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@ Review of Lecture#1 (from last week).

Definition

For a positive integer n, we define n! (read “n factorial”) to be
nl = n-(n=1)-(n—=2)----- 2-1.

Furthermore, as a convention, we set 0! = 1.

We proved the following two estimates of the factorial function:
(i) "2 < nl < ()" for all non-negative integers n;

(i) e(2)" < n! < en(Z)" for all positive integers n.
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Theorem 2.4
For all integers m > 1, we have that
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e Stirling's formula readily implies the following:

Jm ((Z)en) = 1
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@ An application: random walks

v

-4 -3 -2 -1 0 1 2 3 4

@ We begin our walk at the origin (i.e. 0).

@ At each step we move at random either one step to the left
(—1) or one step to the right (+1), and we continue forever.

@ We would like to estimate the number of times that we return
to the origin in such a walk.

@ Obviously, we can only return to the origin after an even
number of steps: the number of time we move to the left
should be the same as the number of times we move to the
right.



»
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o There are 22" random walks of length 2m, and exactly (znT)
of those walks end at the origin.
o Indeed, we must go left exactly m times, and right exactly m
times.
e Out of 2m moves, we have (2,:’) ways of selecting the m
leftward moves (the other m moves are rightward).



1 -3 -5 -1 0 1 2 3 1 g

o There are 22" random walks of length 2m, and exactly (znT)
of those walks end at the origin.
o Indeed, we must go left exactly m times, and right exactly m
times.
e Out of 2m moves, we have (2,:’) ways of selecting the m
leftward moves (the other m moves are rightward).

@ So, the probability of returning to the origin after exactly 2m
steps is



1 -3 -5 -1 0 1 2 3 1 g

o There are 22" random walks of length 2m, and exactly (ZnT)
of those walks end at the origin.
o Indeed, we must go left exactly m times, and right exactly m
times.
e Out of 2m moves, we have (2,:’) ways of selecting the m
leftward moves (the other m moves are rightward).

@ So, the probability of returning to the origin after exactly 2m
steps is
G)
m
22m :
@ So, in an infinite random walk, the expected number of
returns to the origin is
o0 m
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@ By Theorem 2.4, for all integers m > 1, we have

22m 2 22m
sm = (m) < 7



@ Reminder: In an infinite random walk, the expected number of
returns to the origin is
o0 m
> 5 ‘m)
m=1

@ By Theorem 2.4, for all integers m > 1, we have

22m 2 22m
sm = (m) < 7

@ So, the expected number of returns to the origin is

= 00,

3=

oo (2m o0 o0
Sz S 218
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[&.°]
where we used the fact that the harmonic series

m=1
diverges to infinity.
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Definition
Given functions f, g : N — R (in practice, we generally assume f, g
are positive-valued), notation

f(n) = O(g(n))

means that there exists an integer ngp € N and real number C such
that for all n € N, if n > ng, then

|f(n)] < Cg(n).

@ Examples:
(i) 100> +5= O(n?);
(i) Inn+5= O(n);
(ii) ny/n = O(n?).
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e f(n) = ©(g(n)) is not the same as f(n) ~ g(n).
o For instance, 2n% = ©(n?), but 2n? £ n?.



Notation Definition
f(n)=0(g(n)) | 3np e N, C e Rs.t. Vn €N,
if n > ng then |f(n)| < Cg(n)
f(n) = olg(n)) | lim 2% =0
f(n) = $(g(n)) | &(n) = O(f(n))
f(n) = ©(g(n)) | f(n) = O(g(n)) and f(n) = Q(g(n))
s |




Notation Definition
f(n)=0(g(n)) | 3np e N, C e Rs.t. Vn €N,
if n > ng then |f(n)| < Cg(n)
f(n) = olg(n)) | lim 2% =0
f(n) = $(g(n)) | &(n) = O(f(n))
f(n) = ©(g(n)) | f(n) = O(g(n)) and f(n) = Q(g(n))
fn) ~gln) | Jim G =1

@ So, Stirling’s formula states that

n! ~V2mn (ﬁ)n,

e




Notation Definition
f(n)=0(g(n)) | 3np e N, C e Rs.t. Vn €N,
if n > ng then |f(n)| < Cg(n)
f(n) = olg(n)) | lim 2% =0
f(n) = $(g(n)) | &(n) = O(f(n))
f(n) = ©(g(n)) | f(n) = O(g(n)) and f(n) = Q(g(n))
s |

@ So, Stirling’s formula states that

@ and it implies that

nl ~271n (ﬁ)n,




Notation Definition
f(n)=0(g(n)) | 3np € N, C € Rs.t. Vne N,
if n > ng then |f(n)| < Cg(n)
f(n) = olg(n)) | lim X% =0
f(n) =Q(g(n)) | &(n) = O(f(n))
f(n) = ©(g(n)) | f(n) = O(g(n)) and f(n) = Q(g(n))
f(n)~gln) | Jim g5 =1




Notation Definition
f(n)=0(g(n)) | 3np € N, C € Rs.t. Vne N,
if n > ng then |f(n)| < Cg(n)
f(n) = olg(n)) | lim X% =0
f(n) =Q(g(n)) | &(n) = O(f(n))
f(n) = ©(g(n)) | f(n) = O(g(n)) and f(n) = Q(g(n))
f(n)~gln) | Jim g5 =1

e f(n) = g(n)+ O(h(n)) means that f(n) — g(n)

O(h(n)).



Notation Definition
f(n)=0(g(n)) | 3np € N, C € Rs.t. Vne N,
if n > ng then |f(n)| < Cg(n)
f(n) = olg(n)) | lim X% =0
f(n) =Q(g(n)) | &(n) = O(f(n))
f(n) = ©(g(n)) | f(n) = O(g(n)) and f(n) = Q(g(n))
f(n)~gln) | Jim g5 =1

e f(n) = g(n)+ O(h(n)) means that f(n) — g(n)
o For example, n* + nln n = n* 4+ O(n?) because nln n = O(n?).

O(h(n)).



Notation Definition
f(n)=0(g(n)) | 3np € N, C € Rs.t. Vne N,
if n > ng then |f(n)| < Cg(n)
f(n) = olg(n)) | lim X% =0
f(n) =Q(g(n)) | &(n) = O(f(n))
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e f(n) = g(n)+ O(h(n)) means that f(n) — g(n) = O(h(n)).
o For example, n* + nln n = n* 4+ O(n?) because nln n = O(n?).

@ We use similar notation for the symbols o, ©, and © from the
table above.



Notation Definition
f(n)=0(g(n)) | 3np € N, C e Rs.t. Vn € N,
if n> ng then |f(n)| < Cg(n)
f(n) = o(g(n)) | lim L% =0
f(n) =Q(g(n)) | &(n) = O(f(n))
f(n) = ©(g(n)) | f(n) = O(g(n)) and f(n) = Q(g(n))
()~ str) | jim 17 -1
@ Determine which of the following are correct.
(a) n?> = 0O(n*Inn)
(b) n? = o(n?Inn)
(c) n?*+5ninn=n?(1+ o(1)) ~ n?
(d) n®>+5ninn=n?+ O(n)
(¢) nl ~ (25)"
(f) In(n!) =Q(nInn)



