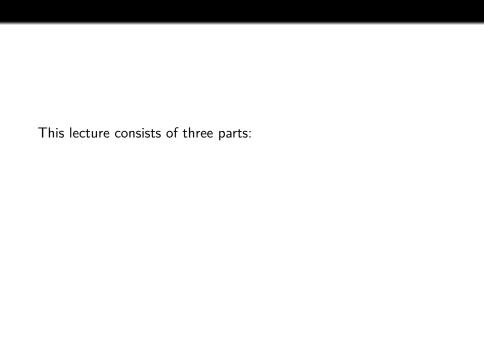
NDMI011: Combinatorics and Graph Theory 1

Lecture #2

Generating functions (part I)

Irena Penev

September 30, 2021



This lecture consists of three parts:

Partial fractions;

This lecture consists of three parts:

- Partial fractions:
- 2 A review of Taylor (and Maclaurin) series;

This lecture consists of three parts:

- Partial fractions;
- A review of Taylor (and Maclaurin) series;
- An introduction to generating functions.

It is easy to check that

$$\frac{1}{x^2(x-1)} = -\frac{1}{x} - \frac{1}{x^2} + \frac{1}{x-1}.$$

It is easy to check that

$$\frac{1}{x^2(x-1)} = -\frac{1}{x} - \frac{1}{x^2} + \frac{1}{x-1}.$$

However, given the LHS, how do we compute the RHS?

It is easy to check that

$$\frac{1}{x^2(x-1)} = -\frac{1}{x} - \frac{1}{x^2} + \frac{1}{x-1}.$$

However, given the LHS, how do we compute the RHS?

• The numerator of the rational expression $\frac{1}{x^2(x-1)}$ is of **strictly smaller** degree than the denominator.

It is easy to check that

$$\frac{1}{x^2(x-1)} = -\frac{1}{x} - \frac{1}{x^2} + \frac{1}{x-1}.$$

However, given the LHS, how do we compute the RHS?

- The numerator of the rational expression $\frac{1}{x^2(x-1)}$ is of **strictly smaller** degree than the denominator.
 - This is important! Otherwise, the procedure fails.

It is easy to check that

$$\frac{1}{x^2(x-1)} = -\frac{1}{x} - \frac{1}{x^2} + \frac{1}{x-1}.$$

However, given the LHS, how do we compute the RHS?

- The numerator of the rational expression $\frac{1}{x^2(x-1)}$ is of **strictly smaller** degree than the denominator.
 - This is important! Otherwise, the procedure fails.
- So, we write

$$\frac{1}{x^2(x-1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-1}.$$

minder: $\frac{1}{x^2(x-1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-1}.$

$$\frac{1}{x^2(x-1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-1}.$$

This implies

$$1 = (A + C)x^{2} + (-A + B)x - B.$$

$$\frac{1}{x^2(x-1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-1}.$$

This implies

$$1 = (A + C)x^{2} + (-A + B)x - B.$$

• The LHS and the RHS are identical as polynomials, and so they have exactly the same coefficients.

Reminder:

$$\frac{1}{x^2(x-1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-1}.$$

This implies

$$1 = (A + C)x^{2} + (-A + B)x - B.$$

- The LHS and the RHS are identical as polynomials, and so they have exactly the same coefficients.
- So, we get the following system of linear equations:

$$A + C = 0,$$
 $-A + B = 0,$ $-B = 1.$

$$\frac{1}{x^2(x-1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-1}.$$

This implies

$$1 = (A + C)x^{2} + (-A + B)x - B.$$

- The LHS and the RHS are identical as polynomials, and so they have exactly the same coefficients.
- So, we get the following system of linear equations:

$$A + C = 0,$$
 $-A + B = 0,$ $-B = 1.$

By solving the system, we get:

$$A = -1, \qquad B = -1, \qquad C = 1,$$

Reminder:

$$\frac{1}{x^2(x-1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-1}.$$

• This implies

$$1 = (A + C)x^2 + (-A + B)x - B.$$

- The LHS and the RHS are identical as polynomials, and so they have exactly the same coefficients.
- So, we get the following system of linear equations:

$$A + C = 0$$
, $-A + B = 0$, $-B = 1$.

• By solving the system, we get:

$$A = -1, \quad B = -1, \quad C = 1,$$

• So, $\frac{1}{x^2(x-1)} = -\frac{1}{x} - \frac{1}{x^2} + \frac{1}{x-1}.$

In general, suppose p(x) and q(x) are polynomials with complex coefficients such that deg p(x) < deg q(x), and such that

$$q(x) = c(x - \alpha_1)^{\beta_1} \dots (x - \alpha_t)^{\beta_t},$$

where c is a non-zero complex number, $\alpha_1, \ldots, \alpha_t$ are pairwise distinct complex numbers, and β_1, \ldots, β_t are positive integers.

In general, suppose p(x) and q(x) are polynomials with complex coefficients such that deg $p(x) < \deg q(x)$, and such that

$$q(x) = c(x - \alpha_1)^{\beta_1} \dots (x - \alpha_t)^{\beta_t},$$

where c is a non-zero complex number, α_1,\ldots,α_t are pairwise distinct complex numbers, and β_1,\ldots,β_t are positive integers. Then there exist complex numbers

 $A_{1,1}, \ldots, A_{1,\beta_1}, \ldots, A_{t,1}, \ldots, A_{t,\beta_t}$ such that

$$\frac{p(x)}{q(x)} = \frac{A_{1,1}}{x - \alpha_1} + \dots + \frac{A_{1,\beta_1}}{(x - \alpha_1)^{\beta_1}} + \dots + \frac{A_{t,1}}{x - \alpha_t} + \dots + \frac{A_{t,\beta_t}}{(x - \alpha_t)^{\beta_t}}.$$

In general, suppose p(x) and q(x) are polynomials with complex coefficients such that deg p(x) < deg q(x), and such that

$$q(x) = c(x - \alpha_1)^{\beta_1} \dots (x - \alpha_t)^{\beta_t},$$

where c is a non-zero complex number, $\alpha_1, \ldots, \alpha_t$ are pairwise distinct complex numbers, and β_1, \ldots, β_t are positive integers. Then there exist complex numbers

 $A_{1,1}, \dots, A_{1,\beta_1}, \dots, A_{t,1}, \dots, A_{t,\beta_t}$ such that

$$\frac{p(x)}{q(x)} = \frac{A_{1,1}}{x - \alpha_1} + \dots + \frac{A_{1,\beta_1}}{(x - \alpha_1)^{\beta_1}} + \dots + \frac{A_{t,1}}{x - \alpha_t} + \dots + \frac{A_{t,\beta_t}}{(x - \alpha_t)^{\beta_t}}.$$

Finding $A_{1,1}, \ldots, A_{1,\beta_1}, \ldots, A_{t,1}, \ldots, A_{t,\beta_t}$ reduces to solving a system of linear equations, as in the example that we considered.

• For example:

$$\frac{x^5 - 7x + 1}{7(x - 2)^3(x + 1)^2(x + 2)^4} = \frac{A}{x - 2} + \frac{B}{(x - 2)^2} + \frac{C}{(x - 2)^3} + \frac{D}{x + 1} + \frac{E}{(x + 1)^2} +$$

 $+\frac{F}{x+2}+\frac{G}{(x+2)^2}+\frac{H}{(x+2)^3}+\frac{I}{(x+2)^4}.$

For example:

For example:
$$\frac{x^5 - 7x + 1}{7(x - 2)^3(x + 1)^2(x + 2)^4} = \frac{A}{x - 2} + \frac{B}{(x - 2)^2} + \frac{C}{(x - 2)^3} + \frac{D}{x + 1} + \frac{E}{(x + 1)^2} + \frac{E}{(x - 1)^3}$$

 $+\frac{F}{x+2}+\frac{G}{(x+2)^2}+\frac{H}{(x+2)^3}+\frac{I}{(x+2)^4}$.

• However, finding A, B, \ldots, I would be computationally

messy...

• For example:

$$\frac{x^{5-7x+1}}{7(x-2)^{3}(x+1)^{2}(x+2)^{4}} = \frac{A}{x-2} + \frac{B}{(x-2)^{2}} + \frac{C}{(x-2)^{3}} + \frac{D}{x+1} + \frac{E}{(x+1)^{2}} + \frac{F}{x+2} + \frac{G}{(x+2)^{2}} + \frac{H}{(x+2)^{3}} + \frac{I}{(x+2)^{4}}.$$

- However, finding A, B, ..., I would be computationally messy...
- See the Lecture Notes for another fully worked out example.

• What if we have $\frac{p(x)}{q(x)}$, where p(x), q(x) are polynomials such

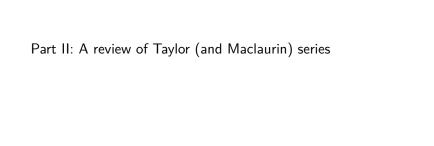
that deg $p(x) \ge \deg q(x)$?

- What if we have $\frac{p(x)}{q(x)}$, where p(x), q(x) are polynomials such that deg $p(x) \ge \deg q(x)$?
- Then we first perform polynomial division, and then we perform our procedure on the remainder.

- What if we have $\frac{p(x)}{q(x)}$, where p(x), q(x) are polynomials such that deg $p(x) > \deg q(x)$?
- Then we first perform polynomial division, and then we perform our procedure on the remainder.
- For instance:

$$\frac{3x^4 - 3x^3 + 1}{x^2(x - 1)} = 3x + \frac{1}{x^2(x - 1)}$$

$$= 3x - \frac{1}{y} - \frac{1}{y^2} + \frac{1}{y-1}$$



Part II: A review of Taylor (and Maclaurin) series

Definition

Let $f:A\subseteq\mathbb{R}\to\mathbb{R}$, let $a\in A$, and assume that A contains (as a subset) some open neighborhood of a, and that f is infinitely differentiable at a. Then the *Taylor series* of f centered at a is the series

$$T^{f,a}(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n.$$

Part II: A review of Taylor (and Maclaurin) series

Definition

Let $f:A\subseteq\mathbb{R}\to\mathbb{R}$, let $a\in A$, and assume that A contains (as a subset) some open neighborhood of a, and that f is infinitely differentiable at a. Then the *Taylor series* of f centered at a is the series

$$T^{f,a}(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n.$$

• The Taylor series $T^{f,0}(x)$ (here, we have a=0) is called the *Maclaurin series*.

Here are the Maclaurin series of some familiar functions (from analysis):

$$T^{\exp(x),0}(x) = 1 + x + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!} + \cdots$$

$$T^{\sin x,0}(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots;$$

$$T^{\cos x,0}(x) = 1 - \frac{x^2}{2} + \frac{x^4}{2} - \dots + (-1)^n \frac{x^{2n}}{2} + \dots$$

$$T^{\cos x,0}(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots;$$

$$T^{\ln(1+x),0}(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots;$$

$$T^{(1+x)^{\alpha},0}(x) = x - \frac{1}{2} + \frac{1}{3} - \dots + (-1) - \frac{1}{n} + \dots;$$

$$T^{(1+x)^{\alpha},0}(x) = {\binom{\alpha}{0}} + {\binom{\alpha}{1}}x + {\binom{\alpha}{2}}x^2 + \dots + {\binom{\alpha}{n}}x^n + \dots, \text{ where }$$

$$\alpha$$
 is a fixed real number;
$$T^{\frac{1}{1-x},0}(x) = 1 + x + x^2 + \cdots + x^n + \dots$$

Here are the Maclaurin series of some familiar functions (from analysis):

$$T^{\exp(x),0}(x) = 1 + x + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!} + \ldots;$$

$$T^{\sin x,0}(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots;$$

$$T^{\cos x,0}(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots;$$

$$T^{\ln(1+x),0}(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots;$$

$$T^{(1+x)^{\alpha},0}(x) = x - \frac{x}{2} + \frac{x}{3} - \dots + (-1)^n + \frac{x}{n} + \dots;$$

$$T^{(1+x)^{\alpha},0}(x) = \binom{\alpha}{0} + \binom{\alpha}{1}x + \binom{\alpha}{2}x^2 + \dots + \binom{\alpha}{n}x^n + \dots, \text{ where }$$

$$\alpha$$
 is a fixed real number;

$$T^{\frac{1}{1-x},0}(x) = 1 + x + x^2 + \dots + x^n + \dots$$

Let's verify (v).

Here are the Maclaurin series of some familiar functions (from analysis):

- $T^{\sin x,0}(x) = x \frac{x^3}{3!} + \frac{x^5}{5!} \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots;$
- $T^{\cos x,0}(x) = 1 \frac{x^2}{2!} + \frac{x^4}{4!} \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots;$
- $T^{\ln(1+x),0}(x) = x \frac{x^2}{2} + \frac{x^3}{3} \dots + (-1)^{n-1} \frac{x^n}{n} + \dots;$
- $T^{(1+x)^{\alpha},0}(x) = {\alpha \choose 0} + {\alpha \choose 1}x + {\alpha \choose 2}x^2 + \dots + {\alpha \choose n}x^n + \dots$, where α is a fixed real number;
- $\mathcal{T}^{\frac{1}{1-x},0}(x) = 1 + x + x^2 + \dots + x^n + \dots$
 - Let's verify (v).
 - Actually, what does $\binom{\alpha}{k}$ mean when α is a **real** number?

Definition

For a real number α and a non-negative integer k, we define

$$\binom{\alpha}{k} = \frac{\alpha(\alpha-1)\dots(\alpha-k+1)}{k!}.$$

In particular, $\binom{\alpha}{0} = 1$.

 $\mathcal{T}^{(1+x)^{\alpha},0}(x) = \binom{\alpha}{0} + \binom{\alpha}{1}x + \binom{\alpha}{2}x^2 + \dots + \binom{\alpha}{n}x^n + \dots$, where α is a fixed real number.

$$T^{(1+x)^{\alpha},0}(x) = \binom{\alpha}{0} + \binom{\alpha}{1}x + \binom{\alpha}{2}x^2 + \dots + \binom{\alpha}{n}x^n + \dots, \text{ where }$$
 is a fixed real number.

• By induction, for all integers k > 0:

$$\frac{d^k}{dx^k}(1+x)^{\alpha} = \alpha(\alpha-1)\dots(\alpha-k+1)(1+x)^{\alpha-k}.$$

$$T^{(1+x)^{\alpha},0}(x) = \binom{\alpha}{0} + \binom{\alpha}{1}x + \binom{\alpha}{2}x^2 + \dots + \binom{\alpha}{n}x^n + \dots, \text{ where }$$
 α is a fixed real number.

• By induction, for all integers k > 0:

$$\frac{d^k}{dx^k}(1+x)^{\alpha} = \alpha(\alpha-1)\dots(\alpha-k+1)(1+x)^{\alpha-k}.$$

So.

$$\frac{d}{dx^k}(1+x)^{\alpha} = \alpha(\alpha-1)\dots(\alpha-k+1)(1+x)^{\alpha-1}$$

$$\frac{\frac{d^k}{dx^k}(1+x)^{\alpha}\Big|_{x=0}}{k!} = \frac{\alpha(\alpha-1)...(\alpha-k+1)}{k!} = {\alpha \choose k}.$$

$$T^{(1+x)^{\alpha},0}(x) = \binom{\alpha}{0} + \binom{\alpha}{1}x + \binom{\alpha}{2}x^2 + \dots + \binom{\alpha}{n}x^n + \dots, \text{ where }$$
 α is a fixed real number.

• By induction, for all integers $k \ge 0$:

$$\frac{d^k}{dx^k}(1+x)^{\alpha} = \alpha(\alpha-1)\dots(\alpha-k+1)(1+x)^{\alpha-k}.$$

So,

$$\frac{\frac{d^k}{dx^k}(1+x)^{\alpha}\Big|_{x=0}}{k!} = \frac{\alpha(\alpha-1)...(\alpha-k+1)}{k!} = {\alpha \choose k}.$$

And now (v) follows.

• The Maclaurin series of a function f(x) need not converge for all values of x.

- The Maclaurin series of a function f(x) need not converge for all values of x.
- Even if does converge, it need not converge to f(x).

- The Maclaurin series of a function f(x) need not converge for all values of x.
- Even if does converge, it need not converge to f(x).
- Nevertheless, we have the following:

- **3** $\cos x = 1 \frac{x^2}{2!} + \frac{x^4}{4!} \dots + (-1)^{\frac{x^{2n}}{(2n)!}} + \dots$ for all $x \in \mathbb{R}$;
- ① $\ln(1+x) = x \frac{x^2}{2} + \frac{x^3}{3} \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$ for all $x \in (-1, 1]$;
- (1+x)^{\alpha} = $\binom{\alpha}{0}$ + $\binom{\alpha}{1}$ x + $\binom{\alpha}{2}$ x² + \cdots + $\binom{\alpha}{n}$ xⁿ + \cdots for $x \in (-1,1)$, where α is a fixed real number;

①
$$\exp(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$
 for all $x \in \mathbb{R}$;
② $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots$ for all $x \in \mathbb{R}$;

$$0 \quad \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^{\frac{x^{2n}}{(2n)!}} + \dots \text{ for all } x \in \mathbb{R};$$

①
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^7}{4!} - \dots + (-1)^{\frac{n}{(2n)!}} + \dots$$
 for all $x \in \mathbb{R}$;
② $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{2} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$ for all

(a)
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$$
 for all $x \in (-1,1]$;
(b) $(1+x)^{\alpha} = {\alpha \choose 2} + {\alpha \choose 2} x + {\alpha \choose 2} x^2 + \dots + {\alpha \choose 2} x^n + \dots$ for

$$x \in (-1,1];$$
(a) $(1+x)^{\alpha} = {\alpha \choose 0} + {\alpha \choose 1}x + {\alpha \choose 2}x^2 + \dots + {\alpha \choose n}x^n + \dots$ for $x \in (-1,1)$, where α is a fixed real number:

(1 + x)
$$^{\alpha}$$
 = $\binom{\alpha}{0}$ + $\binom{\alpha}{1}$ x + $\binom{\alpha}{2}$ x 2 + \cdots + $\binom{\alpha}{n}$ x n + \cdots for $x \in (-1,1)$, where α is a fixed real number;
(1 + x) $^{\alpha}$ = 1 + x + x 2 + \cdots + x n + \cdots for $x \in (-1,1)$.

- ① $\exp(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$ for all $x \in \mathbb{R}$;

- ① $\cos x = 1 \frac{x^2}{2!} + \frac{x^4}{4!} \dots + (-1)^{\frac{x^{2n}}{(2n)!}} + \dots$ for all $x \in \mathbb{R}$;
- $\ln(1+x) = x \frac{x^2}{2} + \frac{x^3}{2} \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$ for all $x \in (-1, 1]$:

 - $(1+x)^{\alpha} = {\binom{\alpha}{0}} + {\binom{\alpha}{1}}x + {\binom{\alpha}{2}}x^2 + \dots + {\binom{\alpha}{n}}x^n + \dots$ for $x \in (-1,1)$, where α is a fixed real number;
 - $\underbrace{1}_{1} = 1 + x + x^2 + \dots + x^n + \dots$ for $x \in (-1, 1)$.
- (5) is called the "Generalized Binomial Theorem."

①
$$\exp(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$
 for all $x \in \mathbb{R}$;

(1+x)^{\alpha} =
$$\binom{\alpha}{0}$$
 + $\binom{\alpha}{1}$ x + $\binom{\alpha}{2}$ x² + \cdots + $\binom{\alpha}{n}$ xⁿ + \cdots for $x \in (-1,1)$, where α is a fixed real number;
(1 + x)^{\alpha} = 1 + x + x² + \cdots + xⁿ + \cdots for $x \in (-1,1)$.

$$\frac{1}{1-x} = 1 + x + x^{-} + \dots + x^{n} + \dots \text{ for } x \in (-1,1)$$

- (5) is called the "Generalized Binomial Theorem."
- If α is a non-negative integer, then for integers $k>\alpha$, we have $\binom{\alpha}{k}=0$, and so

$$(1+x)^{\alpha} = {\alpha \choose 0} + {\alpha \choose 1} x + \dots + {\alpha \choose \alpha} x^{\alpha},$$

which is what we also get via the (finite) Binomial Theorem.

①
$$\exp(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$
 for all $x \in \mathbb{R}$;
② $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots$ for all $x \in \mathbb{R}$;

①
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^{\frac{x^{2n}}{(2n)!}} + \dots$$
 for all $x \in \mathbb{R}$;

os
$$x = 1 - \frac{x}{2!} + \frac{x}{4!} - \dots + (-1)^{(2n)!} + \dots$$
 for all $x \in \mathbb{R}$;
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$$
 for all

In(1+x) =
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$$
 for all $x \in (-1,1]$;

(1+x)^{\alpha} - \begin{pmatrix} \alpha \gamma + \left(\alpha) \chi + \left(\alpha) \chi^2 + \dots + \left(\alpha) \chi^n + \deft\ for

$$x \in (-1,1];$$

$$(1+x)^{\alpha} = {\alpha \choose 0} + {\alpha \choose 1}x + {\alpha \choose 2}x^2 + \dots + {\alpha \choose n}x^n + \dots \text{ for } x \in (-1,1), \text{ where } \alpha \text{ is a fixed real number;}$$

①
$$\exp(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$
 for all $x \in \mathbb{R}$;

②
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots$$
 for all $x \in \mathbb{R}$;

①
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^{\frac{x^{2n}}{(2n)!}} + \dots$$
 for all $x \in \mathbb{R}$;

- $\ln(1+x) = x \frac{x^2}{2} + \frac{x^3}{2} \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$ for all $x \in (-1, 1]$:
- **6** $(1+x)^{\alpha} = {\alpha \choose 0} + {\alpha \choose 1}x + {\alpha \choose 2}x^2 + \cdots + {\alpha \choose n}x^n + \ldots$ for
 - $x \in (-1,1)$, where α is a fixed real number;
- $\underbrace{1}_{1} = 1 + x + x^2 + \dots + x^n + \dots$ for $x \in (-1, 1)$. • For a constant $a \neq 0$, an integer $t \geq 1$, and a sufficiently small
- value of x, we can substitute ax^t for x in the above equations.

①
$$\exp(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$
 for all $x \in \mathbb{R}$;

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots$$
 for all $x \in \mathbb{R}$;

- ① $\cos x = 1 \frac{x^2}{2!} + \frac{x^4}{4!} \dots + (-1)^{\frac{x^{2n}}{(2n)!}} + \dots$ for all $x \in \mathbb{R}$;
- $\ln(1+x) = x \frac{x^2}{2} + \frac{x^3}{3} \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$ for all $x \in (-1, 1]$:
- (1+x)^{\alpha} = $\binom{\alpha}{0}$ + $\binom{\alpha}{1}$ x + $\binom{\alpha}{2}$ x² + \cdots + $\binom{\alpha}{n}$ xⁿ + \cdots for $x \in (-1,1)$, where α is a fixed real number;
- For a constant $a \neq 0$, an integer $t \geq 1$, and a sufficiently small value of x, we can substitute ax^t for x in the above equations.
 - For example, by substituting $2x^3$ for x in (6), we get that

$$\frac{1}{1-2x^3} = 1+2x^3+4x^6+\cdots+2^nx^{3n}+\ldots$$

①
$$\exp(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$
 for all $x \in \mathbb{R}$;

$$\circ$$
 sin $x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots$ for all $x \in \mathbb{R}$;

①
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^{\frac{x^{2n}}{(2n)!}} + \dots$$
 for all $x \in \mathbb{R}$;

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$$
 for all $x \in (-1,1];$

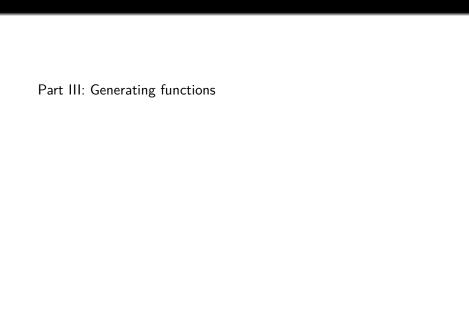
(1+x)^{$$\alpha$$} = $\binom{\alpha}{0}$ + $\binom{\alpha}{1}$ x + $\binom{\alpha}{2}$ x² + ··· + $\binom{\alpha}{n}$ xⁿ + ... for $x \in (-1,1)$, where α is a fixed real number;

- For a constant $a \neq 0$, an integer $t \geq 1$, and a sufficiently small value of x, we can substitute ax^t for x in the above equations.
- For example, by substituting $2x^3$ for x in (6), we get that

$$\frac{1}{1 \cdot 2x^3} = 1 + 2x^3 + 4x^6 + \dots + 2^n x^{3n} + \dots$$

• (6) follows from (5), with $\alpha = -1$ and -x substituted for x.

- $\sin x = x \frac{x^3}{3!} + \frac{x^5}{5!} \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots$ for all $x \in \mathbb{R}$;
- $\ln(1+x) = x \frac{x^2}{2} + \frac{x^3}{3} \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$ for all $x \in (-1,1];$
- (1+x)^{\alpha} = $\binom{\alpha}{0}$ + $\binom{\alpha}{1}$ x + $\binom{\alpha}{2}$ x² + \cdots + $\binom{\alpha}{n}$ xⁿ + \cdots for $x \in (-1,1)$, where α is a fixed real number;
- - In working with generating functions, we will not worry about exactly how small x needs to be to make our equations work.
 - We simply need that they work for values of x in some (no matter how small) open neighborhood of zero.



Part III: Generating functions

Motivating example:

How many ways are there to pay 21 Kč, assuming we have six 1 Kč coins, five 2 Kč coins, and four 5 Kč coins?

(Here, we treat all coins of the same value as the same. So, if we happened to use three $1\ \text{K\'c}$ coins, we do not care which particular three we chose.)

 \bullet We are looking for the number of solutions to the equation

$$i_1+i_2+i_5=21,$$
 with $i_1\in\{0,1,2,3,4,5,6\},\ i_2\in\{0,2,4,6,8,10\},$ and

with $i_1 \in \{0,1,2,3,4,5,6\}$, $i_2 \in \{0,2,4,6,8,10\}$, and $i_5 \in \{0,5,10,15,20\}$.

• We are looking for the number of solutions to the equation

$$i_1 + i_2 + i_5 = 21,$$

with $i_1 \in \{0,1,2,3,4,5,6\}$, $i_2 \in \{0,2,4,6,8,10\}$, and $i_5 \in \{0,5,10,15,20\}$.

• This is precisely the coefficient in front of x^{21} in the following polynomial:

$$p(x) = (1 + x + x^2 + x^3 + x^4 + x^5 + x^6) \times (1 + x^2 + x^4 + x^6 + x^8 + x^{10}) \times (1 + x^5 + x^{10} + x^{15} + x^{20})$$

• We are looking for the number of solutions to the equation

$$i_1 + i_2 + i_5 = 21$$
,

with $i_1 \in \{0, 1, 2, 3, 4, 5, 6\}$, $i_2 \in \{0, 2, 4, 6, 8, 10\}$, and $i_5 \in \{0, 5, 10, 15, 20\}$.

• This is precisely the coefficient in front of x^{21} in the following polynomial:

$$p(x) = (1 + x + x^2 + x^3 + x^4 + x^5 + x^6) \times (1 + x^2 + x^4 + x^6 + x^8 + x^{10}) \times (1 + x^5 + x^{10} + x^{15} + x^{20})$$

• Indeed, we obtain x^{21} by selecting some x^{i_1} from the first term of the product, some x^{i_2} from the second, and some x^{i_5} from the third, in such a way that $i_1 + i_2 + i_5 = 21$.

• We are looking for the number of solutions to the equation

$$i_1+i_2+i_5=21,$$
 with $i_1\in\{0,1,2,3,4,5,6\}$, $i_2\in\{0,2,4,6,8,10\}$, and

 $i_5 \in \{0, 5, 10, 15, 20\}.$

• This is precisely the coefficient in front of x^{21} in the following polynomial:

$$p(x) = (1 + x + x^2 + x^3 + x^4 + x^5 + x^6) \times (1 + x^2 + x^4 + x^6 + x^8 + x^{10}) \times (1 + x^5 + x^{10} + x^{15} + x^{20})$$

- Indeed, we obtain x^{21} by selecting some x^{i_1} from the first term of the product, some x^{i_2} from the second, and some x^{i_5} from the third, in such a way that $i_1 + i_2 + i_5 = 21$.
- The number of ways of selecting i₁, i₂, i₅ is precisely the coefficient in front of x²¹ in the polynomial p(x).

$$p(x) = (1 + x + x^{2} + x^{3} + x^{4} + x^{5} + x^{6}) \times (1 + x^{2} + x^{4} + x^{6} + x^{8} + x^{10}) \times (1 + x^{5} + x^{10} + x^{15} + x^{20})$$

$$p(x) = (1 + x + x^{2} + x^{3} + x^{4} + x^{5} + x^{6}) \times (1 + x^{2} + x^{4} + x^{6} + x^{8} + x^{10}) \times (1 + x^{5} + x^{10} + x^{15} + x^{20})$$

• More generally, for each integer $n \ge 0$, let a_n be the number of ways to pay $nK\check{c}$ using our coins.

$$p(x) = (1 + x + x^{2} + x^{3} + x^{4} + x^{5} + x^{6}) \times (1 + x^{2} + x^{4} + x^{6} + x^{8} + x^{10}) \times (1 + x^{5} + x^{10} + x^{15} + x^{20})$$

- More generally, for each integer $n \ge 0$, let a_n be the number of ways to pay nKč using our coins.
- Then a_n is precisely the coefficient in front of x^n in the polynomial p(x), i.e.

$$p(x) = \sum_{n=0}^{\infty} a_n x^n$$

$$p(x) = (1 + x + x^{2} + x^{3} + x^{4} + x^{5} + x^{6})$$

$$\times (1 + x^{2} + x^{4} + x^{6} + x^{8} + x^{10})$$

$$\times (1 + x^{5} + x^{10} + x^{15} + x^{20})$$

- More generally, for each integer $n \ge 0$, let a_n be the number of ways to pay $nK\check{c}$ using our coins.
- Then a_n is precisely the coefficient in front of x^n in the polynomial p(x), i.e.

$$p(x) = \sum_{n=0}^{\infty} a_n x^n$$

• We call p(x) the "generating function" of the sequence $\{a_n\}_{n=0}^{\infty}$.

$$p(x) = (1 + x + x^2 + x^3 + x^4 + x^5 + x^6) \times (1 + x^2 + x^4 + x^6 + x^8 + x^{10}) \times (1 + x^5 + x^{10} + x^{15} + x^{20})$$

- More generally, for each integer $n \ge 0$, let a_n be the number of ways to pay $nK\check{c}$ using our coins.
- Then a_n is precisely the coefficient in front of x^n in the polynomial p(x), i.e.

$$p(x) = \sum_{n=0}^{\infty} a_n x^n$$

- We call p(x) the "generating function" of the sequence $\{a_n\}_{n=0}^{\infty}$.
- In this case, it is a polynomial, but in general, it is a (potentially infinite) series.

Suppose $\{a_n\}_{n=0}^{\infty}$ is some infinite sequence of real (or complex) numbers. The *generating function* of this sequence is the power series

$$\sum_{n=0}^{\infty} a_n x^n.$$

Suppose $\{a_n\}_{n=0}^{\infty}$ is some infinite sequence of real (or complex) numbers. The *generating function* of this sequence is the power series

$$\sum_{n=0}^{\infty} a_n x^n.$$

• For example, the generating function of the constant sequence $1,1,1,1,1,\ldots$ is

$$1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n$$
.

Suppose $\{a_n\}_{n=0}^{\infty}$ is some infinite sequence of real (or complex) numbers. The *generating function* of this sequence is the power series

$$\sum_{n=0}^{\infty} a_n x^n.$$

• For example, the generating function of the constant sequence $1, 1, 1, 1, \dots$ is

$$1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n$$
.

• We recognize this as the Maclaurin series of the function $\frac{1}{1-x}$.

Suppose $\{a_n\}_{n=0}^{\infty}$ is some infinite sequence of real (or complex) numbers. The *generating function* of this sequence is the power series

$$\sum_{n=0}^{\infty} a_n x^n.$$

• For example, the generating function of the constant sequence $1, 1, 1, 1, \dots$ is

$$1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n$$
.

- We recognize this as the Maclaurin series of the function $\frac{1}{1-x}$.
- So, the generating function of $1, 1, 1, 1, 1, \ldots$ is $\frac{1}{1-x}$.

Suppose $\{a_n\}_{n=0}^{\infty}$ is some infinite sequence of real (or complex) numbers. The *generating function* of this sequence is the power series

$$\sum_{n=0}^{\infty} a_n x^n.$$

• For example, the generating function of the constant sequence $1, 1, 1, 1, \dots$ is

$$1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n$$
.

- We recognize this as the Maclaurin series of the function $\frac{1}{1-x}$.
- So, the generating function of $1, 1, 1, 1, 1, \ldots$ is $\frac{1}{1-x}$.
- An application of generating functions: difference equations.

For a positive integer k, a homogeneous linear difference equation of degree k is an equation of the form

$$y_{n+k} = a_{k-1}y_{n+k-1} + a_{k-2}y_{n+k-2} + \cdots + a_1y_{n+1} + a_0y_n,$$

where a_{k-1}, \ldots, a_0 are fixed constants.

For a positive integer k, a homogeneous linear difference equation of degree k is an equation of the form

$$y_{n+k} = a_{k-1}y_{n+k-1} + a_{k-2}y_{n+k-2} + \cdots + a_1y_{n+1} + a_0y_n,$$

where a_{k-1}, \ldots, a_0 are fixed constants.

 Often, sequences are defined by specifying the values of the first k terms, and by a homogeneous linear difference equation of degree k.

For a positive integer k, a homogeneous linear difference equation of degree k is an equation of the form

$$y_{n+k} = a_{k-1}y_{n+k-1} + a_{k-2}y_{n+k-2} + \cdots + a_1y_{n+1} + a_0y_n,$$

where a_{k-1}, \ldots, a_0 are fixed constants.

- Often, sequences are defined by specifying the values of the first k terms, and by a homogeneous linear difference equation of degree k.
- One famous example of such a sequence is the *Fibonacci* sequence $\{F_n\}_{n=0}^{\infty}$, defined recursively as follows:
 - $F_0 = 0$, $F_1 = 1$;
 - $F_{n+2} = F_n + F_{n+1}$ for all integers $n \ge 0$.

For a positive integer k, a homogeneous linear difference equation of degree k is an equation of the form

$$y_{n+k} = a_{k-1}y_{n+k-1} + a_{k-2}y_{n+k-2} + \cdots + a_1y_{n+1} + a_0y_n,$$

where a_{k-1}, \ldots, a_0 are fixed constants.

- Often, sequences are defined by specifying the values of the first k terms, and by a homogeneous linear difference equation of degree k.
- One famous example of such a sequence is the *Fibonacci* sequence $\{F_n\}_{n=0}^{\infty}$, defined recursively as follows:
 - $F_0 = 0$, $F_1 = 1$;
 - $F_{n+2} = F_n + F_{n+1}$ for all integers $n \ge 0$.
- So, we defined the Fibonacci sequence using a second degree homogeneous linear difference equation.

• Often, we are interested in finding a closed formula of a recursively defined sequence.

- Often, we are interested in finding a closed formula of a recursively defined sequence.
- For example, suppose we are given a sequence $\{a_n\}_{n=0}^{\infty}$, defined recursively as follows:
 - $a_0 = 1$
 - $a_{n+1} = 2a_n$ for all integers $n \ge 0$.

- Often, we are interested in finding a closed formula of a recursively defined sequence.
- For example, suppose we are given a sequence $\{a_n\}_{n=0}^{\infty}$, defined recursively as follows:
 - $a_0 = 1$
 - $a_{n+1} = 2a_n$ for all integers $n \ge 0$.
- Then a closed formula for the general term of the sequence $\{a_n\}_{n=0}^{\infty}$ is

$$a_n = 2^n$$
 for all integers $n \ge 0$.

- Often, we are interested in finding a closed formula of a recursively defined sequence.
- For example, suppose we are given a sequence $\{a_n\}_{n=0}^{\infty}$, defined recursively as follows:
 - $a_0 = 1$
 - $a_{n+1} = 2a_n$ for all integers $n \ge 0$.
- Then a closed formula for the general term of the sequence $\{a_n\}_{n=0}^{\infty}$ is

$$a_n = 2^n$$
 for all integers $n \ge 0$.

 This example was easy (we could simply guess the formula, and verify by induction that it works).

- Often, we are interested in finding a closed formula of a recursively defined sequence.
- For example, suppose we are given a sequence $\{a_n\}_{n=0}^{\infty}$, defined recursively as follows:
 - $a_0 = 1$
 - $a_{n+1} = 2a_n$ for all integers $n \ge 0$.
- Then a closed formula for the general term of the sequence $\{a_n\}_{n=0}^{\infty}$ is

$$a_n = 2^n$$
 for all integers $n \ge 0$.

- This example was easy (we could simply guess the formula, and verify by induction that it works).
- But often, this isn't so easy!

- Often, we are interested in finding a closed formula of a recursively defined sequence.
- For example, suppose we are given a sequence $\{a_n\}_{n=0}^{\infty}$, defined recursively as follows:
 - $a_0 = 1$
 - $a_{n+1} = 2a_n$ for all integers $n \ge 0$.
- Then a closed formula for the general term of the sequence $\{a_n\}_{n=0}^{\infty}$ is

$$a_n = 2^n$$
 for all integers $n \ge 0$.

- This example was easy (we could simply guess the formula, and verify by induction that it works).
- But often, this isn't so easy!
- What is a closed formula for the n-th Fibonacci number F_n ??

For a positive integer k, a homogeneous linear difference equation of degree k is an equation of the form

$$y_{n+k} = a_{k-1}y_{n+k-1} + a_{k-2}y_{n+k-2} + \cdots + a_1y_{n+1} + a_0y_n,$$

where a_{k-1}, \ldots, a_0 are fixed constants.

 In theory, generating functions can be used to find the closed formula of the general term of a sequence defined via any homogeneous linear difference equation.

For a positive integer k, a homogeneous linear difference equation of degree k is an equation of the form

$$y_{n+k} = a_{k-1}y_{n+k-1} + a_{k-2}y_{n+k-2} + \cdots + a_1y_{n+1} + a_0y_n,$$

where a_{k-1}, \ldots, a_0 are fixed constants.

- In theory, generating functions can be used to find the closed formula of the general term of a sequence defined via any homogeneous linear difference equation.
- However, in practice, if our difference equation is of high degree, this may be difficult or impossible to do due to problems with factoring polynomials of high degree.

For a positive integer k, a homogeneous linear difference equation of degree k is an equation of the form

$$y_{n+k} = a_{k-1}y_{n+k-1} + a_{k-2}y_{n+k-2} + \cdots + a_1y_{n+1} + a_0y_n,$$

where a_{k-1}, \ldots, a_0 are fixed constants.

- In theory, generating functions can be used to find the closed formula of the general term of a sequence defined via any homogeneous linear difference equation.
- However, in practice, if our difference equation is of high degree, this may be difficult or impossible to do due to problems with factoring polynomials of high degree.
- Let's show how this can be done for sequences defined via second degree homogeneous linear difference equations.

For a positive integer k, a homogeneous linear difference equation of degree k is an equation of the form

$$y_{n+k} = a_{k-1}y_{n+k-1} + a_{k-2}y_{n+k-2} + \cdots + a_1y_{n+1} + a_0y_n,$$

where a_{k-1}, \ldots, a_0 are fixed constants.

- In theory, generating functions can be used to find the closed formula of the general term of a sequence defined via any homogeneous linear difference equation.
- However, in practice, if our difference equation is of high degree, this may be difficult or impossible to do due to problems with factoring polynomials of high degree.
- Let's show how this can be done for sequences defined via second degree homogeneous linear difference equations.
- We do this for the Fibonacci sequence (and there is one more worked out example in the Lecture Notes).

Find a closed formula of the general term of the Fibonacci sequence $\{F_n\}_{n=0}^{\infty}$, defined recursively as follows:

- $F_0 = 0$, $F_1 = 1$;
- $F_{n+2} = F_n + F_{n+1}$ for all integers $n \ge 0$.

Solution.

Find a closed formula of the general term of the Fibonacci sequence $\{F_n\}_{n=0}^{\infty}$, defined recursively as follows:

- $F_0 = 0$, $F_1 = 1$;
- $F_{n+2} = F_n + F_{n+1}$ for all integers $n \ge 0$.

Solution. We consider the generating function

$$f(x) = \sum_{n=0}^{\infty} F_n x^n$$

for $\{F_n\}_{n=0}^{\infty}$.

Find a closed formula of the general term of the Fibonacci sequence $\{F_n\}_{n=0}^{\infty}$, defined recursively as follows:

- $F_0 = 0$, $F_1 = 1$;
- $F_{n+2} = F_n + F_{n+1}$ for all integers $n \ge 0$.

Solution. We consider the generating function

$$f(x) = \sum_{n=0}^{\infty} F_n x^n$$

for $\{F_n\}_{n=0}^{\infty}$. We manipulate the above series as follows:

Solution (continued). Reminder: $F_0 = 0$, $F_1 = 1$,

 $F_{n+2} = F_n + F_{n+1} \ \forall n \ge 0.$

Solution (continued). Reminder: $F_0 = 0$, $F_1 = 1$,

$$F_{n+2} = F_n + F_{n+1} \quad \forall n \ge 0.$$

$$f(x) = \sum_{n=1}^{\infty} F_n x^n$$

 $= x + x^2 \sum_{n=0}^{\infty} (F_n + F_{n+1}) x^n$

$$\begin{array}{ll}
2 = F_n + F_{n+1} \,\,\forall n \ge 0. \\
x) &= \sum_{n=0}^{\infty} F_n x^n
\end{array}$$

$$f(x) = \sum_{n=0}^{\infty} F_n x^n$$

= $F_0 + F_1 x + x^2 \sum_{n=0}^{\infty} F_{n+2} x^n$

$$(x) = \sum_{n=0}^{\infty} F_n x^n$$

$$\begin{aligned}
2 &= F_n + F_{n+1} \,\,\forall n \ge 0. \\
x) &= \sum_{n=0}^{\infty} F_n x^n
\end{aligned}$$

 $= x + (x^{2} \sum_{n=0}^{\infty} F_{n}x^{n}) + (x^{2} \sum_{n=0}^{\infty} F_{n+1}x^{n})$ $= x + (x^{2} \sum_{n=0}^{\infty} F_{n}x^{n}) + (x \sum_{n=0}^{\infty} F_{n+1}x^{n})$ $= x + (x^{2} \sum_{n=0}^{\infty} F_{n}x^{n}) + (x \sum_{n=0}^{\infty} F_{n}x^{n})$ $= x + (x^{2} \sum_{n=0}^{\infty} F_{n}x^{n}) + (x \sum_{n=0}^{\infty} F_{n}x^{n})$ $= x + x^{2}f(x) + xf(x)$

because $F_0 = 0$

Solution (continued). Reminder: $F_0 = 0$, $F_1 = 1$, $F_{n+2} = F_n + F_{n+1} \ \forall n \ge 0$.

$$f(x) = \sum_{n=0}^{\infty} F_n x^n$$

$$= F_0 + F_1 x + x^2 \sum_{n=0}^{\infty} F_{n+2} x^n$$

$$= x + x^2 \sum_{n=0}^{\infty} (F_n + F_{n+1}) x^n$$

$$= x + (x^2 \sum_{n=0}^{\infty} F_n x^n) + (x^2 \sum_{n=0}^{\infty} F_{n+1} x^n)$$

$$= x + (x^2 \sum_{n=0}^{\infty} F_n x^n) + (x \sum_{n=0}^{\infty} F_{n+1} x^{n+1})$$

$$= x + (x^2 \sum_{n=0}^{\infty} F_n x^n) + (x \sum_{n=0}^{\infty} F_n x^n)$$
because $F_0 = 0$

$$= x + x^2 f(x) + x f(x)$$

So, we got the equation $f(x) = x + x^2 f(x) + x f(x)$, which yields

$$f(x) = -\frac{x}{x^2 + x - 1}.$$

Solution (continued).

$$f(x) = -\frac{x}{x^2+x^2}$$

$$f(x) = -\frac{x}{x^2+x}$$

$$f(x) = -\frac{x}{x^2 + x}$$

$$f(x) = -\frac{x}{x^2 + x - 1}$$

$$-\frac{x}{x^2+x-}$$

 $= -\frac{x}{(x-\frac{-1-\sqrt{5}}{2})(x-\frac{-1+\sqrt{5}}{2})}$

 $= -\frac{\frac{1+\sqrt{5}}{2\sqrt{5}}}{x-\frac{-1-\sqrt{5}}{2\sqrt{5}}} - \frac{\frac{-1+\sqrt{5}}{2\sqrt{5}}}{x-\frac{-1+\sqrt{5}}{2\sqrt{5}}}$

via algebra

$$= \frac{1}{\sqrt{5}} \left(\left(-\sum_{n=0}^{\infty} \left(\frac{1-\sqrt{5}}{2} \right)^n x^n \right) + \left(\sum_{n=0}^{\infty} \left(\frac{1+\sqrt{5}}{2} \right)^n x^n \right) \right)$$

via quad. eq.

via partial fractions

$$= -\frac{1}{\sqrt{5}} \left(\frac{1}{1 - x^{\frac{1 - \sqrt{5}}{2}}} - \frac{1}{1 - x^{\frac{1 + \sqrt{5}}{2}}} \right)$$
$$= \frac{1}{\sqrt{5}} \left(\left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1 - \sqrt{5}}{2} \right)^{n} x^{n} \right) + \left(-\sum_{n=0}^{\infty} \left(\frac{1$$

 $= \sum_{n=0}^{\infty} \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n \sqrt{5}} x^n$

$$(\frac{1-x}{2})^{2}$$

Solution (continued). So:

$$f(x) = \sum_{n=0}^{\infty} F_n x^n$$

$$f(x) = \sum_{n=0}^{\infty} \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n \sqrt{5}} x^n$$

Solution (continued). So:

$$f(x) = \sum_{n=0}^{\infty} F_n x^n$$

$$f(x) = \sum_{n=0}^{\infty} \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n \sqrt{5}} x^n$$

So, we get:

$$F_n = \frac{(1+\sqrt{5})^n-(1-\sqrt{5})^n}{2^n\sqrt{5}}.$$

for all integers $n \ge 0$.

Solution (continued). So:

$$f(x) = \sum_{n=0}^{\infty} F_n x^n$$

$$f(x) = \sum_{n=0}^{\infty} \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n \sqrt{5}} x^n$$

So, we get:

$$F_n = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n \sqrt{5}}.$$

for all integers $n \ge 0$.

We can verify that this works by induction (see the Lecture Notes).

- We defined the Fibonacci sequence $\{F_n\}_{n=0}^{\infty}$ recursively as follows:
 - $F_0 = 0$, $F_1 = 1$;
 - $F_{n+2} = F_n + F_{n+1}$ for all integers $n \ge 0$.

- We defined the Fibonacci sequence $\{F_n\}_{n=0}^{\infty}$ recursively as follows:
 - $F_0 = 0$, $F_1 = 1$;
 - $F_{n+2} = F_n + F_{n+1}$ for all integers $n \ge 0$.
- We used generating functions to obtain the following closed formula for the general term of the Fibonacci sequence:

$$F_n = \frac{(1+\sqrt{5})^n-(1-\sqrt{5})^n}{2^n\sqrt{5}}.$$

for all integers $n \ge 0$.

- We defined the Fibonacci sequence $\{F_n\}_{n=0}^{\infty}$ recursively as follows:
 - $F_0 = 0$, $F_1 = 1$;
 - $F_{n+2} = F_n + F_{n+1}$ for all integers $n \ge 0$.
- We used generating functions to obtain the following closed formula for the general term of the Fibonacci sequence:

$$F_n = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n\sqrt{5}}.$$

for all integers $n \ge 0$.

The golden ratio is the number

$$\varphi = \frac{1+\sqrt{5}}{2}.$$

- We defined the Fibonacci sequence $\{F_n\}_{n=0}^{\infty}$ recursively as follows:
 - $F_0 = 0$. $F_1 = 1$:
 - $F_{n+2} = F_n + F_{n+1}$ for all integers $n \ge 0$.
- We used generating functions to obtain the following closed formula for the general term of the Fibonacci sequence:

$$F_n = \frac{(1+\sqrt{5})^n-(1-\sqrt{5})^n}{2^n\sqrt{5}}.$$

for all integers n > 0.

• The golden ratio is the number

$$\varphi = \frac{1 + \sqrt{5}}{2}.$$

• We have (check this!) that:

$$F_n = \frac{\varphi^n - (1-\varphi)^n}{\sqrt{5}} = \frac{\varphi^n - (-\varphi)^{-n}}{\sqrt{5}}.$$

 See the Lecture Notes for another example of a sequence defined via a homogeneous linear difference equation of degree 2.

- See the Lecture Notes for another example of a sequence defined via a homogeneous linear difference equation of degree 2.
- Sometimes, generating functions can be used to find a closed formula for the general term of a recursively defined sequence, even if the recurrence is **not** given by a homogeneous linear difference equation.

- See the Lecture Notes for another example of a sequence defined via a homogeneous linear difference equation of degree 2.
- Sometimes, generating functions can be used to find a closed formula for the general term of a recursively defined sequence, even if the recurrence is **not** given by a homogeneous linear difference equation.

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence defined recursively as follows:

- $a_0 = 1$;
- $a_{n+1} = 7a_n + 6^{n+1}$ for all integers $n \ge 0$.

Find a closed formula for a_n .

- See the Lecture Notes for another example of a sequence defined via a homogeneous linear difference equation of degree 2.
- Sometimes, generating functions can be used to find a closed formula for the general term of a recursively defined sequence, even if the recurrence is **not** given by a homogeneous linear difference equation.

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence defined recursively as follows:

- $a_0 = 1$;
- $a_{n+1} = 7a_n + 6^{n+1}$ for all integers $n \ge 0$.

Find a closed formula for a_n .

Solution. We consider the generating function $a(x) = \sum_{n=0}^{\infty} a_n x^n$ for the sequence $\{a_n\}_{n=0}^{\infty}$.

- See the Lecture Notes for another example of a sequence defined via a homogeneous linear difference equation of degree 2.
- Sometimes, generating functions can be used to find a closed formula for the general term of a recursively defined sequence, even if the recurrence is **not** given by a homogeneous linear difference equation.

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence defined recursively as follows:

- $a_0 = 1$;
- $a_{n+1} = 7a_n + 6^{n+1}$ for all integers $n \ge 0$.

Find a closed formula for a_n .

Solution. We consider the generating function $a(x) = \sum_{n=0}^{\infty} a_n x^n$ for the sequence $\{a_n\}_{n=0}^{\infty}$. We manipulate a(x) as follows.

Solution (continued). Reminder: $a_0 = 1$, $a_{n+1} = 7a_n + 6^{n+1}$ $\forall n \geq 0$.

$$a(x) = \sum_{n=0}^{\infty} a_n x^n$$

 $= a_0 + \sum_{n=0}^{\infty} a_{n+1} x^{n+1}$

 $= 7xa(x) + \frac{1}{1.6x}$

$$a(x) = \sum_{n=0}^{\infty} a_n x^n$$

 $= 1 + \sum_{n=0}^{\infty} (7a_n + 6^{n+1})x^{n+1}$

 $= 1 + 7x \left(\sum_{n=0}^{\infty} a_n x^n\right) + \left(\sum_{n=1}^{\infty} 6^n x^n\right)$

 $= 7x\left(\sum_{n=0}^{\infty}a_{n}x^{n}\right)+\left(\sum_{n=0}^{\infty}6^{n}x^{n}\right)$

Solution(continued). So, we got:

$$a(x) = 7xa(x) + \frac{1}{1 - 6x}$$

$$a(x) = \frac{1}{(7x - 1)(6x - 1)}$$

$$a(x) = \frac{1}{(7x - 1)(6x - 1)}.$$

Solution(continued). So, we got:

$$a(x) = 7xa(x) + \frac{1}{1 - 6x}$$

which yields

$$a(x) = \frac{1}{(7x-1)(6x-1)}.$$

via partial fractions

We now compute

$$a(x) = \frac{1}{(7x-1)(6x-1)}$$

$$a(x) = \frac{7}{(7x-1)(6x-1)}$$

$$= \frac{7}{1-7x} - \frac{6}{1-6x}$$

$$= (7 \sum_{n=0}^{\infty} 7^n x^n) - (6 \sum_{n=0}^{\infty} 6^n x^n)$$

$$= \sum_{n=0}^{\infty} (7^{n+1} - 6^{n+1}) x^n.$$

Solution (continued). So, we have

$$a(x) = \sum_{n=0}^{\infty} a_n x^n$$

$$a(x) = \sum_{n=0}^{\infty} (7^{n+1} - 6^{n+1})x^n$$

Solution (continued). So, we have

$$a(x) = \sum_{n=0}^{\infty} a_n x^n$$

$$a(x) = \sum_{n=0}^{\infty} (7^{n+1} - 6^{n+1}) x^n$$

We deduce that
$$a_n = 7^{n+1} - 6^{n+1}$$

for all integers $n \ge 0$.

Solution (continued). So, we have

$$a(x) = \sum_{n=0}^{\infty} a_n x^n$$

$$a(x) = \sum_{n=0}^{\infty} (7^{n+1} - 6^{n+1})x^n$$

We deduce that

$$a_n = 7^{n+1} - 6^{n+1}$$

for all integers $n \ge 0$.

We can check by induction that this is correct.