NDMI011: Combinatorics and Graph Theory 1

Tutorial \#1

Irena Penev

October 6, 2020

- Review of Lecture\#1 (from last week).
- Review of Lecture\#1 (from last week).

Definition

For a positive integer n, we define n ! (read " n factorial") to be

$$
n!:=n \cdot(n-1) \cdot(n-2) \cdots \cdots \cdot 2 \cdot 1 .
$$

Furthermore, as a convention, we set $0!=1$.

- Review of Lecture\#1 (from last week).

Definition

For a positive integer n, we define n ! (read " n factorial") to be

$$
n!:=n \cdot(n-1) \cdot(n-2) \cdots \cdots \cdot 2 \cdot 1 .
$$

Furthermore, as a convention, we set $0!=1$.

We proved the following two estimates of the factorial function:
(i) $n^{n / 2} \leq n!\leq\left(\frac{n+1}{2}\right)^{n}$ for all non-negative integers n;
(ii) $e\left(\frac{n}{e}\right)^{n} \leq n!\leq e n\left(\frac{n}{e}\right)^{n}$ for all positive integers n.

Definition

For integers n and k such that $n \geq k \geq 0$, we define $\binom{n}{k}$, read " n choose k," as follows:

$$
\binom{n}{k}=\frac{n(n-1) \ldots(n-k+1)}{k \cdot(k-1) \cdots \cdot 1}=\prod_{i=0}^{k-1} \frac{n-i}{k-i} .
$$

Definition

For integers n and k such that $n \geq k \geq 0$, we define $\binom{n}{k}$, read " n choose k," as follows:

$$
\binom{n}{k}=\frac{n(n-1) \ldots(n-k+1)}{k \cdot(k-1) \cdots \cdot 1}=\prod_{i=0}^{k-1} \frac{n-i}{k-i} .
$$

Theorem 2.1

For all integers n and k such that $n \geq k \geq 1$, the following holds:

$$
\binom{n}{k}^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k} .
$$

Definition

For integers n and k such that $n \geq k \geq 0$, we define $\binom{n}{k}$, read " n choose k," as follows:

$$
\binom{n}{k}=\frac{n(n-1) \ldots(n-k+1)}{k \cdot(k-1) \cdots \cdot 1}=\prod_{i=0}^{k-1} \frac{n-i}{k-i} .
$$

Theorem 2.1

For all integers n and k such that $n \geq k \geq 1$, the following holds:

$$
\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k} .
$$

Theorem 2.4

For all integers $m \geq 1$, we have that

$$
\frac{2^{2 m}}{2 \sqrt{m}} \leq\binom{ 2 m}{m} \leq \frac{2^{2 m}}{\sqrt{2 m}}
$$

- We stated Stirling's formula without proof.

Stirling's formula

$\lim _{n \rightarrow \infty} \frac{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}}{n!}=1$.

- We stated Stirling's formula without proof.

Stirling's formula

$\lim _{n \rightarrow \infty} \frac{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}}{n!}=1$.

- Stirling's formula readily implies the following:

$$
\lim _{m \rightarrow \infty}\left(\left(\frac{2^{2 m}}{\sqrt{\pi m}}\right) /\binom{2 m}{m}\right)=1
$$

- An application: random walks

- We begin our walk at the origin (i.e. 0).
- An application: random walks

- We begin our walk at the origin (i.e. 0).
- At each step we move at random either one step to the left (-1) or one step to the right $(+1)$, and we continue forever.
- An application: random walks

- We begin our walk at the origin (i.e. 0).
- At each step we move at random either one step to the left (-1) or one step to the right $(+1)$, and we continue forever.
- We would like to estimate the number of times that we return to the origin in such a walk.
- An application: random walks

- We begin our walk at the origin (i.e. 0).
- At each step we move at random either one step to the left (-1) or one step to the right $(+1)$, and we continue forever.
- We would like to estimate the number of times that we return to the origin in such a walk.
- Obviously, we can only return to the origin after an even number of steps: the number of time we move to the left should be the same as the number of times we move to the right.

$$
\begin{array}{lllllllll}
-\dot{4} & -\dot{3} & -\dot{2} & -\dot{1} & 0 & \dot{0} & \dot{1} & \dot{2} & \dot{3} \\
\hline
\end{array}
$$

- There are $2^{2 m}$ random walks of length $2 m$, and exactly $\binom{2 m}{m}$ of those walks end at the origin.
- Indeed, we must go left exactly m times, and right exactly m times.
- Out of $2 m$ moves, we have $\binom{2 m}{m}$ ways of selecting the m leftward moves (the other m moves are rightward).

$$
\begin{array}{lllllllll}
-\dot{4} & -\dot{3} & -\dot{2} & -\dot{1} & 0 & \dot{0} & \dot{1} & \dot{2} & \dot{3} \\
\hline
\end{array}
$$

- There are $2^{2 m}$ random walks of length $2 m$, and exactly $\binom{2 m}{m}$ of those walks end at the origin.
- Indeed, we must go left exactly m times, and right exactly m times.
- Out of $2 m$ moves, we have $\binom{2 m}{m}$ ways of selecting the m leftward moves (the other m moves are rightward).
- So, the probability of returning to the origin after exactly $2 m$ steps is

$$
\frac{\binom{2 m}{m}}{2^{2 m}}
$$

$$
\begin{array}{llllllllll}
-\dot{4} & -\dot{3} & -\dot{2} & -\dot{1} & 0 & \dot{1} & \dot{2} & \dot{3} & \dot{4}
\end{array}
$$

- There are $2^{2 m}$ random walks of length $2 m$, and exactly $\binom{2 m}{m}$ of those walks end at the origin.
- Indeed, we must go left exactly m times, and right exactly m times.
- Out of $2 m$ moves, we have $\binom{2 m}{m}$ ways of selecting the m leftward moves (the other m moves are rightward).
- So, the probability of returning to the origin after exactly $2 m$ steps is

$$
\frac{\binom{2 m}{m}}{2^{2 m}}
$$

- So, in an infinite random walk, the expected number of returns to the origin is

$$
\sum_{m=1}^{\infty} \frac{\binom{2 m}{m}}{2^{2 m}}
$$

- Reminder: In an infinite random walk, the expected number of returns to the origin is

$$
\sum_{m=1}^{\infty} \frac{\binom{2 m}{m}}{2^{2 m}}
$$

- Reminder: In an infinite random walk, the expected number of returns to the origin is

$$
\sum_{m=1}^{\infty} \frac{\binom{2 m}{m}}{2^{2 m}}
$$

- By Theorem 2.4, for all integers $m \geq 1$, we have

$$
\frac{2^{2 m}}{2 \sqrt{m}} \leq\binom{ 2 m}{m} \leq \frac{2^{2 m}}{\sqrt{2 m}}
$$

- Reminder: In an infinite random walk, the expected number of returns to the origin is

$$
\sum_{m=1}^{\infty} \frac{\binom{2 m}{m}}{2^{2 m}}
$$

- By Theorem 2.4, for all integers $m \geq 1$, we have

$$
\frac{2^{2 m}}{2 \sqrt{m}} \leq\binom{ 2 m}{m} \leq \frac{2^{2 m}}{\sqrt{2 m}}
$$

- So, the expected number of returns to the origin is

$$
\sum_{m=1}^{\infty} \frac{\binom{2 m}{m}}{2^{2 m}} \geq \sum_{m=1}^{\infty} \frac{1}{2 \sqrt{m}} \geq \frac{1}{2} \sum_{m=1}^{\infty} \frac{1}{m}=\infty
$$

where we used the fact that the harmonic series $\sum_{m=1}^{\infty} \frac{1}{m}$ diverges to infinity.

- Asymptotic comparison of functions
- Asymptotic comparison of functions
- We often need to make statements such as that, for example, the function n^{2} is "greater" than the function $1000 n$, and "roughly the same" as the function $n^{2}+n \sqrt{n}$.
- Asymptotic comparison of functions
- We often need to make statements such as that, for example, the function n^{2} is "greater" than the function $1000 n$, and "roughly the same" as the function $n^{2}+n \sqrt{n}$.
- Let us try to formalize this.
- Asymptotic comparison of functions
- We often need to make statements such as that, for example, the function n^{2} is "greater" than the function $1000 n$, and "roughly the same" as the function $n^{2}+n \sqrt{n}$.
- Let us try to formalize this.

Definition

Given functions $f, g: \mathbb{N} \rightarrow \mathbb{R}$ (in practice, we generally assume f, g are positive-valued), notation

$$
f(n)=O(g(n))
$$

means that there exists an integer $n_{0} \in \mathbb{N}$ and real number C such that for all $n \in \mathbb{N}$, if $n \geq n_{0}$, then

$$
|f(n)| \leq C g(n)
$$

Definition

Given functions $f, g: \mathbb{N} \rightarrow \mathbb{R}$ (in practice, we generally assume f, g are positive-valued), notation

$$
f(n)=O(g(n))
$$

means that there exists an integer $n_{0} \in \mathbb{N}$ and real number C such that for all $n \in \mathbb{N}$, if $n \geq n_{0}$, then

$$
|f(n)| \leq C g(n)
$$

Definition

Given functions $f, g: \mathbb{N} \rightarrow \mathbb{R}$ (in practice, we generally assume f, g are positive-valued), notation

$$
f(n)=O(g(n))
$$

means that there exists an integer $n_{0} \in \mathbb{N}$ and real number C such that for all $n \in \mathbb{N}$, if $n \geq n_{0}$, then

$$
|f(n)| \leq C g(n)
$$

- Examples:
(i) $10 n^{2}+5=O\left(n^{2}\right)$;
(ii) $\ln n+5=O(n)$;
(iii) $n \sqrt{n}=O\left(n^{2}\right)$.

Notation	Definition
$f(n)=O(g(n))$	$\exists n_{0} \in \mathbb{N}, C \in \mathbb{R}$ s.t. $\forall n \in \mathbb{N}$, if $n \geq n_{0}$ then $\|f(n)\| \leq C g(n)$
$f(n)=o(g(n))$	$\left.\begin{array}{l}\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 \\ \hline f(n)=\Omega(g(n))\end{array}\right) g(n)=O(f(n))$
$f(n)=\Theta(g(n))$	$f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$
$f(n) \sim g(n)$	$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1$

Notation	Definition
$f(n)=O(g(n))$	$\exists n_{0} \in \mathbb{N}, C \in \mathbb{R}$ s.t. $\forall n \in \mathbb{N}$, if $n \geq n_{0}$ then $\|f(n)\| \leq C g(n)$
$f(n)=o(g(n))$	$\left.\begin{array}{l}\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 \\ \hline f(n)=\Omega(g(n))\end{array}\right) g(n)=O(f(n))$
$f(n)=\Theta(g(n))$	$f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$
$f(n) \sim g(n)$	$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1$

- $f(n)=\Theta(g(n))$ is not the same as $f(n) \sim g(n)$.
- For instance, $2 n^{2}=\Theta\left(n^{2}\right)$, but $2 n^{2} \nsim n^{2}$.

Notation	Definition
$f(n)=O(g(n))$	$\exists n_{0} \in \mathbb{N}, C \in \mathbb{R}$ s.t. $\forall n \in \mathbb{N}$, if $n \geq n_{0}$ then $\|f(n)\| \leq C g(n)$
$f(n)=o(g(n))$	$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$ $f(n)=\Omega(g(n))$ $g(n)=O(f(n))$ $f(n)=\Theta(g(n))$
$f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$	
$f(n) \sim g(n)$	$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1$

Notation	Definition
$f(n)=O(g(n))$	$\exists n_{0} \in \mathbb{N}, C \in \mathbb{R}$ s.t. $\forall n \in \mathbb{N}$, if $n \geq n_{0}$ then $\|f(n)\| \leq C g(n)$
$f(n)=o(g(n))$	$\left.\begin{array}{l}\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 \\ \hline f(n)=\Omega(g(n))\end{array}\right) g(n)=O(f(n))$
$f(n)=\Theta(g(n))$	$f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$
$f(n) \sim g(n)$	$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1$

- So, Stirling's formula states that

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

Notation	Definition
$f(n)=O(g(n))$	$\exists n_{0} \in \mathbb{N}, C \in \mathbb{R}$ s.t. $\forall n \in \mathbb{N}$, if $n \geq n_{0}$ then $\|f(n)\| \leq C g(n)$
$f(n)=o(g(n))$	$\left.\begin{array}{l}\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 \\ \hline f(n)=\Omega(g(n))\end{array}\right) g(n)=O(f(n))$
$f(n)=\Theta(g(n))$	$f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$
$f(n) \sim g(n)$	$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1$

- So, Stirling's formula states that

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

- and it implies that

$$
\binom{2 m}{m} \sim \frac{2^{2 m}}{\sqrt{\pi m}}
$$

Notation	Definition
$f(n)=O(g(n))$	$\exists n_{0} \in \mathbb{N}, C \in \mathbb{R}$ s.t. $\forall n \in \mathbb{N}$, if $n \geq n_{0}$ then $\|f(n)\| \leq C g(n)$
$f(n)=o(g(n))$	$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$ $f(n)=\Omega(g(n))$ $g(n)=O(f(n))$ $f(n)=\Theta(g(n))$
$f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$	
$f(n) \sim g(n)$	$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1$

Notation	Definition
$f(n)=O(g(n))$	$\exists n_{0} \in \mathbb{N}, C \in \mathbb{R}$ s.t. $\forall n \in \mathbb{N}$, if $n \geq n_{0}$ then $\|f(n)\| \leq C g(n)$
$f(n)=o(g(n))$	$\left.\begin{array}{l}\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 \\ \hline f(n)=\Omega(g(n))\end{array}\right) g(n)=O(f(n))$
$f(n)=\Theta(g(n))$	$f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$
$f(n) \sim g(n)$	$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1$

- $f(n)=g(n)+O(h(n))$ means that $f(n)-g(n)=O(h(n))$.

Notation	Definition
$f(n)=O(g(n))$	$\exists n_{0} \in \mathbb{N}, C \in \mathbb{R}$ s.t. $\forall n \in \mathbb{N}$, if $n \geq n_{0}$ then $\|f(n)\| \leq C g(n)$
$f(n)=o(g(n))$	$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$ $f(n)=\Omega(g(n))$ $g(n)=O(f(n))$ $f(n)=\Theta(g(n))$
$f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$	
$f(n) \sim g(n)$	$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1$

- $f(n)=g(n)+O(h(n))$ means that $f(n)-g(n)=O(h(n))$.
- For example, $n^{4}+n \ln n=n^{4}+O\left(n^{2}\right)$ because $n \ln n=O\left(n^{2}\right)$.

Notation	Definition
$f(n)=O(g(n))$	$\exists n_{0} \in \mathbb{N}, C \in \mathbb{R}$ s.t. $\forall n \in \mathbb{N}$, if $n \geq n_{0}$ then $\|f(n)\| \leq C g(n)$
$f(n)=o(g(n))$	$\left.\begin{array}{l}\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 \\ \hline f(n)=\Omega(g(n))\end{array}\right) g(n)=O(f(n))$
$f(n)=\Theta(g(n))$	$f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$
$f(n) \sim g(n)$	$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1$

- $f(n)=g(n)+O(h(n))$ means that $f(n)-g(n)=O(h(n))$.
- For example, $n^{4}+n \ln n=n^{4}+O\left(n^{2}\right)$ because $n \ln n=O\left(n^{2}\right)$.
- We use similar notation for the symbols o, Ω, and Θ from the table above.

Notation	Definition
$f(n)=O(g(n))$	$\exists n_{0} \in \mathbb{N}, C \in \mathbb{R}$ s.t. $\forall n \in \mathbb{N}$, if $n \geq n_{0}$ then $\|f(n)\| \leq C g(n)$
$f(n)=o(g(n))$	$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$
$f(n)=\Omega(g(n))$	$g(n)=O(f(n))$
$f(n)=\Theta(g(n))$	$f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$
$f(n) \sim g(n)$	$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1$

- Determine which of the following are correct.
(a) $n^{2}=O\left(n^{2} \ln n\right)$
(b) $n^{2}=o\left(n^{2} \ln n\right)$
(c) $n^{2}+5 n \ln n=n^{2}(1+o(1)) \sim n^{2}$
(d) $n^{2}+5 n \ln n=n^{2}+O(n)$
(e) $n!\sim\left(\frac{n+1}{2}\right)^{n}$
(f) $\ln (n!)=\Omega(n \ln n)$

