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Lecture #1

Asymptotic notation. Estimates of factorials and

binomial coefficients

Irena Penev

1 Asymptotic notation

We often need to make statements such as that, for example, the function n2

is “greater” than the function 1000n, and “roughly the same” as the function
n2 + n

√
n. Let us try to formalize this.

Given functions f, g : N → R (in practice, we generally assume f, g are
positive-valued), notation

f(n) = O(g(n))

means that there exist constants n0 ∈ N and C ∈ R such that for all n ∈ N,
if n ≥ n0, then

|f(n)| ≤ Cg(n).

g(n)

Cg(n)

f (n)

n0
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Example 1.1.

1. 10n2 + 5 = O(n2);

2. lnn+ 5 = O(n);

3. n
√
n = O(n2).

There are several other often-used pieces of notation, summarized below.

Notation Definition

f(n) = O(g(n)) ∃n0 ∈ N, C ∈ R s.t. ∀n ∈ N,
if n ≥ n0 then |f(n)| ≤ Cg(n)

f(n) = o(g(n)) lim
n→∞

f(n)
g(n) = 0

f(n) = Ω(g(n)) g(n) = O(f(n))

f(n) = Θ(g(n)) f(n) = O(g(n)) and f(n) = Ω(g(n))

f(n) ∼ g(n) lim
n→∞

f(n)
g(n) = 1

Note that f(n) = Θ(g(n)) is not the same as f(n) ∼ g(n). For instance,
2n2 = Θ(n2), but 2n2 ̸∼ n2.

Example 1.2.

1. 12n2 + n = O(n2)

2. n = o(n2)

3. 1
12n

3 = Ω(n2)

4. 1
12n

2 = Θ(n2)

5. 5n2 + n ∼ 5n2 + log n

Further f(n) = g(n) +O(h(n)) means that f(n)− g(n) = O(h(n)). For
example, n4 + n lnn = n4 +O(n2) because n lnn = O(n2). We use similar
notation for the symbols o, Ω, and Θ from the table above.

Here is some more commonly used notation.

Notation Meaning

O(1) constant (or bounded above by a constant)

O(log n) logarithmic (or sublogarithmic)

O(n) linear (or sublinear)

O(n2) quadratic (or subquadratic)

O(n3) cubic (or subcubic)

nO(1) polynomial (or subpolynomial)

2O(n) exponential (or subexponential)
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2 Estimating factorials

For a positive integer n, we define n! (read “n factorial”) to be

n! := n · (n− 1) · (n− 2) · · · · · 2 · 1.

Furthermore, as a convention, we set 0! = 1.
n! is the number of ways that n distinct objects can be arranged in a

sequence: there are n choices for the first term of the sequence, n− 1 choices
for the second, n− 2 for the third, etc. For instance, there are 3! = 6 ways
to arrange the elements of the set {a, b, c} in a sequence, namely:

(1) a, b, c

(2) a, c, b

(3) b, a, c

(4) b, c, a

(5) c, a, b

(6) c, b, a

For small values of n, computing n! is quite straightforward:

� 0! = 1

� 1! = 1

� 2! = 2 · 1 = 2

� 3! = 3 · 2 · 1 = 6

� 4! = 4 · 3 · 2 · 1 = 24

� 5! = 5 · 4 · 3 · 2 · 1 = 120

� 6! = 6 · 5 · 4 · 3 · 2 · 1 = 720

� 7! = 7 · 6 · 5 · 4 · 3 · 2 · 1 = 5040

� 8! = 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 40320

� 9! = 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 362880

etc. However, as we see from the list above, n! is a very fast increasing
function, and computing it for even moderately large n is impractical. Nev-
ertheless, in applications, it is often useful to know roughly how big n! is,
that is, how it compares to various other functions of n. Obviously,1

n! ≤ nn

for all non-negative integers n. In this lecture, we will obtain two better
estimates for n!, as follows:

1Recall that for all real numbers r, we have that r0 = 1. In particular, 00 = 1.
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(i) nn/2 ≤ n! ≤ (n+1
2 )n for all non-negative integers n;

(ii) e(ne )
n ≤ n! ≤ en(ne )

n for all positive integers n.

For non-negative real numbers x and y, the arithmetic mean of x and y
is x+y

2 , and the geometric mean of x and y is
√
xy. To prove (i), we will use

the inequality of arithmetic and geometric means (below).

Inequality of arithmetic and geometric means. All non-negative real
numbers x and y satisfy √

xy ≤ x+y
2 .

Proof. For non-negative real numbers x and y, we have the following sequence
of equivalences:

(
√
x−√

y)2 ≥ 0

⇐⇒ x− 2
√
xy + y ≥ 0

⇐⇒ x+ y ≥ 2
√
xy

⇐⇒ x+y
2 ≥ √

xy.

Since the first inequality above is obviously true, so is the last one.

We are now ready to prove (i).

Theorem 2.1. For all non-negative integers n, the following holds:

nn/2 ≤ n! ≤ (n+1
2 )n

Proof. For n = 0 and n = 1, the statement is obviously true. So, fix an
integer n ≥ 2.

We first prove the upper bound, as follows:

n! =

√(
n · (n− 1) · · · · · 2 · 1

)(
1 · 2 · · · · · (n− 1) · n

)

=

√(
n · 1

)(
(n− 1) · 2

)
. . .
(
2 · (n− 1)

)(
1 · n

)
=

(√
n · 1

)(√
(n− 1) · 2

)
. . .
(√

2 · (n− 1)
)(√

1 · n
)

(∗)
≤ n+1

2 · (n−1)+2
2 · · · · · 2+(n−1)

2 · 1+n
2

= (n+1
2 )n,
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where (*) follows from the inequality of arithmetic and geometric means.
It remains to prove the lower bound. First, we claim that for all i ∈

{1, . . . , n}, we have that

i(n+ 1− i) ≥ n.

Indeed, if i = 1 or i = n, then i(n + 1 − i) = n. On the other hand, for
i ∈ {2, . . . , n−1}, we have that min{i, n+1− i} ≥ 2 and max{i, n+1− i} ≥
i+(n+1−i)

2 ≥ n
2 , and consequently,

i(n+ 1− i) = min{i, n+ 1− i} ·max{i, n+ 1− i} ≥ 2 · n
2 = n,

as we had claimed. We now compute:

n! =

√(
1 · 2 · · · · · (n− 1) · n

)(
n · (n− 1) · · · · · 2 · 1

)

=

√(
1 · n

)(
2 · (n− 1)

)
· · · · ·

(
2 · (n− 1)

)(
1 · n

)

=

√√√√ n∏
i=1

(
i · (n+ 1− i)︸ ︷︷ ︸

≥n

)

≥
√
nn

= nn/2,

which is what we needed.

It remains to prove (ii). We begin with the following proposition.

Proposition 2.2. For all real numbers x, we have

1 + x ≤ ex.

Proof. Let f : R → R be given by f(x) = ex − x− 1. Then f ′(x) = ex − 1,
and we have the following table:

x

f ′(x)

f(x)

(−∞, 0)

0

(0,+∞)

−∞ +∞

0− +

↘ ↗min
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So, f(x) reaches a global minimum at x = 0, and we have that f(0) = 0. So,
f(x) ≥ 0 for all x ∈ R, and the result follows.

We will also need the well-known fact that

(1 +
1

n
)n ≤ e

for all positive integers n.2

We are now ready to prove (ii).

Theorem 2.3. For all positive integers n, the following holds:

e(ne )
n ≤ n! ≤ en(ne )

n.

Proof. We proceed by induction on n. The claim is clearly true for n = 1.
Now, fix a positive integer n, and assume inductively that e(ne )

n ≤ n! ≤
en(ne )

n. We must show that e(n+1
e )n+1 ≤ (n+ 1)! ≤ e(n+ 1)(n+1

e )n+1.
We first obtain the needed upper bound, i.e. we prove that (n+ 1)! ≤

e(n+ 1)(n+1
e )n+1. We first compute:

(n+ 1)! = (n+ 1) · n!

≤ (n+ 1) · en(ne )
n by the induction

hypothesis

=
(
e(n+ 1)(n+1

e )n+1
)
· ( n

n+1)
n+1e.

It now remains to show that ( n
n+1)

n+1e ≤ 1, for then we will obtain precisely
the inequality that we need. We obtain this as follows:

( n
n+1)

n+1e = (1− 1
n+1)

n+1e

≤ (e−
1

n+1 )n+1e by Proposition 2.2,
for x = − 1

n+1

= 1.

It remains to establish the lower bound, i.e. to prove that e(n+1
e )n+1 ≤

(n+ 1)!. For this, we compute:

e(n+1
e )n+1 = (n+ 1)(ne )

n · (1 + 1
n)

n

≤ (n+ 1)(ne )
n · e because (1 + 1

n)
n ≤ e

≤ (n+ 1) · n! by the induction
hypothesis

= (n+ 1)!

2As you saw in Analysis, the sequence {(1+ 1
n
)n}∞n=1 is strictly increasing and bounded

above, and so by the Monotone Sequence Theorem, it converges. The constant e is defined
as the limit of this sequence, i.e. e := lim

n→∞
(1 + 1

n
)n, and the inequality follows.

6



which is what we needed.

We complete this section by giving the following formula (without proof).

Stirling’s formula. lim
n→∞

√
2πn (n

e
)n

n! = 1.

Using the notation that we introduced in section 1, Stirling’s formula
states that

n! ∼
√
2πn

(n
e

)n
.

So, for very large values of n, the function f(n) =
√
2πn (ne )

n is a good
approximation of n!.

3 Estimating binomial coefficients

For integers n and k such that n ≥ k ≥ 0, we define
(
n
k

)
, read “n choose k,”

as follows: (
n
k

)
= n(n−1)...(n−k+1)

k·(k−1)·····1 =
k−1∏
i=0

n−i
k−i .

Note that this implies that (
n
k

)
= n!

k!(n−k)! ,

and consequently, (
n
k

)
=

(
n

n−k

)
.(

n
k

)
is the number of k-element subsets of an n-element set.3 For example,

the number of 3-element subsets of the 5-element set {a, b, c, d, e} is
(
5
3

)
= 10;

those subsets are:

(1) {a, b, c}

(2) {a, b, d}

(3) {a, b, e}

(4) {a, c, d}

(5) {a, c, e}

(6) {a, d, e}

(7) {b, c, d}

(8) {b, c, e}

(9) {b, d, e}

(10) {c, d, e}

We note that for all non-negative integers n, we have that
(
n
0

)
= 1. In

particular,
(
0
0

)
= 1.

Numbers
(
n
k

)
are called binomial coefficients. You are already familiar

with the binomial theorem (below).

3Indeed, there are n(n − 1) . . . (n − k + 1) sequences of k different elements of an
n-element set: there are n ways to select the first element, n− 1 ways to select the second
element, . . . , and n− k + 1 ways to select the k-th element. Since every k-element set can
be ordered in k! ways, there are exactly n(n−1)...(n−k+1)

k!
=

(
n
k

)
many k-element subsets of

an n-element set.
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Binomial theorem. For all integers n ≥ 0, and all real numbers x and y,
the following holds:

(x+ y)n =
n∑

k=0

(
n
k

)
xkyn−k

=
(
n
0

)
yn +

(
n
1

)
xyn−1 + · · ·+

(
n

n−1

)
xn−1y +

(
n
n

)
xn.

As in the case of factorials, binomial coefficients are easy to compute for
small values of n and k. However, even for moderately large n, k, computing(
n
k

)
becomes impractical. So, as in the case of factorials, we would like

to obtain some useful estimates (convenient upper and lower bounds) for
binomial coefficients.

3.1 Estimating the binomial coefficient
(
n
k

)
Our goal is to prove the following theorem.

Theorem 3.1. For all integers n and k such that n ≥ k ≥ 1, the following
holds:

(nk )
k ≤

(
n
k

)
≤ ( enk )k.

Theorem 3.1 readily follows from Propositions 3.2 and 3.3 (below). Propo-
sition 3.2 establishes the lower bound from Theorem 3.1, and Proposition 3.3
establishes the upper bound.4

Proposition 3.2. For all integers n and k such that n ≥ k ≥ 1, we have
that

(nk )
k ≤

(
n
k

)
Proof. Fix integers n, k such that n ≥ k ≥ 1. We observe that for all
i ∈ {0, . . . , k − 1}, we have that n−i

k−i ≥
n
k ,

5 and so

(
n
k

)
=

k−1∏
i=0

n−i
k−i ≥

k−1∏
i=0

n
k = (nk )

k,

which is what we needed.

Proposition 3.3. For all integers n and k such that n ≥ k ≥ 1, we have
that:

k∑
i=0

(
n
i

)
≤ ( enk )k.

Proof. Fix integers n and k such that n ≥ k ≥ 1.

4In fact, the inequality from Proposition 3.3 is stronger than the upper bound from
Theorem 3.1.

5Indeed, this is equivalent to (n− i)k ≥ n(k− i), which is in turn equivalent to ni ≥ ki,
which is true since n ≥ k and i ≥ 0.
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Claim. For all real numbers x such that 0 < x ≤ 1, we have that

k∑
i=0

(
n
i

)
≤ (1+x)n

xk .

Proof of the Claim. Fix a real number x such that 0 < x ≤ 1. By the
Binomial theorem, we have that

(1 + x)n =
n∑

i=0

(
n
i

)
xi

≥
k∑

i=0

(
n
i

)
xi since n ≥ k and x > 0

Dividing by xk, we then obtain

(1+x)n

xk ≥
k∑

i=0

(
n
i

)
1

xk−i

≥
k∑

i=0

(
n
i

)
because 0 < x ≤ 1

This proves the Claim. ■
We now apply the Claim to x := k

n , and we obtain

k∑
i=0

(
n
i

)
≤ (1 + k

n)
n(nk )

k by the Claim for x = k
n

≤ (ek/n)n(nk )
k by Proposition 2.2 for x = k

n

= ( enk )k,

which is what we needed.

3.2 Estimating the binomial coefficient
(
2n
n

)
Note that for all integers n and k such that n ≥ k ≥ 1, we have that(

n
k

)
=

(
n

k−1

)
· n−k+1

k .

This implies that6 for even n, we have that(
n
0

)
<

(
n
1

)
< . . . <

(
n

n/2

)
> . . . >

(
n

n−1

)
>

(
n
n

)
,

whereas for odd n, we have that(
n
0

)
<

(
n
1

)
< . . . <

(
n

⌊n/2⌋
)

=
(

n
⌈n/2⌉

)
> . . . >

(
n

n−1

)
>
(
n
n

)
.

6Check this!
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In particular,
(

n
⌊n/2⌋

)
=
(

n
⌈n/2⌉

)
is maximum among the binomial coefficients(

n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
. For this reason, it is of particular interest to find good

estimates for the behavior of binomial coefficients of the form
(

n
⌊n/2⌋

)
.

Theorem 3.4. For all integers m ≥ 1, we have that

22m

2
√
m

≤
(
2m
m

)
≤ 22m√

2m

Proof. Fix an integer m ≥ 1, and let

P = 1·3·5·····(2m−1)
2·4·6·····(2m) .

Then
P = 1·3·5·····(2m−1)

2·4·6·····(2m)

= 1·3·5·····(2m−1)
2·4·6·····(2m) · 2·4·····(2m)

2·4·····(2m)

= (2m)!
22m(m!)2

= 1
22m

(
2m
m

)
.

It now suffices to show that

1
2
√
m

≤ P ≤ 1√
2m

,

for the result then follows immediately.
We first establish the upper bound for P . For this, we observe that

1 ≥ (1− 1
22
)(1− 1

42
) . . . (1− 1

(2m)2
)

= 22−1
22

· 42−1
42

· · · · · (2m)2−1
(2m)2

= 1·3
22

· 3·5
42

· · · · · (2m−1)(2m+1)
(2m)2

= (2m+ 1)P 2,

and consequently, P 2 ≤ 1
2m+1 , which in turn implies that

P ≤ 1√
2m+1

≤ 1√
2m

,

which is what we needed.
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It remains to establish our lower bound for P . The proof is similar as for
the upper bound. We observe the following:

1 ≥ (1− 1
32
)(1− 1

52
) . . . (1− 1

(2m−1)2
)

= 32−1
32

· 52−1
52

· · · · · (2m−1)2−1
(2m−1)2

= 2·4
32

· 4·6
52

· · · · · (2m−2)(2m)
(2m−1)2

= 1
2(2m)P 2 ,

which implies that
P ≥ 1

2
√
m
,

which is what we needed. This completes the argument.

Finally, we note that using Stirling’s formula (which we stated without
proof), we can obtain an even better approximation of

(
2m
m

)
, as follows:

lim
m→∞

((
22m√
πm

)
/
(
2m
m

))
= 1.

Using the notation from section 1, this formula becomes(
2m

m

)
∼ 22m√

πm
.

So, for very large values of m, the function g(m) = 22m√
πm

is a good approxi-

mation of
(
2m
m

)
.

4 An application: random walks

Reminder: The series
∞∑

m=1

1
m is called the harmonic series. This series

diverges to infinity, i.e.
∞∑

m=1

1
m = +∞

Let us now consider an application of our estimate for binomial coefficients.
We consider the integer number line (Z). We begin our walk at the origin
(i.e. 0), and at each step we move either one step to the left (−1) or one step
to the right (+1).

0 1 2 3−1−2−3 4−4
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So, our position in one such walk may be

0, 1, 2, 3, 2, 3, 2, 1, 0,−1,−2,−1,−2,−1, 0, 1, . . .

We would like to estimate the number of times that we will return to the
origin in such a walk. Obviously, we can only return to the origin after
an even number of steps.7 There are 22m random walks of length 2m, and
exactly

(
2m
m

)
of those walks end at the origin.8 So, the probability of returning

to the origin after exactly 2m steps is(
2m
m

)
22m

.

This means that in an infinite random walk, the expected number of returns
to the origin is

∞∑
m=1

(
2m
m

)
22m

.

By Theorem 3.4, we have that

∞∑
m=1

(2mm )
22m

≥
∞∑

m=1

1
2
√
m

(∗)
= ∞,

where in (*) we used the fact that

∞∑
m=1

1
2
√
m

= 1
2

∞∑
m=1

1√
m

≥ 1
2

∞∑
m=1

1
m = ∞.

Thus, we can expect that in an infinite one-dimensional random walk starting
at the origin, we will return to the origin an infinite number of times.

7After an odd number of steps, our position is an odd integer!
8Indeed, we must go left exactly m times, and right exactly m times. Out of 2m moves,

we have
(
2m
m

)
ways of selecting the m leftward moves (the other m moves are rightward).
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