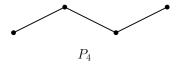
NDMI011: Combinatorics and Graph Theory 1 HW#8

Irena Penev Winter 2021/2022


due Wednesday, December 15, 2021 before midnight (Prague time)

Remark: Please e-mail me (ipenev@iuuk.mff.cuni.cz) your HW as a **PDF** attachment (no other format will be accepted).

Problem 1 (30 points). Using the definition of Ramsey numbers from Lecture Notes 10, prove that for all positive integers k and ℓ , we have that $R(k, \ell) = R(\ell, k)$.

Problem 2 (30 points). Using Ramsey numbers, prove that for all graphs H_1 and H_2 , there exists a positive integer n such that for every graph G on at least n vertices, either G contains H_1 as a subgraph or \overline{G} (the complement of G) contains H_2 as a subgraph.

Problem 3 (40 points). As usual, P_4 is the path on four vertices and three edges.

- (a) [30 points] Prove that for every graph G on at least five vertices, at least one of G, \overline{G} contains P_4 as a subgraph.
- (a) [10 points] Show that the bound from part (a) cannot be improved. More precisely, construct a 4-vertex graph G such that neither G nor \overline{G} contains P_4 as a subgraph.