NDMI011: Combinatorics and Graph Theory 1 HW#1

Irena Penev Winter 2021/2022

due Wednesday, October 6, 2021 before midnight (Prague time)

Remark: Please e-mail me (ipenev@iuuk.mff.cuni.cz) your HW as a **PDF** attachment (no other format will be accepted).

Problem 1 (100 points). Use generating functions¹ to find a closed formula for the general term of the following recursively defined sequences.

- (a) The sequence $\{a_n\}_{n=0}^{\infty}$ defined recursively as follows:
 - $a_0 = 2, a_1 = 3;$
 - $a_{n+2} = 3a_n 2a_{n+1}$ for all integers $n \ge 0$.
- (b) The sequence $\{b_n\}_{n=0}^{\infty}$ defined recursively as follows:
 - $b_0 = 1;$
 - $b_{n+1} = 3b_n + 2^{n+1}$ for all integers $n \ge 0$.
- (c) The sequence $\{c_n\}_{n=0}^{\infty}$ defined recursively as follows:
 - $c_0 = 1, c_1 = 4;$
 - $c_{n+2} = -4c_n + 4c_{n+1}$ for all integers $n \ge 0$.
- (d) The sequence $\{d_n\}_{n=0}^{\infty}$ defined recursively as follows:
 - $d_0 = 1;$
 - $d_{n+1} = d_n + n + 1$ for all integers $n \ge 0$.

Hint for (d): What do you get when you expand $\frac{1}{(1+x)^2}$ and $\frac{1}{(1-x)^2}$ as power series? You'll probably need to recognize one of these at some point in your calculation.

¹Yes, this can be done in other ways as well. However, you are specifically asked to use generating functions.