NDMI011: Combinatorics and Graph Theory 1

Lecture #1

Asymptotic notation. Estimates of factorials and binomial coefficients

Irena Penev

1 Asymptotic notation

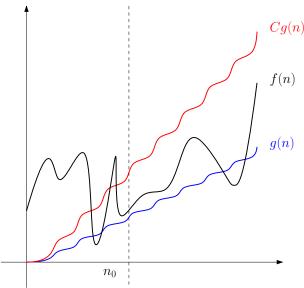
We often need to make statements such as that, for example, the function n^2 is "greater" than the function 1000n, and "roughly the same" as the function $n^2 + n\sqrt{n}$. Let us try to formalize this.

Given functions $f,g:\mathbb{N}\to\mathbb{R}$ (in practice, we generally assume f,g are positive-valued), notation

$$f(n) = O(g(n))$$

means that there exist constants $n_0 \in \mathbb{N}$ and $C \in \mathbb{R}$ such that for all $n \in \mathbb{N}$, if $n \geq n_0$, then

$$|f(n)| \le Cg(n).$$



Example 1.1.

- 1. $10n^2 + 5 = O(n^2);$
- 2. $\ln n + 5 = O(n);$
- 3. $n\sqrt{n} = O(n^2)$.

There are several other often-used pieces of notation, summarized below.

Notation	Definition
f(n) = O(g(n))	$\exists n_0 \in \mathbb{N}, C \in \mathbb{R} \text{ s.t. } \forall n \in \mathbb{N},$
	if $n \ge n_0$ then $ f(n) \le Cg(n)$
f(n) = o(g(n))	$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$
$f(n) = \Omega(g(n))$	g(n) = O(f(n))
$f(n) = \Theta(g(n))$	$f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$
$f(n) \sim g(n)$	$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$

Note that $f(n) = \Theta(g(n))$ is **not** the same as $f(n) \sim g(n)$. For instance, $2n^2 = \Theta(n^2)$, but $2n^2 \not\sim n^2$.

Example 1.2.

- 1. $12n^2 + n = O(n^2)$
- 2. $n = o(n^2)$
- 3. $\frac{1}{12}n^3 = \Omega(n^2)$
- 4. $\frac{1}{12}n^2 = \Theta(n^2)$
- 5. $5n^2 + n \sim 5n^2 + \log n$

Further f(n) = g(n) + O(h(n)) means that f(n) - g(n) = O(h(n)). For example, $n^4 + n \ln n = n^4 + O(n^2)$ because $n \ln n = O(n^2)$. We use similar notation for the symbols o, Ω , and Θ from the table above.

Here is some more commonly used notation.

Notation	Meaning
O(1)	constant (or bounded above by a constant)
$O(\log n)$	logarithmic (or sublogarithmic)
O(n)	linear (or sublinear)
$O(n^2)$	quadratic (or subquadratic)
$O(n^3)$	cubic (or subcubic)
$n^{O(1)}$	polynomial (or subpolynomial)
$2^{O(n)}$	exponential (or subexponential)

2 Estimating factorials

For a positive integer n, we define n! (read "n factorial") to be

$$n! := n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1.$$

Furthermore, as a convention, we set 0! = 1.

n! is the number of ways that n distinct objects can be arranged in a sequence: there are n choices for the first term of the sequence, n-1 choices for the second, n-2 for the third, etc. For instance, there are 3! = 6 ways to arrange the elements of the set $\{a, b, c\}$ in a sequence, namely:

- (1) a, b, c (3) b, a, c (5) c, a, b
- (2) a, c, b (4) b, c, a (6) c, b, a

For small values of n, computing n! is quite straightforward:

- 0! = 1
- 1! = 1
- $2! = 2 \cdot 1 = 2$
- $3! = 3 \cdot 2 \cdot 1 = 6$
- $4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$
- $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$
- $6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720$
- $7! = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5040$
- $8! = 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 40320$
- $9! = 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 362880$

etc. However, as we see from the list above, n! is a very fast increasing function, and computing it for even moderately large n is impractical. Nevertheless, in applications, it is often useful to know roughly how big n! is, that is, how it compares to various other functions of n. Obviously,¹

$$n! \leq n^n$$

for all non-negative integers n. In this lecture, we will obtain two better estimates for n!, as follows:

¹Recall that for all real numbers r, we have that $r^0 = 1$. In particular, $0^0 = 1$.

- (i) $n^{n/2} \le n! \le (\frac{n+1}{2})^n$ for all non-negative integers n;
- (ii) $e(\frac{n}{e})^n \le n! \le en(\frac{n}{e})^n$ for all positive integers n.

For non-negative real numbers x and y, the *arithmetic mean* of x and y is $\frac{x+y}{2}$, and the *geometric mean* of x and y is \sqrt{xy} . To prove (i), we will use the inequality of arithmetic and geometric means (below).

Inequality of arithmetic and geometric means. All non-negative real numbers x and y satisfy

$$\sqrt{xy} \leq \frac{x+y}{2}.$$

Proof. For non-negative real numbers x and y, we have the following sequence of equivalences:

$$(\sqrt{x} - \sqrt{y})^2 \ge 0$$

$$\iff x - 2\sqrt{xy} + y \ge 0$$

$$\iff x + y \ge 2\sqrt{xy}$$

$$\iff \frac{x + y}{2} \ge \sqrt{xy}.$$

Since the first inequality above is obviously true, so is the last one.

We are now ready to prove (i).

Theorem 2.1. For all non-negative integers n, the following holds:

$$n^{n/2} \leq n! \leq (\frac{n+1}{2})^n$$

Proof. For n = 0 and n = 1, the statement is obviously true. So, fix an integer $n \ge 2$.

We first prove the upper bound, as follows:

$$n! = \sqrt{\left(n \cdot (n-1) \cdots 2 \cdot 1\right) \left(1 \cdot 2 \cdots (n-1) \cdot n\right)}$$
$$= \sqrt{\left(n \cdot 1\right) \left((n-1) \cdot 2\right) \cdots \left(2 \cdot (n-1)\right) \left(1 \cdot n\right)}$$
$$= \left(\sqrt{n \cdot 1}\right) \left(\sqrt{(n-1) \cdot 2}\right) \cdots \left(\sqrt{2 \cdot (n-1)}\right) \left(\sqrt{1 \cdot n}\right)$$
$$\stackrel{(*)}{\leq} \frac{n+1}{2} \cdot \frac{(n-1)+2}{2} \cdots \frac{2+(n-1)}{2} \cdot \frac{1+n}{2}$$
$$= \left(\frac{n+1}{2}\right)^n,$$

where (*) follows from the inequality of arithmetic and geometric means.

It remains to prove the lower bound. First, we claim that for all $i \in \{1, \ldots, n\}$, we have that

$$i(n+1-i) \geq n.$$

Indeed, if i = 1 or i = n, then i(n + 1 - i) = n. On the other hand, for $i \in \{2, \ldots, n-1\}$, we have that $\min\{i, n+1-i\} \ge 2$ and $\max\{i, n+1-i\} \ge \frac{i+(n+1-i)}{2} \ge \frac{n}{2}$, and consequently,

$$i(n+1-i) = \min\{i, n+1-i\} \cdot \max\{i, n+1-i\} \ge 2 \cdot \frac{n}{2} = n,$$

as we had claimed. We now compute:

$$n! = \sqrt{\left(1 \cdot 2 \cdots (n-1) \cdot n\right) \left(n \cdot (n-1) \cdots 2 \cdot 1\right)}$$
$$= \sqrt{\left(1 \cdot n\right) \left(2 \cdot (n-1)\right) \cdots \left(2 \cdot (n-1)\right) \left(1 \cdot n\right)}$$
$$= \sqrt{\prod_{i=1}^{n} \left(\underbrace{i \cdot (n+1-i)}_{\geq n}\right)}$$
$$\geq \sqrt{n^{n}}$$
$$= n^{n/2},$$

which is what we needed.

It remains to prove (ii). We begin with the following proposition.

Proposition 2.2. For all real numbers x, we have

$$1 + x \le e^x.$$

Proof. Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = e^x - x - 1$. Then $f'(x) = e^x - 1$, and we have the following table:

So, f(x) reaches a global minimum at x = 0, and we have that f(0) = 0. So, $f(x) \ge 0$ for all $x \in \mathbb{R}$, and the result follows.

We will also need the well-known fact that

$$(1+\frac{1}{n})^n \le e$$

for all positive integers n^2 .

We are now ready to prove (ii).

Theorem 2.3. For all positive integers n, the following holds:

$$e(\frac{n}{e})^n \leq n! \leq en(\frac{n}{e})^n.$$

Proof. We proceed by induction on n. The claim is clearly true for n = 1. Now, fix a positive integer n, and assume inductively that $e(\frac{n}{e})^n \leq n! \leq en(\frac{n}{e})^n$. We must show that $e(\frac{n+1}{e})^{n+1} \leq (n+1)! \leq e(n+1)(\frac{n+1}{e})^{n+1}$. We first obtain the needed upper bound, i.e. we prove that $(n+1)! \leq e(n+1)! < e(n$

 $e(n+1)(\frac{n+1}{e})^{n+1}$. We first compute:

$$\begin{array}{lll} (n+1)! &=& (n+1) \cdot n! \\ &\leq& (n+1) \cdot en(\frac{n}{e})^n & \text{by the induction} \\ && & \text{hypothesis} \end{array} \\ &=& \left(e(n+1)(\frac{n+1}{e})^{n+1}\right) \cdot (\frac{n}{n+1})^{n+1}e. \end{array}$$

It now remains to show that $(\frac{n}{n+1})^{n+1}e \leq 1$, for then we will obtain precisely the inequality that we need. We obtain this as follows:

$$(\frac{n}{n+1})^{n+1}e = (1 - \frac{1}{n+1})^{n+1}e$$

$$\leq (e^{-\frac{1}{n+1}})^{n+1}e \qquad \text{by Proposition 2.2,}$$

for $x = -\frac{1}{n+1}$

$$= 1.$$

It remains to establish the lower bound, i.e. to prove that $e(\frac{n+1}{e})^{n+1} \leq$ (n+1)!. For this, we compute:

$$e(\frac{n+1}{e})^{n+1} = (n+1)(\frac{n}{e})^n \cdot (1+\frac{1}{n})^n$$

$$\leq (n+1)(\frac{n}{e})^n \cdot e \qquad \text{because } (1+\frac{1}{n})^n \leq e$$

$$\leq (n+1) \cdot n! \qquad \text{by the induction}$$

$$= (n+1)!$$

²As you saw in Analysis, the sequence $\{(1+\frac{1}{n})^n\}_{n=1}^{\infty}$ is strictly increasing and bounded above, and so by the Monotone Sequence Theorem, it converges. The constant e is defined as the limit of this sequence, i.e. $e := \lim_{n \to \infty} (1 + \frac{1}{n})^n$, and the inequality follows.

which is what we needed.

We complete this section by giving the following formula (without proof).

Stirling's formula. $\lim_{n \to \infty} \frac{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n}{n!} = 1.$

Using the notation that we introduced in section 1, Stirling's formula states that $(m)^{n}$

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$

So, for very large values of n, the function $f(n) = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ is a good approximation of n!.

3 Estimating binomial coefficients

For integers n and k such that $n \ge k \ge 0$, we define $\binom{n}{k}$, read "n choose k," as follows:

$$\binom{n}{k} = \frac{n(n-1)\dots(n-k+1)}{k\cdot(k-1)\dots\cdot 1} = \prod_{i=0}^{k-1} \frac{n-i}{k-i}.$$

Note that this implies that

$$\binom{n}{k} = \frac{n!}{k!(n-k)!},$$

and consequently,

$$\binom{n}{k} = \binom{n}{n-k}.$$

 $\binom{n}{k}$ is the number of k-element subsets of an n-element set.³ For example, the number of 3-element subsets of the 5-element set $\{a, b, c, d, e\}$ is $\binom{5}{3} = 10$; those subsets are:

- (1) $\{a, b, c\}$ (3) $\{a, b, e\}$ (5) $\{a, c, e\}$ (7) $\{b, c, d\}$ (9) $\{b, d, e\}$
- (2) $\{a, b, d\}$ (4) $\{a, c, d\}$ (6) $\{a, d, e\}$ (8) $\{b, c, e\}$ (10) $\{c, d, e\}$

We note that for all non-negative integers n, we have that $\binom{n}{0} = 1$. In particular, $\binom{0}{0} = 1$.

Numbers $\binom{n}{k}$ are called *binomial coefficients*. You are already familiar with the binomial theorem (below).

³Indeed, there are n(n-1)...(n-k+1) sequences of k different elements of an *n*-element set: there are n ways to select the first element, n-1 ways to select the second element, ..., and n-k+1 ways to select the k-th element. Since every k-element set can be ordered in k! ways, there are exactly $\frac{n(n-1)...(n-k+1)}{k!} = \binom{n}{k}$ many k-element subsets of an *n*-element set.

Binomial theorem. For all integers $n \ge 0$, and all real numbers x and y, the following holds:

$$(x+y)^n = \sum_{k=0}^n {n \choose k} x^k y^{n-k}$$

= ${n \choose 0} y^n + {n \choose 1} x y^{n-1} + \dots + {n \choose n-1} x^{n-1} y + {n \choose n} x^n.$

As in the case of factorials, binomial coefficients are easy to compute for small values of n and k. However, even for moderately large n, k, computing $\binom{n}{k}$ becomes impractical. So, as in the case of factorials, we would like to obtain some useful estimates (convenient upper and lower bounds) for binomial coefficients.

3.1 Estimating the binomial coefficient $\binom{n}{k}$

Our goal is to prove the following theorem.

Theorem 3.1. For all integers n and k such that $n \ge k \ge 1$, the following holds:

$$(\frac{n}{k})^k \leq \binom{n}{k} \leq (\frac{en}{k})^k.$$

Theorem 3.1 readily follows from Propositions 3.2 and 3.3 (below). Proposition 3.2 establishes the lower bound from Theorem 3.1, and Proposition 3.3 establishes the upper bound.⁴

Proposition 3.2. For all integers n and k such that $n \ge k \ge 1$, we have that

$$(\frac{n}{k})^k \leq \binom{n}{k}$$

Proof. Fix integers n, k such that $n \ge k \ge 1$. We observe that for all $i \in \{0, \ldots, k-1\}$, we have that $\frac{n-i}{k-i} \ge \frac{n}{k}$,⁵ and so

$$\binom{n}{k} = \prod_{i=0}^{k-1} \frac{n-i}{k-i} \ge \prod_{i=0}^{k-1} \frac{n}{k} = (\frac{n}{k})^k,$$

which is what we needed.

Proposition 3.3. For all integers n and k such that $n \ge k \ge 1$, we have that:

$$\sum_{i=0}^k \binom{n}{i} \leq (\frac{en}{k})^k.$$

Proof. Fix integers n and k such that $n \ge k \ge 1$.

 $^{^4\}mathrm{In}$ fact, the inequality from Proposition 3.3 is stronger than the upper bound from Theorem 3.1.

⁵Indeed, this is equivalent to $(n-i)k \ge n(k-i)$, which is in turn equivalent to $ni \ge ki$, which is true since $n \ge k$ and $i \ge 0$.

Claim. For all real numbers x such that $0 < x \leq 1$, we have that

$$\sum_{i=0}^k \binom{n}{i} \leq \frac{(1+x)^n}{x^k}.$$

Proof of the Claim. Fix a real number x such that $0 < x \leq 1$. By the Binomial theorem, we have that

$$(1+x)^n = \sum_{i=0}^n {n \choose i} x^i$$

$$\geq \sum_{i=0}^k {n \choose i} x^i \quad \text{since } n \ge k \text{ and } x > 0$$

Dividing by x^k , we then obtain

$$\frac{(1+x)^n}{x^k} \geq \sum_{i=0}^k \binom{n}{i} \frac{1}{x^{k-i}}$$
$$\geq \sum_{i=0}^k \binom{n}{i} \qquad \text{because } 0 < x \leq 1$$

This proves the Claim. \blacksquare

We now apply the Claim to $x := \frac{k}{n}$, and we obtain

$$\sum_{i=0}^{k} \binom{n}{i} \leq (1+\frac{k}{n})^{n} (\frac{n}{k})^{k} \quad \text{by the Claim for } x = \frac{k}{n}$$
$$\leq (e^{k/n})^{n} (\frac{n}{k})^{k} \quad \text{by Proposition 2.2 for } x = \frac{k}{n}$$
$$= (\frac{en}{k})^{k},$$

which is what we needed.

3.2 Estimating the binomial coefficient $\binom{2n}{n}$

Note that for all integers n and k such that $n \ge k \ge 1$, we have that

$$\binom{n}{k} = \binom{n}{k-1} \cdot \frac{n-k+1}{k}.$$

This implies that⁶ for even n, we have that

$$\binom{n}{0} < \binom{n}{1} < \ldots < \binom{n}{n/2} > \ldots > \binom{n}{n-1} > \binom{n}{n},$$

whereas for odd n, we have that

$$\binom{n}{0} < \binom{n}{1} < \dots < \binom{n}{\lfloor n/2 \rfloor} = \binom{n}{\lceil n/2 \rceil} > \dots > \binom{n}{n-1} > \binom{n}{n}.$$

⁶Check this!

In particular, $\binom{n}{\lfloor n/2 \rfloor} = \binom{n}{\lceil n/2 \rceil}$ is maximum among the binomial coefficients $\binom{n}{0}, \binom{n}{1}, \ldots, \binom{n}{n}$. For this reason, it is of particular interest to find good estimates for the behavior of binomial coefficients of the form $\binom{n}{\lfloor n/2 \rfloor}$.

Theorem 3.4. For all integers $m \ge 1$, we have that

$$\frac{2^{2m}}{2\sqrt{m}} \leq \binom{2m}{m} \leq \frac{2^{2m}}{\sqrt{2m}}$$

Proof. Fix an integer $m \ge 1$, and let

$$P = \frac{1 \cdot 3 \cdot 5 \cdots \cdot (2m-1)}{2 \cdot 4 \cdot 6 \cdots \cdot (2m)}.$$

Then

$$P = \frac{1 \cdot 3 \cdot 5 \cdots (2m-1)}{2 \cdot 4 \cdot 6 \cdots (2m)}$$

= $\frac{1 \cdot 3 \cdot 5 \cdots (2m-1)}{2 \cdot 4 \cdot 6 \cdots (2m)} \cdot \frac{2 \cdot 4 \cdots (2m)}{2 \cdot 4 \cdots (2m)}$
= $\frac{(2m)!}{2^{2m} (m!)^2}$
= $\frac{1}{2^{2m}} {2m \choose m}.$

It now suffices to show that

$$\frac{1}{2\sqrt{m}} \leq P \leq \frac{1}{\sqrt{2m}},$$

for the result then follows immediately.

We first establish the upper bound for P. For this, we observe that

$$1 \geq (1 - \frac{1}{2^2})(1 - \frac{1}{4^2})\dots(1 - \frac{1}{(2m)^2})$$
$$= \frac{2^2 - 1}{2^2} \cdot \frac{4^2 - 1}{4^2} \cdot \dots \cdot \frac{(2m)^2 - 1}{(2m)^2}$$
$$= \frac{1 \cdot 3}{2^2} \cdot \frac{3 \cdot 5}{4^2} \cdot \dots \cdot \frac{(2m - 1)(2m + 1)}{(2m)^2}$$
$$= (2m + 1)P^2,$$

and consequently, $P^2 \leq \frac{1}{2m+1}$, which in turn implies that

$$P \leq \frac{1}{\sqrt{2m+1}} \leq \frac{1}{\sqrt{2m}},$$

which is what we needed.

It remains to establish our lower bound for P. The proof is similar as for the upper bound. We observe the following:

$$1 \geq (1 - \frac{1}{3^2})(1 - \frac{1}{5^2})\dots(1 - \frac{1}{(2m-1)^2})$$
$$= \frac{3^2 - 1}{3^2} \cdot \frac{5^2 - 1}{5^2} \dots \frac{(2m-1)^2 - 1}{(2m-1)^2}$$
$$= \frac{2 \cdot 4}{3^2} \cdot \frac{4 \cdot 6}{5^2} \dots \frac{(2m-2)(2m)}{(2m-1)^2}$$
$$= \frac{1}{2(2m)P^2},$$

which implies that

$$P \geq \frac{1}{2\sqrt{m}},$$

which is what we needed. This completes the argument.

Finally, we note that using Stirling's formula (which we stated without proof), we can obtain an even better approximation of $\binom{2m}{m}$, as follows:

$$\lim_{m \to \infty} \left(\left(\frac{2^{2m}}{\sqrt{\pi m}} \right) / \binom{2m}{m} \right) = 1.$$

Using the notation from section 1, this formula becomes

$$\binom{2m}{m} \sim \frac{2^{2m}}{\sqrt{\pi m}}.$$

So, for very large values of m, the function $g(m) = \frac{2^{2m}}{\sqrt{\pi m}}$ is a good approximation of $\binom{2m}{m}$.

4 An application: random walks

Reminder: The series $\sum_{m=1}^{\infty} \frac{1}{m}$ is called the *harmonic series*. This series diverges to infinity, i.e.

$$\sum_{m=1}^{\infty} \frac{1}{m} = +\infty$$

Let us now consider an application of our estimate for binomial coefficients. We consider the integer number line (\mathbb{Z}). We begin our walk at the origin (i.e. 0), and at each step we move either one step to the left (-1) or one step to the right (+1).

$$-4 -3 -2 -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4$$

So, our position in one such walk may be

$$0, 1, 2, 3, 2, 3, 2, 1, 0, -1, -2, -1, -2, -1, 0, 1, \dots$$

We would like to estimate the number of times that we will return to the origin in such a walk. Obviously, we can only return to the origin after an even number of steps.⁷ There are 2^{2m} random walks of length 2m, and exactly $\binom{2m}{m}$ of those walks end at the origin.⁸ So, the probability of returning to the origin after exactly 2m steps is

$$\frac{\binom{2m}{m}}{2^{2m}}.$$

This means that in an infinite random walk, the expected number of returns to the origin is

$$\sum_{m=1}^{\infty} \frac{\binom{2m}{m}}{2^{2m}}.$$

By Theorem 3.4, we have that

$$\sum_{m=1}^{\infty} \frac{\binom{2m}{m}}{2^{2m}} \geq \sum_{m=1}^{\infty} \frac{1}{2\sqrt{m}} \stackrel{(*)}{=} \infty,$$

where in (*) we used the fact that

$$\sum_{m=1}^{\infty} \frac{1}{2\sqrt{m}} = \frac{1}{2} \sum_{m=1}^{\infty} \frac{1}{\sqrt{m}} \ge \frac{1}{2} \sum_{m=1}^{\infty} \frac{1}{m} = \infty.$$

Thus, we can expect that in an infinite one-dimensional random walk starting at the origin, we will return to the origin an infinite number of times.

⁷After an odd number of steps, our position is an odd integer!

⁸Indeed, we must go left exactly m times, and right exactly m times. Out of 2m moves, we have $\binom{2m}{m}$ ways of selecting the m leftward moves (the other m moves are rightward).