NDMI011: Combinatorics and Graph Theory 1 HW#9

Irena Penev Winter 2021/2022

due Wednesday, January 5, 2022 before midnight (Prague time)

Remark: Please e-mail me (ipenev@iuuk.mff.cuni.cz) your HW as a **PDF** attachment (no other format will be accepted).

Definition. A Δ -system is a collection \mathcal{M} of sets, such that any two elements of \mathcal{M} have the same intersection.¹

Problem 1 (100 points). Let A be an infinite set of sets, all of which have the same finite cardinality.²

(a) [50 points] Prove that there exists an infinite set $\mathcal{B} \subseteq \mathcal{A}$ such that any two elements of \mathcal{B} have an intersection of the same size.³

Hint: Ramsey's theorem (infinite version).

(b) [50 points] Using part (a), prove that A contains an infinite Δ -system as a subset.⁴

¹In other words, a Δ -system is a collection \mathcal{M} of sets such that there exists a set K that has the property that all distinct $M_1, M_2 \in \mathcal{M}$ satisfy $M_1 \cap M_2 = K$.

²That is: \mathcal{A} is an infinite set, and there exists a non-negative integer k such that every element of \mathcal{A} is a set of size k.

³That is: prove that there exists an infinite set $\mathcal{B} \subseteq \mathcal{A}$ and a non-negative integer ℓ such that all distinct $X_1, X_2 \in \mathcal{B}$ satisfy $|X_1 \cap X_2| = \ell$.

⁴That is: prove that there exists an infinite set $\mathcal{M} \subseteq \mathcal{A}$ such that \mathcal{M} is a Δ -system.