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Review of Lecture#1 (from last week).

Definition
For a positive integer n, we define n! (read “n factorial”) to be

n! := n · (n − 1) · (n − 2) · · · · · 2 · 1.

Furthermore, as a convention, we set 0! = 1.

We proved the following two estimates of the factorial function:
(i) nn/2 ≤ n! ≤ (n+1

2 )n for all non-negative integers n;
(ii) e(n

e )n ≤ n! ≤ en(n
e )n for all positive integers n.
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Definition
For integers n and k such that n ≥ k ≥ 0, we define

(n
k
)
, read “n

choose k,” as follows:

(n
k
)

= n(n−1)...(n−k+1)
k·(k−1)·····1 =

k−1∏
i=0

n−i
k−i .

Theorem 2.1
For all integers n and k such that n ≥ k ≥ 1, the following holds:

( n
k )k ≤

(n
k
)
≤ ( en

k )k .

Theorem 2.4
For all integers m ≥ 1, we have that

22m

2
√

m ≤
(2m

m
)
≤ 22m

√
2m
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We stated Stirling’s formula without proof.

Stirling’s formula

lim
n→∞

√
2πn ( n

e )n

n! = 1.

Stirling’s formula readily implies the following:

lim
m→∞

((
22m
√
πm

)
/
(2m

m
))

= 1.
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An application: random walks

0 1 2 3−1−2−3 4−4

We begin our walk at the origin (i.e. 0).

At each step we move at random either one step to the left
(−1) or one step to the right (+1), and we continue forever.
We would like to estimate the number of times that we return
to the origin in such a walk.
Obviously, we can only return to the origin after an even
number of steps: the number of time we move to the left
should be the same as the number of times we move to the
right.
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0 1 2 3−1−2−3 4−4

There are 22m random walks of length 2m, and exactly
(2m

m
)

of those walks end at the origin.
Indeed, we must go left exactly m times, and right exactly m
times.
Out of 2m moves, we have

(2m
m
)

ways of selecting the m
leftward moves (the other m moves are rightward).

So, the probability of returning to the origin after exactly 2m
steps is (2m

m
)

22m .

So, in an infinite random walk, the expected number of
returns to the origin is

∞∑
m=1

(2m
m
)

22m .
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Reminder: In an infinite random walk, the expected number of
returns to the origin is

∞∑
m=1

(2m
m
)

22m .

By Theorem 2.4, for all integers m ≥ 1, we have

22m

2
√

m ≤
(2m

m
)
≤ 22m

√
2m

So, the expected number of returns to the origin is
∞∑

m=1

(2m
m )

22m ≥
∞∑

m=1
1

2
√

m ≥ 1
2
∞∑

m=1
1
m = ∞,

where we used the fact that the harmonic series
∞∑

m=1
1
m

diverges to infinity.
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Asymptotic comparison of functions

We often need to make statements such as that, for example,
the function n2 is “greater” than the function 1000n, and
“roughly the same” as the function n2 + n

√
n.

Let us try to formalize this.

Definition
Given functions f , g : N→ R (in practice, we generally assume f , g
are positive-valued), notation

f (n) = O(g(n))

means that there exists an integer n0 ∈ N and real number C such
that for all n ∈ N, if n ≥ n0, then

|f (n)| ≤ Cg(n).
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Examples:
(i) 10n2 + 5 = O(n2);

(ii) ln n + 5 = O(n);
(iii) n

√
n = O(n2).
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Notation Definition
f (n) = O(g(n)) ∃n0 ∈ N, C ∈ R s.t. ∀n ∈ N,

if n ≥ n0 then |f (n)| ≤ Cg(n)
f (n) = o(g(n)) lim

n→∞
f (n)
g(n) = 0

f (n) = Ω(g(n)) g(n) = O(f (n))
f (n) = Θ(g(n)) f (n) = O(g(n)) and f (n) = Ω(g(n))
f (n) ∼ g(n) lim

n→∞
f (n)
g(n) = 1

f (n) = Θ(g(n)) is not the same as f (n) ∼ g(n).
For instance, 2n2 = Θ(n2), but 2n2 6∼ n2.
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f (n) = g(n) + O(h(n)) means that f (n)− g(n) = O(h(n)).
For example, n4 + n ln n = n4 + O(n2) because n ln n = O(n2).
We use similar notation for the symbols o, Ω, and Θ from the
table above.
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Determine which of the following are correct.
(a) n2 = O(n2 ln n)
(b) n2 = o(n2 ln n)
(c) n2 + 5n ln n = n2(1 + o(1)) ∼ n2

(d) n2 + 5n ln n = n2 + O(n)
(e) n! ∼ ( n+1

2 )n

(f) ln(n!) = Ω(n ln n)


