NDMI011: Combinatorics and Graph Theory 1 HW#4

Irena Penev Winter 2021/2022

due Wednesday, November 10, 2021 before midnight (Prague time)

Remark: Please e-mail me (ipenev@iuuk.mff.cuni.cz) your HW as a **PDF** attachment (no other format will be accepted).

Problem 1 (50 points). Using the Ford-Fulkerson algorithm, find a maximum flow and a minimum capacity cut in the network below. (As usual, s is the sourse, t is the sink, and the capacities are in red.) The level of detail in your solution should be comparable to that in Example 3.3 from Lecture Notes 6.

Problem 2 (50 points). Let \mathbb{F} be a finite field with n elements, call them $t_0, t_1, \ldots, t_{n-1}$, where $t_0 = 0$ and $t_1 = 1$.¹ For each $k = 1, \ldots, n-1$, we define the $n \times n$ matrix L_k as follows: the (i, j)-th entry² of L_k is $t_i t_k + t_j$. Prove that L_1, \ldots, L_{n-1} are pairwise orthogonal Latin squares.

Remark: Via Theorem 2.3 from Lecture Notes 5, this yields another construction of a finite projective plane of order n.

¹That is: t_0 is the additive identity and t_1 the multiplicative identity of the field \mathbb{F} . Note that *n* must be a power of a prime, since \mathbb{F} is a finite field (but you will not need this fact).

²That is: the entry in the *i*-th row and *j*-th column. Note that the elements of the field \mathbb{F} are called $t_0, t_1, \ldots, t_{n-1}$; accordingly, the rows and columns of the matrices L_1, \ldots, L_{n-1} are indexed by $0, 1, \ldots, n-1$ (and not by $1, 2, \ldots, n$).