5}}{2}$, $\frac{-1-\sqrt{5}}{2}$.
 - Reminder: $\varphi := \frac{-1+\sqrt{5}}{2}$ is called the *golden ratio*.
 - So, our equation has three solutions: $1, \varphi, \frac{-1-\sqrt{5}}{2}$.
- Obviously, $P \ge 0$, and so $P \ne \frac{-1-\sqrt{5}}{2}$.
- Let's show that $P \neq 1$, so that $P = \varphi$.

• Reminder: $a(x) = \sum_{n=0}^{\infty} a_n x^n$; $a(x) = x + xa(x)^3$; $P = a(\frac{1}{2})$.

- Reminder: $a(x) = \sum_{n=0}^{\infty} a_n x^n$; $a(x) = x + xa(x)^3$; $P = a(\frac{1}{2})$.
- Suppose P=1, i.e. $a\left(\frac{1}{2}\right)=1$.

- Reminder: $a(x) = \sum_{n=0}^{\infty} a_n x^n$; $a(x) = x + x a(x)^3$; $P = a(\frac{1}{2})$.
- Suppose P = 1, i.e. $a(\frac{1}{2}) = 1$.
- $a(x) = \sum_{n=0}^{\infty} a_n x^n$ has non-negative coefficients and converges for $x = \frac{1}{2}$.

- Reminder: $a(x) = \sum_{n=0}^{\infty} a_n x^n$; $a(x) = x + xa(x)^3$; $P = a(\frac{1}{2})$.
- Suppose P = 1, i.e. $a(\frac{1}{2}) = 1$.
- $a(x) = \sum_{n=0}^{\infty} a_n x^n$ has non-negative coefficients and converges for $x = \frac{1}{2}$.
- So, the function a is continuous and increasing on $[0, \frac{1}{2}]$.

- Reminder: $a(x) = \sum_{n=0}^{\infty} a_n x^n$; $a(x) = x + x a(x)^3$; $P = a(\frac{1}{2})$.
- Suppose P = 1, i.e. $a(\frac{1}{2}) = 1$.
- $a(x) = \sum_{n=0}^{\infty} a_n x^n$ has non-negative coefficients and converges for $x = \frac{1}{2}$.
- So, the function a is continuous and increasing on $[0, \frac{1}{2}]$.
- We have that $a(0)=a_0=0$ and $a\left(\frac{1}{2}\right)=1$, and we have that $0<\varphi<1$.

- Reminder: $a(x) = \sum_{n=0}^{\infty} a_n x^n$; $a(x) = x + x a(x)^3$; $P = a(\frac{1}{2})$.
- Suppose P = 1, i.e. $a(\frac{1}{2}) = 1$.
- $a(x) = \sum_{n=0}^{\infty} a_n x^n$ has non-negative coefficients and converges for $x = \frac{1}{2}$.
- So, the function a is continuous and increasing on $[0, \frac{1}{2}]$.
- We have that $a(0)=a_0=0$ and $a\Big(\frac{1}{2}\Big)=1$, and we have that $0<\varphi<1$.
- So, by the Intermediate Value Theorem, there exists some $x_0 \in (0, \frac{1}{2})$ s.t. $a(x_0) = \varphi$.

- Reminder: $a(x) = \sum_{n=0}^{\infty} a_n x^n$; $a(x) = x + xa(x)^3$; $P = a(\frac{1}{2})$.
- Suppose P = 1, i.e. $a(\frac{1}{2}) = 1$.
- $a(x) = \sum_{n=0}^{\infty} a_n x^n$ has non-negative coefficients and converges for $x = \frac{1}{2}$.
- So, the function a is continuous and increasing on $[0, \frac{1}{2}]$.
- We have that $a(0)=a_0=0$ and $a\left(\frac{1}{2}\right)=1$, and we have that $0<\varphi<1$.
- So, by the Intermediate Value Theorem, there exists some $x_0 \in (0, \frac{1}{2})$ s.t. $a(x_0) = \varphi$.
- But $a(x_0) = x_0 + x_0 a(x_0)^3$, and so $\varphi = x_0 + x_0 \varphi^3$.

- Reminder: $a(x) = \sum_{n=0}^{\infty} a_n x^n$; $a(x) = x + xa(x)^3$; $P = a(\frac{1}{2})$.
- Suppose P = 1, i.e. $a(\frac{1}{2}) = 1$.
- $a(x) = \sum_{n=0}^{\infty} a_n x^n$ has non-negative coefficients and converges for $x = \frac{1}{2}$.
- \bullet So, the function a is continuous and increasing on $[0,\frac{1}{2}].$
- We have that $a(0)=a_0=0$ and $a\left(\frac{1}{2}\right)=1$, and we have that $0<\varphi<1$.
- So, by the Intermediate Value Theorem, there exists some $x_0 \in (0, \frac{1}{2})$ s.t. $a(x_0) = \varphi$.
- But $a(x_0) = x_0 + x_0 a(x_0)^3$, and so $\varphi = x_0 + x_0 \varphi^3$.
- But also, $\varphi = \frac{1}{2} + \frac{1}{2}\varphi^3$.

- Reminder: $a(x) = \sum_{n=0}^{\infty} a_n x^n$; $a(x) = x + xa(x)^3$; $P = a(\frac{1}{2})$.
- Suppose P = 1, i.e. $a(\frac{1}{2}) = 1$.
- $a(x) = \sum_{n=0}^{\infty} a_n x^n$ has non-negative coefficients and converges for $x = \frac{1}{2}$.
- So, the function a is continuous and increasing on $[0, \frac{1}{2}]$.
- We have that $a(0)=a_0=0$ and $a\left(\frac{1}{2}\right)=1$, and we have that $0<\varphi<1$.
- So, by the Intermediate Value Theorem, there exists some $x_0 \in (0, \frac{1}{2})$ s.t. $a(x_0) = \varphi$.
- But $a(x_0) = x_0 + x_0 a(x_0)^3$, and so $\varphi = x_0 + x_0 \varphi^3$.
- But also, $\varphi = \frac{1}{2} + \frac{1}{2}\varphi^3$.
- Thus, $\frac{1}{2} + \frac{1}{2}\varphi^3 = x_0 + x_0\varphi^3$, and so $(x_0 \frac{1}{2})(\varphi^3 + 1) = 0$, a contradiction.

- Reminder: $a(x) = \sum_{n=0}^{\infty} a_n x^n$; $a(x) = x + x a(x)^3$; $P = a(\frac{1}{2})$.
- Suppose P = 1, i.e. $a(\frac{1}{2}) = 1$.
- $a(x) = \sum_{n=0}^{\infty} a_n x^n$ has non-negative coefficients and converges for $x = \frac{1}{2}$.
- So, the function a is continuous and increasing on $\left[0,\frac{1}{2}\right]$. • We have that $a(0)=a_0=0$ and $a\left(\frac{1}{2}\right)=1$, and we have that
- $0<\varphi<1.$ • So, by the Intermediate Value Theorem, there exists some
- So, by the intermediate value Theorem, there exists som $x_0 \in (0, \frac{1}{2})$ s.t. $a(x_0) = \varphi$.
- But $a(x_0) = x_0 + x_0 a(x_0)^3$, and so $\varphi = x_0 + x_0 \varphi^3$.
- But also, $\varphi = \frac{1}{2} + \frac{1}{2}\varphi^3$. • Thus, $\frac{1}{2} + \frac{1}{2}\varphi^3 = x_0 + x_0\varphi^3$, and so $(x_0 - \frac{1}{2})(\varphi^3 + 1) = 0$, a
- Thus, $\frac{\pi}{2} + \frac{\pi}{2}\varphi^{\circ} = x_0 + x_0\varphi^{\circ}$, and so $(x_0 \frac{\pi}{2})(\varphi^{\circ} + 1) = 0$, a contradiction.
- So, $P \neq 1$.

• Reminder:

• We proved that P satisfies $P = \frac{1}{2} + \frac{1}{2}P^3$.

- Reminder:
 - We proved that P satisfies $P = \frac{1}{2} + \frac{1}{2}P^3$.
 - This equation has exactly three solutions: 1, $\frac{-1+\sqrt{5}}{2}$ (=: φ), $\frac{-1-\sqrt{5}}{2}$.

- Reminder:
 - We proved that P satisfies $P = \frac{1}{2} + \frac{1}{2}P^3$.
 - This equation has exactly three solutions: 1, $\frac{-1+\sqrt{5}}{2}$ (=: φ), $\frac{-1-\sqrt{5}}{2}$.
 - We proved that $P \neq \frac{-1-\sqrt{5}}{2}$ and $P \neq 1$.

- Reminder:
 - We proved that P satisfies $P = \frac{1}{2} + \frac{1}{2}P^3$.
 - This equation has exactly three solutions: 1, $\frac{-1+\sqrt{5}}{2}$ (=: φ), $\frac{-1-\sqrt{5}}{2}$.
 - We proved that $P
 eq rac{-1 \sqrt{5}}{2}$ and P
 eq 1.
- So, $P = \varphi$, i.e.

$$P = \frac{-1 + \sqrt{5}}{2}.$$

- Reminder:
 - We proved that P satisfies $P = \frac{1}{2} + \frac{1}{2}P^3$.
 - This equation has exactly three solutions: 1, $\frac{-1+\sqrt{5}}{2}$ (=: φ), $\frac{-1-\sqrt{5}}{2}$
 - We proved that $P \neq \frac{-1-\sqrt{5}}{2}$ and $P \neq 1$.
- Vve proved that $P \neq \frac{1}{2}$ and $P \neq 1$ So, $P = \varphi$, i.e.

$$P = \frac{-1 + \sqrt{5}}{2}.$$

• Thus, the probability that we ever reach the origin in our walk is $\frac{-1+\sqrt{5}}{2}$ (the golden ratio).