NDMI011: Combinatorics and Graph Theory 1

Lecture #1

Asymptotic notation. Estimates of factorials and binomial coefficients

Irena Penev

September 29, 2021

• Asymptotic comparison of functions

- Asymptotic comparison of functions
- We often need to make statements such as that, for example, the function n^2 is "greater" than the function 1000n, and "roughly the same" as the function $n^2 + n\sqrt{n}$.

- Asymptotic comparison of functions
- We often need to make statements such as that, for example, the function n^2 is "greater" than the function 1000n, and "roughly the same" as the function $n^2 + n\sqrt{n}$.
- Let us try to formalize this.

- Asymptotic comparison of functions
- We often need to make statements such as that, for example, the function n^2 is "greater" than the function 1000n, and "roughly the same" as the function $n^2 + n\sqrt{n}$.
- Let us try to formalize this.

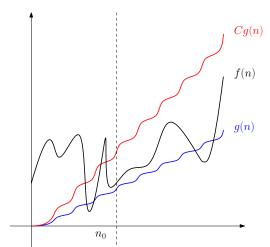
Given functions $f,g:\mathbb{N}\to\mathbb{R}$ (in practice, we generally assume f,g are positive-valued), notation

$$f(n) = O(g(n))$$

means that there exist constants $n_0 \in \mathbb{N}$ and $C \in \mathbb{R}$ s.t. $\forall n \in \mathbb{N}$, if $n \geq n_0$, then

$$|f(n)| \leq Cg(n)$$
.

• f(n) = O(g(n))



Given functions $f,g:\mathbb{N}\to\mathbb{R}$ (in practice, we generally assume f,g are positive-valued), notation

$$f(n) = O(g(n))$$

means that there exist constants $n_0 \in \mathbb{N}$ and $C \in \mathbb{R}$ s.t. $\forall n \in \mathbb{N}$, if $n \geq n_0$, then

$$|f(n)| \leq Cg(n).$$

Given functions $f,g:\mathbb{N}\to\mathbb{R}$ (in practice, we generally assume f,g are positive-valued), notation

$$f(n) = O(g(n))$$

means that there exist constants $n_0 \in \mathbb{N}$ and $C \in \mathbb{R}$ s.t. $\forall n \in \mathbb{N}$, if $n \geq n_0$, then

$$|f(n)| \leq Cg(n)$$
.

- Examples:
 - $0 10n^2 + 5 = O(n^2);$
 - ① $\ln n + 5 = O(n);$

Notation	Definition
f(n) = O(g(n))	$\exists n_0 \in \mathbb{N}, \ C \in \mathbb{R} \text{ s.t. } \forall n \in \mathbb{N},$
	if $n \ge n_0$ then $ f(n) \le Cg(n)$
f(n) = o(g(n))	$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$
$f(n) = \Omega(g(n))$	g(n) = O(f(n))
$f(n) = \Theta(g(n))$	$f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$
$f(n) \sim g(n)$	$\lim_{n\to\infty}\frac{f(n)}{g(n)}=1$

Definition
$\exists n_0 \in \mathbb{N}, \ C \in \mathbb{R} \text{ s.t. } \forall n \in \mathbb{N},$
if $n \geq n_0$ then $ f(n) \leq Cg(n)$
$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$
g(n) = O(f(n))
$f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$
$\lim_{n\to\infty}\frac{f(n)}{g(n)}=1$

$$12n^2 + n = O(n^2)$$

2
$$n = o(n^2)$$

3 $\frac{1}{12}n^3 = \Omega(n^2)$

$$\frac{1}{12}n^2 = \Theta(n^2)$$

$$=\Theta(t)$$

$$5n^2 + n \sim 5n^2 + \log n$$

INOCACION	Demittion	
f(n) = O(g(n))		
	if $n \ge n_0$ then $ f(n) \le Cg(n)$	
f(n)=o(g(n))	$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$	
$f(n) = \Omega(g(n))$	g(n) = O(f(n))	
$f(n) = \Theta(g(n))$	$f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$	
$f(n) \sim g(n)$	$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$	

•
$$f(n) = \Theta(g(n))$$
 is **not** the same as $f(n) \sim g(n)$.

• For instance, $2n^2 = \Theta(n^2)$, but $2n^2 \not\sim n^2$.

Notation

Notation	Definition
f(n) = O(g(n))	$\exists n_0 \in \mathbb{N}, \ C \in \mathbb{R} \text{ s.t. } \forall n \in \mathbb{N},$
	if $n \ge n_0$ then $ f(n) \le Cg(n)$
f(n)=o(g(n))	$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$
$f(n) = \Omega(g(n))$	g(n) = O(f(n))
$f(n) = \Theta(g(n))$	$f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$
$f(n) \sim g(n)$	$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$

Notation	Definition	
f(n) = O(g(n))	$\exists n_0 \in \mathbb{N}, \ C \in \mathbb{R} \text{ s.t. } \forall n \in \mathbb{N},$	
	if $n \ge n_0$ then $ f(n) \le Cg(n)$	
f(n)=o(g(n))	$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$	
$f(n) = \Omega(g(n))$	g(n) = O(f(n))	
$f(n) = \Theta(g(n))$	$f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$	
$f(n) \sim g(n)$	$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$	

•
$$f(n) = g(n) + O(h(n))$$
 means that $f(n) - g(n) = O(h(n))$.

Notation	Definition
f(n) = O(g(n))	$\exists n_0 \in \mathbb{N}, \ C \in \mathbb{R} \text{ s.t. } \forall n \in \mathbb{N},$
	if $n \geq n_0$ then $ f(n) \leq Cg(n)$
f(n)=o(g(n))	$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$
$f(n) = \Omega(g(n))$	g(n) = O(f(n))
$f(n) = \Theta(g(n))$	$f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$
$f(n) \sim g(n)$	$\lim_{n\to\infty}\frac{f(n)}{g(n)}=1$

•
$$f(n) = g(n) + O(h(n))$$
 means that $f(n) - g(n) = O(h(n))$.
• For example, $n^4 + n \ln n = n^4 + O(n^2)$ because $n \ln n = O(n^2)$.

Notation	Definition
f(n) = O(g(n))	$\exists n_0 \in \mathbb{N}, \ C \in \mathbb{R} \text{ s.t. } \forall n \in \mathbb{N},$
	if $n \geq n_0$ then $ f(n) \leq Cg(n)$
f(n)=o(g(n))	$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$
$f(n) = \Omega(g(n))$	g(n) = O(f(n))
$f(n) = \Theta(g(n))$	$f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$
$f(n) \sim g(n)$	$\lim_{n o \infty} rac{f(n)}{g(n)} = 1$

- f(n) = g(n) + O(h(n)) means that f(n) g(n) = O(h(n)). • For example, $n^4 + n \ln n = n^4 + O(n^2)$ because $n \ln n = O(n^2)$.
- We use similar notation for the symbols o, Ω , and Θ from the table above.

Notation	Meaning
O(1)	constant (or bounded above by a constant)
$O(\log n)$	logarithmic (or sublogarithmic)
O(n)	linear (or sublinear)
$O(n^2)$	quadratic (or subquadratic)
$O(n^3)$	cubic (or subcubic)
$n^{O(1)}$	polynomial (or subpolynomial)
$2^{O(n)}$	exponential (or subexponential)

Definition

For a positive integer n, we define n! (read "n factorial") to be

$$n! := n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot 2 \cdot 1.$$

Furthermore, as a convention, we set 0! = 1.

Definition

For a positive integer n, we define n! (read "n factorial") to be

$$n! := n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot 2 \cdot 1.$$

Furthermore, as a convention, we set 0! = 1.

• *n*! is the number of ways that *n* distinct objects can be arranged in a sequence.

Definition

For a positive integer n, we define n! (read "n factorial") to be

$$n! := n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot 2 \cdot 1.$$

Furthermore, as a convention, we set 0! = 1.

- n! is the number of ways that n distinct objects can be arranged in a sequence.
 - there are n choices for the first term of the sequence, n-1 choices for the second, n-2 for the third, etc.

Definition

For a positive integer n, we define n! (read "n factorial") to be

$$n! := n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot 2 \cdot 1.$$

Furthermore, as a convention, we set 0! = 1.

- n! is the number of ways that n distinct objects can be arranged in a sequence.
 - there are n choices for the first term of the sequence, n-1 choices for the second, n-2 for the third, etc.
- For instance, there are 3! = 6 ways to arrange the elements of $\{a, b, c\}$ in a sequence, namely:
 - a, b, c
 - a, c, b

- b, a, c
- b, c, a

- c, a, b
- \bigcirc c, b,

- For small values of n, computing n! is quite straightforward:
 - 1! = 1

• 0! = 1

- $2! = 2 \cdot 1 = 2$ • $3! = 3 \cdot 2 \cdot 1 = 6$
 - $4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$
 - $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$
 - $6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720$
 - $7! = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5040$
 - $8! = 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 40320$ $9! = 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 362880$

- For small values of n, computing n! is quite straightforward:
 - 0! = 11! = 1
 - $2! = 2 \cdot 1 = 2$
 - $3! = 3 \cdot 2 \cdot 1 = 6$
 - $4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$
 - $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$
 - $6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720$ • $7! = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5040$
 - $8! = 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 362880$ • $9! = 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 362880$
- However, n! is a very fast growing function, and so computing it for even moderately large n is impractical.

- For small values of n, computing n! is quite straightforward:
 - 0! = 1
 - 1! = 1• $2! = 2 \cdot 1 = 2$
 - $3! = 3 \cdot 2 \cdot 1 = 6$
 - $4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$
 - $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$
 - $6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720$
 - $7! = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5040$ • $8! = 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 40320$
 - $9! = 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 362880$
- However, n! is a very fast growing function, and so computing it for even moderately large n is impractical.
- How about some estimates (upper and lower bounds)?

• Obviously, $n! \leq n^n$.

- Obviously, $n! < n^n$.
- Our goal is to obtain two better estimates for n!, as follows:
 - $n^{n/2} \le n! \le (\frac{n+1}{2})^n$ for all non-negative integers n;

- Obviously, $n! < n^n$.
- Our goal is to obtain two better estimates for n!, as follows:
 - 0 $n^{n/2} \le n! \le (\frac{n+1}{2})^n$ for all non-negative integers n;
- In fact, we'll only prove the upper bounds. (See the Lecture Notes for the lower bounds.)

• We first prove the upper bound from (i).

Theorem 2.1

For all non-negative integers n, the following holds:

$$n^{n/2} \leq n! \leq (\frac{n+1}{2})^n$$

• We first prove the upper bound from (i).

Theorem 2.1

For all non-negative integers n, the following holds:

$$n^{n/2} \leq n! \leq (\frac{n+1}{2})^n$$

• We'll need the inequality of arithmetic and geometric means.

Inequality of arithmetic and geometric means

All non-negative real numbers x and y satisfy

$$\sqrt{xy} \le \frac{x+y}{2}$$
.

Proof: Lecture Notes.

For all non-negative integers n, the following holds:

$$n^{n/2} \leq n! \leq (\frac{n+1}{2})^n$$

Proof of the upper bound.

For all non-negative integers n, the following holds:

$$n^{n/2} \leq n! \leq (\frac{n+1}{2})^n$$

Proof of the upper bound. The statement is obviously true for n = 0 and n = 1. For an integer n > 2:

$$n! = \sqrt{\left(n \cdot (n-1) \cdot \dots \cdot 2 \cdot 1\right) \left(1 \cdot 2 \cdot \dots \cdot (n-1) \cdot n\right)}$$

$$= \left(\sqrt{n \cdot 1}\right) \left(\sqrt{(n-1) \cdot 2}\right) \dots \left(\sqrt{2 \cdot (n-1)}\right) \left(\sqrt{1 \cdot n}\right)$$

$$\stackrel{\mathsf{GM} \leq \mathsf{AM}}{\leq} \frac{n+1}{2} \cdot \frac{(n-1)+2}{2} \cdot \dots \cdot \frac{2+(n-1)}{2} \cdot \frac{1+n}{2}$$

$$= \left(\frac{n+1}{2}\right)^{n}.$$

• We now prove the upper bound from (ii).

Theorem 2.3

For all positive integers n, the following holds:

$$e(\frac{n}{e})^n \le n! \le en(\frac{n}{e})^n$$
.

• We now prove the upper bound from (ii).

Theorem 2.3

For all positive integers n, the following holds:

$$e(\frac{n}{e})^n \leq n! \leq en(\frac{n}{e})^n$$
.

 We will use the following inequality (which can be proven using calculus).

Proposition 2.2

For all real numbers x, we have $1 + x \le e^x$.

Proof: Lecture Notes.

For all positive integers n, the following holds:

$$e(\frac{n}{e})^n \le n! \le en(\frac{n}{e})^n$$
.

Proof of the upper bound.

For all positive integers n, the following holds:

$$e(\frac{n}{e})^n \le n! \le en(\frac{n}{e})^n$$
.

Proof of the upper bound. By induction on n. The statement is obviously true for n = 1.

For all positive integers n, the following holds:

$$e(\frac{n}{e})^n \leq n! \leq en(\frac{n}{e})^n$$
.

Proof of the upper bound. By induction on n. The statement is obviously true for n=1. Now fix a positive integer n, and assume $n! \le en(\frac{n}{e})^n$. WTS $(n+1)! \le e(n+1)(\frac{n+1}{e})^{n+1}$.

For all positive integers n, the following holds:

$$e(\frac{n}{n})^n \leq n! \leq en(\frac{n}{n})^n$$
.

Proof of the upper bound. By induction on n. The statement is obviously true for n = 1. Now fix a positive integer n, and assume $n! \le en(\frac{n}{a})^n$. WTS $(n+1)! \le e(n+1)(\frac{n+1}{a})^{n+1}$. We compute:

$$(n+1)!$$
 = $(n+1)\cdot n!$
 $\leq (n+1)\cdot en(\frac{n}{e})^n$ by ind. hyp.
= $\left(e(n+1)(\frac{n+1}{e})^{n+1}\right)\cdot (\frac{n}{n+1})^{n+1}e$.

For all positive integers n, the following holds:

$$e(\frac{n}{a})^n \leq n! \leq en(\frac{n}{a})^n$$
.

Proof of the upper bound. By induction on n. The statement is obviously true for n = 1. Now fix a positive integer n, and assume $n! \le en(\frac{n}{a})^n$. WTS $(n+1)! \le e(n+1)(\frac{n+1}{a})^{n+1}$. We compute:

$$(n+1)!$$
 = $(n+1) \cdot n!$
 $\leq (n+1) \cdot en(\frac{n}{e})^n$ by ind. hyp.
= $\left(e(n+1)(\frac{n+1}{e})^{n+1}\right) \cdot (\frac{n}{n+1})^{n+1}e$.

It remains to show that $(\frac{n}{n+1})^{n+1}e \leq 1$.

For all positive integers n, the following holds:

$$e(\frac{n}{e})^n \leq n! \leq en(\frac{n}{e})^n$$
.

Proof of the upper bound (continued). WTS $(\frac{n}{n+1})^{n+1}e \leq 1$.

For all positive integers n, the following holds:

$$e(\frac{n}{e})^n \le n! \le en(\frac{n}{e})^n$$
.

Proof of the upper bound (continued). WTS $(\frac{n}{n+1})^{n+1}e \leq 1$.

$$(\frac{n}{n+1})^{n+1}e = (1-\frac{1}{n+1})^{n+1}e$$

$$\leq (e^{-\frac{1}{n+1}})^{n+1}e \qquad \text{by Proposition 2.2}$$

$$(1+x\leq e^x \ \forall x\in\mathbb{R})$$
for $x=-\frac{1}{n+1}$

$$= 1.$$

- $n^{n/2} \le n! \le (\frac{n+1}{2})^n$ for all non-negative integers n;
- $e(\frac{n}{e})^n \le n! \le en(\frac{n}{e})^n for all positive integers n.$
 - ullet We have proven the upper bounds of both (i) and (ii).

- $n^{n/2} \le n! \le (\frac{n+1}{2})^n$ for all non-negative integers n;

 $e(\frac{n}{n})^n \le n! \le en(\frac{n}{n})^n$ for all positive integers n.

- We have proven the upper bounds of both (i) and (ii).
- See the Lecture Notes for the lower bounds.

- $n^{n/2} \le n! \le (\frac{n+1}{2})^n$ for all non-negative integers n;
- \bullet $e(\frac{n}{e})^n \le n! \le en(\frac{n}{e})^n$ for all positive integers n.
 - We have proven the upper bounds of both (i) and (ii).
 - See the Lecture Notes for the lower bounds.

Stirling's formula

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
.

Proof omitted.

Definition

For integers n and k s.t. $n \ge k \ge 0$, we define $\binom{n}{k}$, read "n choose k," as follows:

$$\binom{n}{k} = \frac{n(n-1)...(n-k+1)}{k \cdot (k-1) \cdot \dots \cdot 1} = \prod_{i=0}^{k-1} \frac{n-i}{k-i}.$$

Definition

For integers n and k s.t. $n \ge k \ge 0$, we define $\binom{n}{k}$, read "n choose k," as follows:

$$\binom{n}{k} = \frac{n(n-1)...(n-k+1)}{k\cdot(k-1)\cdots 1} = \prod_{i=0}^{k-1} \frac{n-i}{k-i}.$$

• Remark: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ and $\binom{n}{k} = \binom{n}{n-k}$.

Definition

For integers n and k s.t. $n \ge k \ge 0$, we define $\binom{n}{k}$, read "n choose k," as follows:

$$\binom{n}{k} = \frac{n(n-1)...(n-k+1)}{k\cdot(k-1)\cdots 1} = \prod_{i=0}^{k-1} \frac{n-i}{k-i}.$$

- Remark: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ and $\binom{n}{k} = \binom{n}{n-k}$.
- $\binom{n}{k}$ is the number of k-element subsets of an n-element set.

Definition

For integers n and k s.t. $n \ge k \ge 0$, we define $\binom{n}{k}$, read "n choose k," as follows:

$$\binom{n}{k} = \frac{n(n-1)\dots(n-k+1)}{k\cdot(k-1)\dots 1} = \prod_{i=0}^{k-1} \frac{n-i}{k-i}.$$

- Remark: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ and $\binom{n}{k} = \binom{n}{n-k}$.
- $\binom{n}{k}$ is the number of k-element subsets of an n-element set.
- For example, the number of 3-element subsets of the 5-element set $\{a, b, c, d, e\}$ is $\binom{5}{3} = 10$:
 - {a, b, c}
 {a, b, d}
 {a, b, e}
 {a, c, d}
 {a, c, e}

{a, d, e}
{b, c, d}
{b, c, e}
{b, d, e}
{c, d, e}

• Numbers $\binom{n}{k}$ are called binomial coefficients.

• Numbers $\binom{n}{\nu}$ are called *binomial coefficients*.

Binomial theorem

For all integers $n \ge 0$, and all real numbers x and y, the following holds:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

$$= \binom{n}{0} y^n + \binom{n}{1} x y^{n-1} + \dots + \binom{n}{n-1} x^{n-1} y + \binom{n}{n} x^n.$$

• Numbers $\binom{n}{k}$ are called *binomial coefficients*.

Binomial theorem

For all integers $n \ge 0$, and all real numbers x and y, the following holds:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

$$= \binom{n}{0} y^n + \binom{n}{1} x y^{n-1} + \dots + \binom{n}{n-1} x^{n-1} y + \binom{n}{n} x^n.$$

• As in the case of factorials, binomial coefficients are easy to compute for small values of n and k. However, even for moderately large n, k, computing $\binom{n}{k}$ becomes impractical.

• Numbers $\binom{n}{k}$ are called binomial coefficients.

Binomial theorem

For all integers $n \ge 0$, and all real numbers x and y, the following holds:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

= $\binom{n}{0} y^n + \binom{n}{1} x y^{n-1} + \dots + \binom{n}{n-1} x^{n-1} y + \binom{n}{n} x^n.$

- As in the case of factorials, binomial coefficients are easy to compute for small values of n and k. However, even for moderately large n, k, computing $\binom{n}{k}$ becomes impractical.
- So, as in the case of factorials, we would like to obtain some useful estimates (convenient upper and lower bounds) for binomial coefficients.

Theorem 3.1

For all integers n and k s.t. $n \ge k \ge 1$, the following holds:

$$(\frac{n}{k})^k \leq \binom{n}{k} \leq (\frac{en}{k})^k$$
.

Theorem 3.1

For all integers n and k s.t. $n \ge k \ge 1$, the following holds:

$$(\frac{n}{k})^k \leq \binom{n}{k} \leq (\frac{en}{k})^k$$
.

• Theorem 3.1 follows from the two propositions below.

Proposition 3.2

For all integers n and k s.t. $n \ge k \ge 1$, we have that

$$\left(\frac{n}{k}\right)^k \leq \binom{n}{k}$$

Proposition 3.3

For all integers n and k s.t. $n \ge k \ge 1$, we have that:

$$\sum_{i=0}^{k} \binom{n}{i} \leq \left(\frac{en}{k}\right)^{k}.$$

For all integers n and k s.t. $n \ge k \ge 1$, we have that

$$(\frac{n}{k})^k \leq \binom{n}{k}$$

Proof.

For all integers n and k s.t. $n \ge k \ge 1$, we have that

$$(\frac{n}{k})^k \leq \binom{n}{k}$$

Proof. Fix integers n, k s.t. $n \ge k \ge 1$. We observe that $\forall i \in \{0, \dots, k-1\}$, we have that $\frac{n-i}{k-i} \ge \frac{n}{k}$,

For all integers n and k s.t. $n \ge k \ge 1$, we have that

$$(\frac{n}{k})^k \leq \binom{n}{k}$$

Proof. Fix integers n, k s.t. $n \ge k \ge 1$. We observe that $\forall i \in \{0, \dots, k-1\}$, we have that $\frac{n-i}{k-i} \ge \frac{n}{k}$, and so

$$\binom{n}{k} = \prod_{i=0}^{k-1} \frac{n-i}{k-i} \ge \prod_{i=0}^{k-1} \frac{n}{k} = (\frac{n}{k})^k.$$

For all integers n and k s.t. $n \ge k \ge 1$, we have that:

$$\sum_{i=0}^{k} \binom{n}{i} \leq \left(\frac{en}{k}\right)^{k}.$$

Proof.

For all integers n and k s.t. $n \ge k \ge 1$, we have that:

$$\sum_{i=0}^{k} \binom{n}{i} \leq \left(\frac{en}{k}\right)^{k}.$$

Proof. Claim. For all real numbers x s.t. $0 < x \le 1$:

$$\sum_{i=0}^{k} \binom{n}{i} \leq \frac{(1+x)^n}{x^k}.$$

For all integers n and k s.t. $n \ge k \ge 1$, we have that:

$$\sum_{i=0}^{k} \binom{n}{i} \leq \left(\frac{en}{k}\right)^{k}.$$

Proof. Claim. For all real numbers x s.t. $0 < x \le 1$:

$$\sum_{i=0}^{k} \binom{n}{i} \leq \frac{(1+x)^n}{x^k}.$$

Proof of the Claim. By the Binomial theorem:

$$(1+x)^n = \sum_{i=0}^n \binom{n}{i} x^i \ge \sum_{i=0}^k \binom{n}{i} x^i.$$

For all integers n and k s.t. $n \ge k \ge 1$, we have that:

$$\sum_{i=0}^{k} \binom{n}{i} \leq \left(\frac{en}{k}\right)^{k}.$$

Proof. Claim. For all real numbers x s.t. $0 < x \le 1$:

$$\sum_{i=0}^{k} \binom{n}{i} \leq \frac{(1+x)^n}{x^k}.$$

Proof of the Claim. By the Binomial theorem:

$$(1+x)^n = \sum_{i=0}^n \binom{n}{i} x^i \geq \sum_{i=0}^k \binom{n}{i} x^i.$$

Dividing by x^k , we then obtain

$$\frac{(1+x)^n}{x^k} \geq \sum_{i=0}^k \binom{n}{i} \frac{1}{x^{k-i}} \geq \sum_{i=0}^k \binom{n}{i}$$

This proves the Claim.

For all integers n and k s.t. $n \ge k \ge 1$, we have that:

$$\sum_{i=0}^{k} \binom{n}{i} \leq \left(\frac{en}{k}\right)^{k}.$$

Proof (continued). Claim. For all real numbers x s.t. $0 < x \le 1$:

$$\sum_{i=0}^{k} \binom{n}{i} \leq \frac{(1+x)^n}{x^k}.$$

For all integers n and k s.t. $n \ge k \ge 1$, we have that:

$$\sum_{i=0}^{k} \binom{n}{i} \leq \left(\frac{en}{k}\right)^{k}.$$

Proof (continued). **Claim.** For all real numbers x s.t. $0 < x \le 1$:

$$\sum_{i=0}^{k} \binom{n}{i} \leq \frac{(1+x)^n}{x^k}.$$

We now compute apply the Claim to $x := \frac{k}{n}$, and we obtain

$$\sum_{i=0}^{k} \binom{n}{i} \leq (1 + \frac{k}{n})^n (\frac{n}{k})^k \quad \text{by the Claim for } x = \frac{k}{n}$$

$$\leq (e^{k/n})^n (\frac{n}{k})^k \quad \text{by Proposition 2.2 for } x = \frac{k}{n}$$

$$= (\frac{e^n}{k})^k.$$

Theorem 3.1

For all integers n and k s.t. $n \ge k \ge 1$, the following holds:

$$\left(\frac{n}{k}\right)^k \leq {n \choose k} \leq \left(\frac{en}{k}\right)^k$$
.

Theorem 3.1

For all integers n and k s.t. $n \ge k \ge 1$, the following holds:

$$(\frac{n}{k})^k \leq \binom{n}{k} \leq (\frac{en}{k})^k$$
.

• Theorem 3.1 works for all integers n and k s.t. $n \ge k \ge 1$.

Theorem 3.1

For all integers n and k s.t. $n \ge k \ge 1$, the following holds:

$$\left(\frac{n}{k}\right)^k \leq {n \choose k} \leq {\left(\frac{en}{k}\right)^k}.$$

- Theorem 3.1 works for all integers n and k s.t. n > k > 1.
- Our next goal is to find a good estimate for the largest among the binomial coefficients $\binom{n}{0}, \binom{n}{1}, \ldots, \binom{n}{n}$.

Theorem 3.1

For all integers n and k s.t. $n \ge k \ge 1$, the following holds:

$$\left(\frac{n}{k}\right)^k \leq {n \choose k} \leq {\left(\frac{en}{k}\right)^k}.$$

- Theorem 3.1 works for all integers n and k s.t. n > k > 1.
- Our next goal is to find a good estimate for the largest among the binomial coefficients $\binom{n}{0}, \binom{n}{1}, \ldots, \binom{n}{n}$.
- Which one is the largest?

$$\binom{n}{k} = \binom{n}{k-1} \cdot \frac{n-k+1}{k}.$$

$$\binom{n}{k} = \binom{n}{k-1} \cdot \frac{n-k+1}{k}$$
.

• So, for even *n*:

$$\binom{n}{0}$$
 < $\binom{n}{1}$ < ... < $\binom{n}{n/2}$ > ... > $\binom{n}{n-1}$ > $\binom{n}{n}$,

$$\binom{n}{k} = \binom{n}{k-1} \cdot \frac{n-k+1}{k}$$
.

• So, for even *n*:

$$\binom{n}{0} < \binom{n}{1} < \ldots < \binom{n}{n/2} > \ldots > \binom{n}{n-1} > \binom{n}{n},$$

• whereas for odd *n*:

$$\binom{n}{0} < \ldots < \binom{n}{\lfloor n/2 \rfloor} = \binom{n}{\lceil n/2 \rceil} > \ldots > \binom{n}{n}.$$

$$\binom{n}{k} = \binom{n}{k-1} \cdot \frac{n-k+1}{k}$$
.

• So, for even *n*:

$$\binom{n}{0} < \binom{n}{1} < \ldots < \binom{n}{n/2} > \ldots > \binom{n}{n-1} > \binom{n}{n},$$

• whereas for odd *n*:

$$\binom{n}{0} < \ldots < \binom{n}{\lfloor n/2 \rfloor} = \binom{n}{\lfloor n/2 \rfloor} > \ldots > \binom{n}{n}.$$

• In particular, $\binom{n}{\lfloor n/2 \rfloor} = \binom{n}{\lceil n/2 \rceil}$ is maximum among the binomial coefficients $\binom{n}{0}, \binom{n}{1}, \ldots, \binom{n}{n}$.

$$\binom{n}{k} = \binom{n}{k-1} \cdot \frac{n-k+1}{k}$$
.

• So, for even *n*:

$$\binom{n}{0} \quad < \quad \binom{n}{1} \quad < \quad \dots \quad < \quad \binom{n}{n/2} \quad > \quad \dots \quad > \quad \binom{n}{n-1} \quad > \quad \binom{n}{n},$$

• whereas for odd *n*:

$$\binom{n}{0} < \ldots < \binom{n}{\lfloor n/2 \rfloor} = \binom{n}{\lfloor n/2 \rfloor} > \ldots > \binom{n}{n}$$

- In particular, $\binom{n}{\lfloor n/2 \rfloor} = \binom{n}{\lceil n/2 \rceil}$ is maximum among the binomial coefficients $\binom{n}{0}, \binom{n}{1}, \ldots, \binom{n}{n}$.
- Let's find good bounds for $\binom{2m}{m}$.

For all integers $m \ge 1$, we have that

$$\frac{2^{2m}}{2\sqrt{m}} \le {2m \choose m} \le \frac{2^{2m}}{\sqrt{2m}}$$

Proof.

For all integers $m \ge 1$, we have that

$$\frac{2^{2m}}{2\sqrt{m}} \le {2m \choose m} \le \frac{2^{2m}}{\sqrt{2m}}$$

Proof. Fix an integer $m \ge 1$, and let

$$P = \frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2m-1)}{2 \cdot 4 \cdot 6 \cdot \cdots \cdot (2m)}.$$

For all integers $m \ge 1$, we have that

$$\frac{2^{2m}}{2\sqrt{m}} \leq {2m \choose m} \leq \frac{2^{2m}}{\sqrt{2m}}$$

Proof. Fix an integer $m \ge 1$, and let

$$P = \frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2m-1)}{2 \cdot 4 \cdot 6 \cdot \cdots \cdot (2m)}.$$

Then

$$P = \frac{1 \cdot 3 \cdot 5 \cdot \cdots (2m-1)}{2 \cdot 4 \cdot 6 \cdot \cdots (2m)}$$

$$= \frac{1 \cdot 3 \cdot 5 \cdot \cdots (2m-1)}{2 \cdot 4 \cdot 6 \cdot \cdots (2m)} \cdot \frac{2 \cdot 4 \cdot \cdots (2m)}{2 \cdot 4 \cdot \cdots (2m)}$$

$$= \frac{(2m)!}{2^{2m} (m!)^2}$$

$$= \frac{1}{2^{2m}} \binom{2m}{m}.$$

For all integers $m \ge 1$, we have that

$$\frac{2^{2m}}{2\sqrt{m}} \le \binom{2m}{m} \le \frac{2^{2m}}{\sqrt{2m}}$$

Proof (continued). Reminder:
$$P = \frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2m-1)}{2 \cdot 4 \cdot 6 \cdot \cdots \cdot (2m)} = \frac{1}{2^{2m}} {2m \choose m}$$
.

For all integers $m \ge 1$, we have that

$$\frac{2^{2m}}{2\sqrt{m}} \leq {2m \choose m} \leq \frac{2^{2m}}{\sqrt{2m}}$$

Proof (continued). Reminder: $P = \frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2m-1)}{2 \cdot 4 \cdot 6 \cdot \cdots \cdot (2m)} = \frac{1}{2^{2m}} {2m \choose m}$. It now suffices to show that $\frac{1}{2\sqrt{m}} \le P \le \frac{1}{\sqrt{2m}}$.

For all integers $m \geq 1$, we have that

$$\frac{2^{2m}}{2\sqrt{m}} \le {2m \choose m} \le \frac{2^{2m}}{\sqrt{2m}}$$

Proof (continued). Reminder: $P = \frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2m-1)}{2 \cdot 4 \cdot 6 \cdot \cdots \cdot (2m)} = \frac{1}{2^{2m}} {2m \choose m}$. It now suffices to show that $\frac{1}{2\sqrt{m}} \leq P \leq \frac{1}{\sqrt{2m}}$. We prove the upper bound for P, as follows:

$$1 \geq (1 - \frac{1}{2^2})(1 - \frac{1}{4^2})\dots(1 - \frac{1}{(2m)^2})$$
$$= \frac{2^2 - 1}{2^2} \cdot \frac{4^2 - 1}{4^2} \cdot \dots \cdot \frac{(2m)^2 - 1}{(2m)^2}$$

$$= \frac{1 \cdot 3}{2^2} \cdot \frac{3 \cdot 5}{4^2} \cdot \cdots \cdot \frac{(2m-1)(2m+1)}{(2m)^2}$$

$$= (2m+1)P^2,$$

which implies $P \leq \frac{1}{\sqrt{2m+1}} \leq \frac{1}{\sqrt{2m}}$.

$$\frac{1}{2m+1} \leq \frac{1}{\sqrt{2m}}$$
.

For all integers $m \ge 1$, we have that

$$\frac{2^{2m}}{2\sqrt{m}} \leq {2m \choose m} \leq \frac{2^{2m}}{\sqrt{2m}}$$

Proof (continued). Reminder: $P = \frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2m-1)}{2 \cdot 4 \cdot 6 \cdot \cdots \cdot (2m)} = \frac{1}{2^{2m}} {2m \choose m}$. It now suffices to show that $\frac{1}{2\sqrt{m}} \leq P \leq \frac{1}{\sqrt{2m}}$. We prove the upper bound for P, as follows:

$$1 \geq (1 - \frac{1}{2^2})(1 - \frac{1}{4^2})\dots(1 - \frac{1}{(2m)^2})$$

$$= \frac{2^2 - 1}{2^2} \cdot \frac{4^2 - 1}{4^2} \cdot \dots \cdot \frac{(2m)^2 - 1}{(2m)^2}$$

$$= \frac{1 \cdot 3}{2^2} \cdot \frac{3 \cdot 5}{4^2} \cdot \dots \cdot \frac{(2m - 1)(2m + 1)}{(2m)^2}$$

which implies $P \le \frac{1}{\sqrt{2m+1}} \le \frac{1}{\sqrt{2m}}$. Lower bound: Lecture Notes.

 $= (2m+1)P^2$

Stirling's formula

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
.

• Finally, we note that using Stirling's formula (which we stated without proof), we can obtain an even better approximation of $\binom{2m}{m}$, as follows:

$$\binom{2m}{m} \sim \frac{2^{2m}}{\sqrt{\pi m}}.$$

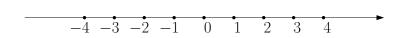
Stirling's formula

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
.

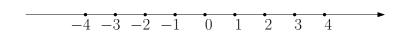
• Finally, we note that using Stirling's formula (which we stated without proof), we can obtain an even better approximation of $\binom{2m}{m}$, as follows:

$$\binom{2m}{m} \sim \frac{2^{2m}}{\sqrt{\pi m}}.$$

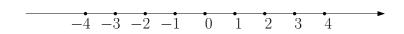
• So, for very large values of m, the function $g(m) = \frac{2^{2m}}{\sqrt{\pi m}}$ is a good approximation of $\binom{2m}{m}$.



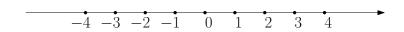
• We begin our walk at the origin (i.e. 0).



- We begin our walk at the origin (i.e. 0).
- At each step we move at random either one step to the left (-1) or one step to the right (+1), and we continue forever.



- We begin our walk at the origin (i.e. 0).
- At each step we move at random either one step to the left (-1) or one step to the right (+1), and we continue forever.
- We would like to estimate the number of times that we return to the origin in such a walk.



- We begin our walk at the origin (i.e. 0).
- At each step we move at random either one step to the left (-1) or one step to the right (+1), and we continue forever.
- We would like to estimate the number of times that we return to the origin in such a walk.
- Obviously, we can only return to the origin after an even number of steps: the number of time we move to the left should be the same as the number of times we move to the right.

- There are 2^{2m} random walks of length 2m, and exactly $\binom{2m}{m}$ of those walks end at the origin.
 - Indeed, we must go left exactly m times, and right exactly m times.
 - Out of 2m moves, we have $\binom{2m}{m}$ ways of selecting the m leftward moves (the other m moves are rightward).

$$-4 -3 -2 -1 0 1 2 3 4$$

- There are 2^{2m} random walks of length 2m, and exactly $\binom{2m}{m}$ of those walks end at the origin.
 - Indeed, we must go left exactly m times, and right exactly m times.
 - Out of 2m moves, we have $\binom{2m}{m}$ ways of selecting the m leftward moves (the other m moves are rightward).
- So, the probability of returning to the origin after exactly 2m steps is

$$\frac{\binom{2m}{m}}{2^{2m}}$$

$$-4 -3 -2 -1 0 1 2 3 4$$

- There are 2^{2m} random walks of length 2m, and exactly $\binom{2m}{m}$ of those walks end at the origin.
 - Indeed, we must go left exactly m times, and right exactly m times.
 - Out of 2m moves, we have $\binom{2m}{m}$ ways of selecting the m leftward moves (the other m moves are rightward).
- So, the probability of returning to the origin after exactly 2m steps is

$$\frac{\binom{2m}{m}}{2^{2m}}$$

 So, in an infinite random walk, the expected number of returns to the origin is

$$\sum_{m=1}^{\infty} \frac{\binom{2m}{m}}{2^{2m}}.$$

 Reminder: In an infinite random walk, the expected number of returns to the origin is

$$\sum_{m=1}^{\infty} \frac{\binom{2m}{m}}{2^{2m}}$$

 Reminder: In an infinite random walk, the expected number of returns to the origin is

$$\sum_{m=1}^{\infty} \frac{\binom{2m}{m}}{2^{2m}}.$$

• By Theorem 2.4, for all integers $m \ge 1$, we have

$$\frac{2^{2m}}{2\sqrt{m}} \leq {2m \choose m} \leq \frac{2^{2m}}{\sqrt{2m}}$$

• Reminder: In an infinite random walk, the expected number of returns to the origin is

$$\sum_{m=1}^{\infty} \frac{\binom{2m}{m}}{2^{2m}}.$$

• By Theorem 2.4, for all integers $m \ge 1$, we have

$$\frac{2^{2m}}{2\sqrt{m}} \leq {2m \choose m} \leq \frac{2^{2m}}{\sqrt{2m}}$$

• So, the expected number of returns to the origin is

$$\sum_{m=1}^{\infty} \frac{\binom{2m}{m}}{2^{2m}} \geq \sum_{m=1}^{\infty} \frac{1}{2\sqrt{m}} \geq \frac{1}{2} \sum_{m=1}^{\infty} \frac{1}{m} = \infty,$$

where we used the fact that the harmonic series $\sum_{m=1}^{\infty} \frac{1}{m}$ diverges to infinity.