NDMI011: Combinatorics and Graph Theory 1

Lecture \#14

Linear codes

Irena Penev

January 5, 2020

This lecture consists of three parts:

- a bit of Linear Algebra;

This lecture consists of three parts:

- a bit of Linear Algebra;
- linear codes;

This lecture consists of three parts:

- a bit of Linear Algebra;
- linear codes;
- Hamming codes.

Part I: A bit of Linear Algebra

Part I: A bit of Linear Algebra

- This is essentially a review of some Linear Algebra topics, but we will use row vectors instead of column vectors, and we will swap the roles of rows and columns in matrices.
- Reason: this is customary in coding theory.

Part I: A bit of Linear Algebra

- This is essentially a review of some Linear Algebra topics, but we will use row vectors instead of column vectors, and we will swap the roles of rows and columns in matrices.
- Reason: this is customary in coding theory.
- For a field \mathbb{F} and a positive integer n, we denote by \mathbb{F}^{n} the set of all row vectors of length n whose entries are all in \mathbb{F}.

Part I: A bit of Linear Algebra

- This is essentially a review of some Linear Algebra topics, but we will use row vectors instead of column vectors, and we will swap the roles of rows and columns in matrices.
- Reason: this is customary in coding theory.
- For a field \mathbb{F} and a positive integer n, we denote by \mathbb{F}^{n} the set of all row vectors of length n whose entries are all in \mathbb{F}.
- For vectors $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ in \mathbb{F}^{n}, we define $\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i=1}^{n} x_{i} y_{i}$, where the summation and multiplication denote the operations from the field \mathbb{F}.
- So, $\langle\mathbf{x}, \mathbf{y}\rangle \in \mathbb{F}$.

Part I: A bit of Linear Algebra

- This is essentially a review of some Linear Algebra topics, but we will use row vectors instead of column vectors, and we will swap the roles of rows and columns in matrices.
- Reason: this is customary in coding theory.
- For a field \mathbb{F} and a positive integer n, we denote by \mathbb{F}^{n} the set of all row vectors of length n whose entries are all in \mathbb{F}.
- For vectors $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ in \mathbb{F}^{n}, we define $\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i=1}^{n} x_{i} y_{i}$, where the summation and multiplication denote the operations from the field \mathbb{F}.
- So, $\langle\mathbf{x}, \mathbf{y}\rangle \in \mathbb{F}$.
- If $\langle\mathbf{x}, \mathbf{y}\rangle=0$, then \mathbf{x} and \mathbf{y} are said to be orthogonal.
- Instead of multiplying matrices by column vectors on the right $(A \mathbf{x})$, we will multiply matrices by row vectors on the left ($\mathrm{x} A$).
- Instead of multiplying matrices by column vectors on the right $(A \mathbf{x})$, we will multiply matrices by row vectors on the left ($\mathrm{x} A$).
- If A is an $n \times m$ matrix with entries in \mathbb{F}, and $\mathbf{x} \in \mathbb{F}^{n}$, then we can think of \mathbf{x} as a $1 \times n$ matrix, and we can compute $\mathbf{x} A$ according to the usual rules of matrix multiplication.
- We obtain a row vector of length m.
- Instead of multiplying matrices by column vectors on the right ($A \mathbf{x}$), we will multiply matrices by row vectors on the left $(\mathrm{x} A)$.
- If A is an $n \times m$ matrix with entries in \mathbb{F}, and $\mathbf{x} \in \mathbb{F}^{n}$, then we can think of \mathbf{x} as a $1 \times n$ matrix, and we can compute $x A$ according to the usual rules of matrix multiplication.
- We obtain a row vector of length m.
- If $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $A=\left[\begin{array}{c}\mathbf{r}_{1} \\ \vdots \\ \mathbf{r}_{n}\end{array}\right]$ (i.e. $\mathbf{r}_{1}, \ldots, \mathbf{r}_{n}$ are the rows of A, from top to bottom), then $\times A=\sum_{i=1}^{n} x_{i} \mathbf{r}_{i}$.
- Instead of multiplying matrices by column vectors on the right ($A \mathbf{x}$), we will multiply matrices by row vectors on the left $(\mathrm{x} A)$.
- If A is an $n \times m$ matrix with entries in \mathbb{F}, and $\mathbf{x} \in \mathbb{F}^{n}$, then we can think of \mathbf{x} as a $1 \times n$ matrix, and we can compute $\mathbf{x} A$ according to the usual rules of matrix multiplication.
- We obtain a row vector of length m.
- If $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $A=\left[\begin{array}{c}\mathbf{r}_{1} \\ \vdots \\ \mathbf{r}_{n}\end{array}\right]$ (i.e. $\mathbf{r}_{1}, \ldots, \mathbf{r}_{n}$ are the rows of A, from top to bottom), then $\mathbf{x} A=\sum_{i=1}^{n} x_{i} \mathbf{r}_{i}$.
- If \mathbf{e}_{i} is the i-th standard basis vector of \mathbb{F}^{n}, i.e. the row vector whose i-th entry is 1 , and all of whose other entries are 0 , then $\mathbf{e}_{i} A$ is equal to the i-th row of A.
- Instead of multiplying matrices by column vectors on the right $(A \mathbf{x})$, we will multiply matrices by row vectors on the left $(\mathrm{x} A)$.
- If A is an $n \times m$ matrix with entries in \mathbb{F}, and $\mathbf{x} \in \mathbb{F}^{n}$, then we can think of \mathbf{x} as a $1 \times n$ matrix, and we can compute $\mathbf{x} A$ according to the usual rules of matrix multiplication.
- We obtain a row vector of length m.
- If $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $A=\left[\begin{array}{c}\mathbf{r}_{1} \\ \vdots \\ \mathbf{r}_{n}\end{array}\right]$ (i.e. $\mathbf{r}_{1}, \ldots, \mathbf{r}_{n}$ are the rows of A, from top to bottom), then $\mathbf{x} A=\sum_{i=1}^{n} x_{i} \mathbf{r}_{i}$.
- If \mathbf{e}_{i} is the i-th standard basis vector of \mathbb{F}^{n}, i.e. the row vector whose i-th entry is 1 , and all of whose other entries are 0 , then $\mathbf{e}_{i} A$ is equal to the i-th row of A.
- With these adjustments, all familiar theorems of Linear Algebra still hold, but with rows and columns reversed.

Definition

For a field \mathbb{F} and a subspace C of \mathbb{F}^{n}, we define $C^{\perp}=\left\{\mathbf{y} \in \mathbb{F}^{n} \mid\langle\mathbf{x}, \mathbf{y}\rangle=0\right.$ for all $\left.\mathbf{x} \in C\right\}$.

Definition

For a field \mathbb{F} and a subspace C of \mathbb{F}^{n}, we define $C^{\perp}=\left\{\mathbf{y} \in \mathbb{F}^{n} \mid\langle\mathbf{x}, \mathbf{y}\rangle=0\right.$ for all $\left.\mathbf{x} \in C\right\}$.

- It is easy to see that C^{\perp} is a subspace of \mathbb{F}^{n}.

Definition

For a field \mathbb{F} and a subspace C of \mathbb{F}^{n}, we define $C^{\perp}=\left\{\mathbf{y} \in \mathbb{F}^{n} \mid\langle\mathbf{x}, \mathbf{y}\rangle=0\right.$ for all $\left.\mathbf{x} \in C\right\}$.

- It is easy to see that C^{\perp} is a subspace of \mathbb{F}^{n}.

Theorem 1.1

Let \mathbb{F} be a field, and let C be a subspace of \mathbb{F}^{n}. Then $\operatorname{dim} C+\operatorname{dim} C^{\perp}=n$.

Proof (outline). This essentially follows from the Rank-nullity theorem. (Details: Lecture Notes.)

Definition

For a field \mathbb{F} and a subspace C of \mathbb{F}^{n}, we define $C^{\perp}=\left\{\mathbf{y} \in \mathbb{F}^{n} \mid\langle\mathbf{x}, \mathbf{y}\rangle=0\right.$ for all $\left.\mathbf{x} \in C\right\}$.

- It is easy to see that C^{\perp} is a subspace of \mathbb{F}^{n}.

Theorem 1.1

Let \mathbb{F} be a field, and let C be a subspace of \mathbb{F}^{n}. Then $\operatorname{dim} C+\operatorname{dim} C^{\perp}=n$.

Proof (outline). This essentially follows from the Rank-nullity theorem. (Details: Lecture Notes.)

Proposition 1.2

Let \mathbb{F} be a field, and let C be a subspace of \mathbb{F}^{n}. Then $\left(C^{\perp}\right)^{\perp}=C$.
Proof. Lecture Notes.

Part II: Linear codes

Part II: Linear codes

Definition

A linear code is a subspace C of a vector space \mathbb{F}_{q}^{n}, where \mathbb{F}_{q} is a finite field of size q (here, q is a prime power).

Part II: Linear codes

Definition

A linear code is a subspace C of a vector space \mathbb{F}_{q}^{n}, where \mathbb{F}_{q} is a finite field of size q (here, q is a prime power).

- Note that every linear code contains the zero vector.

Part II: Linear codes

Definition

A linear code is a subspace C of a vector space \mathbb{F}_{q}^{n}, where \mathbb{F}_{q} is a finite field of size q (here, q is a prime power).

- Note that every linear code contains the zero vector.
- If the linear code C is an $(n, k, d)_{q}$-code, then we write that C is an $[n, k, d]_{q}$-code.

Part II: Linear codes

Definition

A linear code is a subspace C of a vector space \mathbb{F}_{q}^{n}, where \mathbb{F}_{q} is a finite field of size q (here, q is a prime power).

- Note that every linear code contains the zero vector.
- If the linear code C is an $(n, k, d)_{q}$-code, then we write that C is an $[n, k, d]_{q}$-code.
- The square brackets indicate that C is a linear code.

Part II: Linear codes

Definition

A linear code is a subspace C of a vector space \mathbb{F}_{q}^{n}, where \mathbb{F}_{q} is a finite field of size q (here, q is a prime power).

- Note that every linear code contains the zero vector.
- If the linear code C is an $(n, k, d)_{q}$-code, then we write that C is an $[n, k, d]_{q}$-code.
- The square brackets indicate that C is a linear code.
- An $[n, k, d]_{q}$-code is a subspace of \mathbb{F}_{q}^{n}.

Part II: Linear codes

Definition

A linear code is a subspace C of a vector space \mathbb{F}_{q}^{n}, where \mathbb{F}_{q} is a finite field of size q (here, q is a prime power).

- Note that every linear code contains the zero vector.
- If the linear code C is an $(n, k, d)_{q}$-code, then we write that C is an $[n, k, d]_{q}$-code.
- The square brackets indicate that C is a linear code.
- An $[n, k, d]_{q}$-code is a subspace of \mathbb{F}_{q}^{n}.

Proposition 2.1

Let C be an $[n, k, d]_{q}$-code. Then $\operatorname{dim} C=k$, i.e. the dimension of C as a vector space is k.

Proposition 2.1

Let C be an $[n, k, d]_{q}$-code. Then $\operatorname{dim} C=k$, i.e. the dimension of C as a vector space is k.

Proof.

Proposition 2.1

Let C be an $[n, k, d]_{q}$-code. Then $\operatorname{dim} C=k$, i.e. the dimension of C as a vector space is k.

Proof. Since C is an $[n, k, d]_{q}$-code, we know that C is a subspace of \mathbb{F}_{q}^{n}; set $\ell=\operatorname{dim} C$. WTS $\ell=k$.

Proposition 2.1

Let C be an $[n, k, d]_{q}$-code. Then $\operatorname{dim} C=k$, i.e. the dimension of C as a vector space is k.

Proof. Since C is an $[n, k, d]_{q}$-code, we know that C is a subspace of \mathbb{F}_{q}^{n}; set $\ell=\operatorname{dim} C$. WTS $\ell=k$.
Let $\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{\ell}\right\}$ be a basis for C.

Proposition 2.1

Let C be an $[n, k, d]_{q}$-code. Then $\operatorname{dim} C=k$, i.e. the dimension of C as a vector space is k.

Proof. Since C is an $[n, k, d]_{q}$-code, we know that C is a subspace of \mathbb{F}_{q}^{n}; set $\ell=\operatorname{dim} C$. WTS $\ell=k$.
Let $\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{\ell}\right\}$ be a basis for C. Then C is the set of all vectors of the form $\sum_{i=1}^{\ell} \alpha_{i} \mathbf{c}_{i}$, where $\alpha_{1}, \ldots, \alpha_{\ell} \in \mathbb{F}_{q}$. There are q choices for each α_{i}, and so there are q^{ℓ} choices for the ℓ-tuple $\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$.

Proposition 2.1

Let C be an $[n, k, d]_{q}$-code. Then $\operatorname{dim} C=k$, i.e. the dimension of C as a vector space is k.

Proof. Since C is an $[n, k, d]_{q}$-code, we know that C is a subspace of \mathbb{F}_{q}^{n}; set $\ell=\operatorname{dim} C$. WTS $\ell=k$.
Let $\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{\ell}\right\}$ be a basis for C. Then C is the set of all vectors of the form $\sum_{i=1}^{\ell} \alpha_{i} \mathbf{c}_{i}$, where $\alpha_{1}, \ldots, \alpha_{\ell} \in \mathbb{F}_{q}$. There are q choices for each α_{i}, and so there are q^{ℓ} choices for the ℓ-tuple $\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$. On the other hand, since $\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{\ell}\right\}$ is linearly independent (because it is a basis), we know that $\sum_{i=1}^{\ell} \alpha_{i} \mathbf{c}_{i}=\sum_{i=1}^{\ell} \beta_{i} \mathbf{c}_{i}$ iff $\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)=\left(\beta_{1}, \ldots, \beta_{\ell}\right)$.

Proposition 2.1

Let C be an $[n, k, d]_{q}$-code. Then $\operatorname{dim} C=k$, i.e. the dimension of C as a vector space is k.

Proof. Since C is an $[n, k, d]_{q}$-code, we know that C is a subspace of \mathbb{F}_{q}^{n}; set $\ell=\operatorname{dim} C$. WTS $\ell=k$.
Let $\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{\ell}\right\}$ be a basis for C. Then C is the set of all vectors of the form $\sum_{i=1}^{\ell} \alpha_{i} \mathbf{c}_{i}$, where $\alpha_{1}, \ldots, \alpha_{\ell} \in \mathbb{F}_{q}$. There are q choices for each α_{i}, and so there are q^{ℓ} choices for the ℓ-tuple $\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$. On the other hand, since $\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{\ell}\right\}$ is linearly independent (because it is a basis), we know that $\sum_{i=1}^{\ell} \alpha_{i} \mathbf{c}_{i}=\sum_{i=1}^{\ell} \beta_{i} \mathbf{c}_{i}$ iff $\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)=\left(\beta_{1}, \ldots, \beta_{\ell}\right)$. It follows that $|C|=q^{\ell}$, and consequently, $\ell=\log _{q}|C|$.

Proposition 2.1

Let C be an $[n, k, d]_{q}$-code. Then $\operatorname{dim} C=k$, i.e. the dimension of C as a vector space is k.

Proof. Since C is an $[n, k, d]_{q}$-code, we know that C is a subspace of \mathbb{F}_{q}^{n}; set $\ell=\operatorname{dim} C$. WTS $\ell=k$.
Let $\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{\ell}\right\}$ be a basis for C. Then C is the set of all vectors of the form $\sum_{i=1}^{\ell} \alpha_{i} \mathbf{c}_{i}$, where $\alpha_{1}, \ldots, \alpha_{\ell} \in \mathbb{F}_{q}$. There are q choices for each α_{i}, and so there are q^{ℓ} choices for the ℓ-tuple $\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$. On the other hand, since $\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{\ell}\right\}$ is linearly independent (because it is a basis), we know that $\sum_{i=1}^{\ell} \alpha_{i} \mathbf{c}_{i}=\sum_{i=1}^{\ell} \beta_{i} \mathbf{c}_{i}$ iff $\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)=\left(\beta_{1}, \ldots, \beta_{\ell}\right)$. It follows that $|C|=q^{\ell}$, and consequently, $\ell=\log _{q}|C|$.
Since $k=\log _{q}|C|$ (by definition), it follows that $\ell=k$, which is what we needed to show.

- Suppose that $C \subseteq \mathbb{F}_{q}^{n}$ be an $[n, k, d]_{q}$-code, with $0<k<n$.
- Suppose that $C \subseteq \mathbb{F}_{q}^{n}$ be an $[n, k, d]_{q}$-code, with $0<k<n$.
- By Proposition 2.1, $\operatorname{dim} C=k$.
- Suppose that $C \subseteq \mathbb{F}_{q}^{n}$ be an $[n, k, d]_{q}$-code, with $0<k<n$.
- By Proposition 2.1, $\operatorname{dim} C=k$.
- Let G be any matrix whose rows form a basis for C (in particular, $\left.G \in \mathbb{F}_{q}^{k \times n}\right)$.
- Suppose that $C \subseteq \mathbb{F}_{q}^{n}$ be an $[n, k, d]_{q}$-code, with $0<k<n$.
- By Proposition 2.1, $\operatorname{dim} C=k$.
- Let G be any matrix whose rows form a basis for C (in particular, $\left.G \in \mathbb{F}_{q}^{k \times n}\right)$.
- G is called the generator matrix of the linear code C.
- Suppose that $C \subseteq \mathbb{F}_{q}^{n}$ be an $[n, k, d]_{q}$-code, with $0<k<n$.
- By Proposition 2.1, $\operatorname{dim} C=k$.
- Let G be any matrix whose rows form a basis for C (in particular, $G \in \mathbb{F}_{q}^{k \times n}$).
- G is called the generator matrix of the linear code C.
- We have $C^{\perp}=\left\{\mathbf{y} \in \mathbb{F}_{q}^{n} \mid \mathbf{y} G^{T}=\mathbf{0}\right\}$.
- Suppose that $C \subseteq \mathbb{F}_{q}^{n}$ be an $[n, k, d]_{q}$-code, with $0<k<n$.
- By Proposition 2.1, $\operatorname{dim} C=k$.
- Let G be any matrix whose rows form a basis for C (in particular, $G \in \mathbb{F}_{q}^{k \times n}$).
- G is called the generator matrix of the linear code C.
- We have $C^{\perp}=\left\{\mathbf{y} \in \mathbb{F}_{q}^{n} \mid \mathbf{y} G^{T}=\mathbf{0}\right\}$.
- Suppose H is any matrix such that the rows of H^{T} form a basis for C^{\perp}.
- Suppose that $C \subseteq \mathbb{F}_{q}^{n}$ be an $[n, k, d]_{q}$-code, with $0<k<n$.
- By Proposition 2.1, $\operatorname{dim} C=k$.
- Let G be any matrix whose rows form a basis for C (in particular, $G \in \mathbb{F}_{q}^{k \times n}$).
- G is called the generator matrix of the linear code C.
- We have $C^{\perp}=\left\{\mathbf{y} \in \mathbb{F}_{q}^{n} \mid \mathbf{y} G^{T}=\mathbf{0}\right\}$.
- Suppose H is any matrix such that the rows of H^{T} form a basis for C^{\perp}.
- So, H^{T} is a generator matrix for C^{\perp}.
- H is called a parity check matrix for C, and by Proposition 1.2, it satisfies $C=\left\{\mathbf{x} \in \mathbb{F}_{q}^{n} \mid \mathbf{x} H=\mathbf{0}\right\}$, i.e. $C=\operatorname{Ker}(H)$.
- Suppose that $C \subseteq \mathbb{F}_{q}^{n}$ be an $[n, k, d]_{q}$-code, with $0<k<n$.
- By Proposition 2.1, $\operatorname{dim} C=k$.
- Let G be any matrix whose rows form a basis for C (in particular, $G \in \mathbb{F}_{q}^{k \times n}$).
- G is called the generator matrix of the linear code C.
- We have $C^{\perp}=\left\{\mathbf{y} \in \mathbb{F}_{q}^{n} \mid \mathbf{y} G^{T}=\mathbf{0}\right\}$.
- Suppose H is any matrix such that the rows of H^{T} form a basis for C^{\perp}.
- So, H^{\top} is a generator matrix for C^{\perp}.
- H is called a parity check matrix for C, and by Proposition 1.2, it satisfies $C=\left\{\mathbf{x} \in \mathbb{F}_{q}^{n} \mid \mathbf{x} H=\mathbf{0}\right\}$, i.e. $C=\operatorname{Ker}(H)$.
- The parity check matrix H can be used to check whether a vector $\mathbf{x} \in \mathbb{F}_{q}^{n}$ is a codeword of C.
- Suppose that $C \subseteq \mathbb{F}_{q}^{n}$ be an $[n, k, d]_{q}$-code, with $0<k<n$.
- By Proposition 2.1, $\operatorname{dim} C=k$.
- Let G be any matrix whose rows form a basis for C (in particular, $G \in \mathbb{F}_{q}^{k \times n}$).
- G is called the generator matrix of the linear code C.
- We have $C^{\perp}=\left\{\mathbf{y} \in \mathbb{F}_{q}^{n} \mid \mathbf{y} G^{T}=\mathbf{0}\right\}$.
- Suppose H is any matrix such that the rows of H^{T} form a basis for C^{\perp}.
- So, H^{\top} is a generator matrix for C^{\perp}.
- H is called a parity check matrix for C, and by Proposition 1.2, it satisfies $C=\left\{\mathbf{x} \in \mathbb{F}_{q}^{n} \mid \mathbf{x} H=\mathbf{0}\right\}$, i.e. $C=\operatorname{Ker}(H)$.
- The parity check matrix H can be used to check whether a vector $\mathbf{x} \in \mathbb{F}_{q}^{n}$ is a codeword of C.
- Indeed, if $\mathbf{x H}=\mathbf{0}$, then $\mathbf{x} \in C$, and otherwise, $\mathbf{x} \notin C$.
- Suppose that $C \subseteq \mathbb{F}_{q}^{n}$ be an $[n, k, d]_{q}$-code, with $0<k<n$.
- By Proposition 2.1, $\operatorname{dim} C=k$.
- Let G be any matrix whose rows form a basis for C (in particular, $G \in \mathbb{F}_{q}^{k \times n}$).
- G is called the generator matrix of the linear code C.
- We have $C^{\perp}=\left\{\mathbf{y} \in \mathbb{F}_{q}^{n} \mid \mathbf{y} G^{T}=\mathbf{0}\right\}$.
- Suppose H is any matrix such that the rows of H^{T} form a basis for C^{\perp}.
- So, H^{\top} is a generator matrix for C^{\perp}.
- H is called a parity check matrix for C, and by Proposition 1.2, it satisfies $C=\left\{\mathbf{x} \in \mathbb{F}_{q}^{n} \mid \mathbf{x} H=\mathbf{0}\right\}$, i.e. $C=\operatorname{Ker}(H)$.
- The parity check matrix H can be used to check whether a vector $\mathbf{x} \in \mathbb{F}_{q}^{n}$ is a codeword of C.
- Indeed, if $\mathbf{x H}=\mathbf{0}$, then $\mathbf{x} \in C$, and otherwise, $\mathbf{x} \notin C$.
- Note that, given a generator matrix for C, one can easily compute a parity check matrix for C, and vice versa.

Definition

Given a vector $\mathbf{x} \in \mathbb{F}_{q}^{n}$, the Hamming weight of \mathbf{x}, denoted by $w t(\mathbf{x})$, is the number of non-zero coordinates in \mathbf{x}.

Definition

Given a vector $\mathbf{x} \in \mathbb{F}_{q}^{n}$, the Hamming weight of \mathbf{x}, denoted by $\mathrm{wt}(\mathbf{x})$, is the number of non-zero coordinates in \mathbf{x}.

Proposition 2.2

Let $C \varsubsetneqq \mathbb{F}_{q}^{n}$ be an $[n, k, d]_{q^{-}}$-code, with $0<k<n$, and let H be a parity check matrix for C. Then $d=\min \{w t(\mathbf{x}) \mid \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\}$.

Proof.

Definition

Given a vector $\mathbf{x} \in \mathbb{F}_{q}^{n}$, the Hamming weight of \mathbf{x}, denoted by $\mathrm{wt}(\mathbf{x})$, is the number of non-zero coordinates in \mathbf{x}.

Proposition 2.2

Let $C \varsubsetneqq \mathbb{F}_{q}^{n}$ be an $[n, k, d]_{q^{-}}$-code, with $0<k<n$, and let H be a parity check matrix for C. Then $d=\min \{w t(\mathbf{x}) \mid \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\}$.

Proof. Fix $\mathbf{x} \in C \backslash\{\mathbf{0}\}$ with minimum Hamming weight. WTS $d=w t(\mathbf{x})$.

Definition

Given a vector $\mathbf{x} \in \mathbb{F}_{q}^{n}$, the Hamming weight of \mathbf{x}, denoted by $\mathrm{wt}(\mathbf{x})$, is the number of non-zero coordinates in \mathbf{x}.

Proposition 2.2

Let $C \varsubsetneqq \mathbb{F}_{q}^{n}$ be an $[n, k, d]_{q^{-}}$-code, with $0<k<n$, and let H be a parity check matrix for C. Then $d=\min \{w t(\mathbf{x}) \mid \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\}$.

Proof. Fix $\mathbf{x} \in C \backslash\{\mathbf{0}\}$ with minimum Hamming weight. WTS $d=w t(\mathbf{x})$.
Since C is a linear code, we know that $\mathbf{0} \in C$, and so (since \mathbf{x} and $\mathbf{0}$ are distinct codewords in C) we have that $d(\mathbf{x}, \mathbf{0}) \geq d$. But obviously, $d(\mathbf{x}, \mathbf{0})=w t(\mathbf{x})$, and it follows that $\mathrm{wt}(\mathbf{x}) \geq d$.

Definition

Given a vector $\mathbf{x} \in \mathbb{F}_{q}^{n}$, the Hamming weight of \mathbf{x}, denoted by $\mathrm{wt}(\mathbf{x})$, is the number of non-zero coordinates in \mathbf{x}.

Proposition 2.2

Let $C \varsubsetneqq \mathbb{F}_{q}^{n}$ be an $[n, k, d]_{q^{-}}$-code, with $0<k<n$, and let H be a parity check matrix for C. Then $d=\min \{w t(\mathbf{x}) \mid \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\}$.

Proof. Fix $\mathbf{x} \in C \backslash\{\mathbf{0}\}$ with minimum Hamming weight. WTS $d=w t(\mathbf{x})$.
Since C is a linear code, we know that $\mathbf{0} \in C$, and so (since \mathbf{x} and $\mathbf{0}$ are distinct codewords in C) we have that $d(\mathbf{x}, \mathbf{0}) \geq d$. But obviously, $d(\mathbf{x}, \mathbf{0})=w t(\mathbf{x})$, and it follows that $w t(\mathbf{x}) \geq d$. WTS $w t(\mathbf{x}) \leq d$.

Definition

Given a vector $\mathbf{x} \in \mathbb{F}_{q}^{n}$, the Hamming weight of \mathbf{x}, denoted by $\mathrm{wt}(\mathbf{x})$, is the number of non-zero coordinates in \mathbf{x}.

Proposition 2.2

Let $C \varsubsetneqq \mathbb{F}_{q}^{n}$ be an $[n, k, d]_{q^{-}}$-code, with $0<k<n$, and let H be a parity check matrix for C. Then $d=\min \{w t(\mathbf{x}) \mid \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\}$.

Proof. Fix $\mathbf{x} \in C \backslash\{\mathbf{0}\}$ with minimum Hamming weight. WTS $d=w t(\mathbf{x})$.
Since C is a linear code, we know that $\mathbf{0} \in C$, and so (since \mathbf{x} and $\mathbf{0}$ are distinct codewords in C) we have that $d(\mathbf{x}, \mathbf{0}) \geq d$. But obviously, $d(\mathbf{x}, \mathbf{0})=\mathrm{wt}(\mathbf{x})$, and it follows that $\mathrm{wt}(\mathbf{x}) \geq d$.
WTS $w t(\mathbf{x}) \leq d$. Fix distinct $\mathbf{y}, \mathbf{z} \in C$ such that $d(\mathbf{y}, \mathbf{z})=d$.

Definition

Given a vector $\mathbf{x} \in \mathbb{F}_{q}^{n}$, the Hamming weight of \mathbf{x}, denoted by $\mathrm{wt}(\mathbf{x})$, is the number of non-zero coordinates in \mathbf{x}.

Proposition 2.2

Let $C \varsubsetneqq \mathbb{F}_{q}^{n}$ be an $[n, k, d]_{q^{-}}$-code, with $0<k<n$, and let H be a parity check matrix for C. Then $d=\min \{w t(\mathbf{x}) \mid \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\}$.

Proof. Fix $\mathbf{x} \in C \backslash\{\mathbf{0}\}$ with minimum Hamming weight. WTS $d=w t(\mathbf{x})$.
Since C is a linear code, we know that $\mathbf{0} \in C$, and so (since \mathbf{x} and $\mathbf{0}$ are distinct codewords in C) we have that $d(\mathbf{x}, \mathbf{0}) \geq d$. But obviously, $d(\mathbf{x}, \mathbf{0})=\mathrm{wt}(\mathbf{x})$, and it follows that $\mathrm{wt}(\mathbf{x}) \geq d$.
WTS $w t(\mathbf{x}) \leq d$. Fix distinct $\mathbf{y}, \mathbf{z} \in C$ such that $d(\mathbf{y}, \mathbf{z})=d$. Since C is a vector space, we know that $\mathbf{y}-\mathbf{z} \in C$, and so by the choice of \mathbf{x}, we have that $\mathrm{wt}(\mathbf{x}) \leq \mathrm{wt}(\mathbf{y}-\mathbf{z})$.

Definition

Given a vector $\mathbf{x} \in \mathbb{F}_{q}^{n}$, the Hamming weight of \mathbf{x}, denoted by $\mathrm{wt}(\mathbf{x})$, is the number of non-zero coordinates in \mathbf{x}.

Proposition 2.2

Let $C \varsubsetneqq \mathbb{F}_{q}^{n}$ be an $[n, k, d]_{q}$-code, with $0<k<n$, and let H be a parity check matrix for C. Then $d=\min \{\omega t(\mathbf{x}) \mid \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\}$.

Proof. Fix $\mathbf{x} \in C \backslash\{\mathbf{0}\}$ with minimum Hamming weight. WTS $d=w t(\mathbf{x})$.
Since C is a linear code, we know that $\mathbf{0} \in C$, and so (since \mathbf{x} and $\mathbf{0}$ are distinct codewords in C) we have that $d(\mathbf{x}, \mathbf{0}) \geq d$. But obviously, $d(\mathbf{x}, \mathbf{0})=\mathrm{wt}(\mathbf{x})$, and it follows that $\mathrm{wt}(\mathbf{x}) \geq d$.
WTS $w t(\mathbf{x}) \leq d$. Fix distinct $\mathbf{y}, \mathbf{z} \in C$ such that $d(\mathbf{y}, \mathbf{z})=d$. Since C is a vector space, we know that $\mathbf{y}-\mathbf{z} \in C$, and so by the choice of \mathbf{x}, we have that $w t(\mathbf{x}) \leq w t(\mathbf{y}-\mathbf{z})$. But now
$d=d(\mathbf{y}, \mathbf{z})=\mathrm{wt}(\mathbf{y}-\mathbf{z}) \geq \mathrm{wt}(\mathbf{x})$.

Part III: Hamming codes

Part III: Hamming codes

- Fix an integer $\ell \geq 2$, and set $n=2^{\ell}-1, k=2^{\ell}-\ell-1$, and $d=3$.

Part III: Hamming codes

- Fix an integer $\ell \geq 2$, and set $n=2^{\ell}-1, k=2^{\ell}-\ell-1$, and $d=3$.
- Our goal in this section is to construct an $[n, k, d]_{2}$-code, called a Hamming code.

Part III: Hamming codes

- Fix an integer $\ell \geq 2$, and set $n=2^{\ell}-1, k=2^{\ell}-\ell-1$, and $d=3$.
- Our goal in this section is to construct an $[n, k, d]_{2}$-code, called a Hamming code.
- It is also possible to construct " q-ary Hamming codes," which are over the (more general) field \mathbb{F}_{q}.
- For the sake of simplicity, though, we consider only binary Hamming codes, i.e. those over the field \mathbb{F}_{2}.

Part III: Hamming codes

- Fix an integer $\ell \geq 2$, and set $n=2^{\ell}-1, k=2^{\ell}-\ell-1$, and $d=3$.
- Our goal in this section is to construct an $[n, k, d]_{2}$-code, called a Hamming code.
- It is also possible to construct " q-ary Hamming codes," which are over the (more general) field \mathbb{F}_{q}.
- For the sake of simplicity, though, we consider only binary Hamming codes, i.e. those over the field \mathbb{F}_{2}.
- We do this by constructing its parity check matrix H; then the code in question will simply be the subspace $C=\left\{\mathbf{x} \in \mathbb{F}_{2}^{n} \mid \mathbf{x H}=\mathbf{0}\right\}$.
- Reminder: $\ell \geq 2, n=2^{\ell}-1, k=2^{\ell}-\ell-1$, and $d=3$.
- Reminder: $\ell \geq 2, n=2^{\ell}-1, k=2^{\ell}-\ell-1$, and $d=3$.
- For all $i \in\{1, \ldots, n\}$, let $\mathbf{h}_{i} \in \mathbb{F}_{2}^{\ell}$ be the vector giving the binary representation of i, with zeros added to the front if necessary (so that the length of the representation is ℓ).
- Reminder: $\ell \geq 2, n=2^{\ell}-1, k=2^{\ell}-\ell-1$, and $d=3$.
- For all $i \in\{1, \ldots, n\}$, let $\mathbf{h}_{i} \in \mathbb{F}_{2}^{\ell}$ be the vector giving the binary representation of i, with zeros added to the front if necessary (so that the length of the representation is ℓ).
- Let $H=\left[\begin{array}{c}\mathbf{h}_{1} \\ \vdots \\ \mathbf{h}_{n}\end{array}\right]$. Note that $H \in \mathbb{F}_{2}^{n \times \ell}$.
- Reminder: $\ell \geq 2, n=2^{\ell}-1, k=2^{\ell}-\ell-1$, and $d=3$.
- For all $i \in\{1, \ldots, n\}$, let $\mathbf{h}_{i} \in \mathbb{F}_{2}^{\ell}$ be the vector giving the binary representation of i, with zeros added to the front if necessary (so that the length of the representation is ℓ).
- Let $H=\left[\begin{array}{c}\mathbf{h}_{1} \\ \vdots \\ \mathbf{h}_{n}\end{array}\right]$. Note that $H \in \mathbb{F}_{2}^{n \times \ell}$.
- Let $C=\left\{\mathbf{x} \in \mathbb{F}_{2}^{n} \mid \mathbf{x H}=\mathbf{0}\right\}$. WTS $[n, k, d]_{2}$-code.
- Reminder: $\ell \geq 2, n=2^{\ell}-1, k=2^{\ell}-\ell-1$, and $d=3$.
- For all $i \in\{1, \ldots, n\}$, let $\mathbf{h}_{i} \in \mathbb{F}_{2}^{\ell}$ be the vector giving the binary representation of i, with zeros added to the front if necessary (so that the length of the representation is ℓ).
- Let $H=\left[\begin{array}{c}\mathbf{h}_{1} \\ \vdots \\ \mathbf{h}_{n}\end{array}\right]$. Note that $H \in \mathbb{F}_{2}^{n \times \ell}$.
- Let $C=\left\{\mathbf{x} \in \mathbb{F}_{2}^{n} \mid \mathbf{x H}=\mathbf{0}\right\}$. WTS $[n, k, d]_{2}$-code.
- Obviously, C is a subspace of \mathbb{F}_{2}^{n}.
- So, C is a linear code, and furthermore, n and the subscript 2 in $[n, k, d]_{2}$ are correct.
- Reminder: $\ell \geq 2, n=2^{\ell}-1, k=2^{\ell}-\ell-1$, and $d=3$.
- For all $i \in\{1, \ldots, n\}$, let $\mathbf{h}_{i} \in \mathbb{F}_{2}^{\ell}$ be the vector giving the binary representation of i, with zeros added to the front if necessary (so that the length of the representation is ℓ).
- Let $H=\left[\begin{array}{c}\mathbf{h}_{1} \\ \vdots \\ \mathbf{h}_{n}\end{array}\right]$. Note that $H \in \mathbb{F}_{2}^{n \times \ell}$.
- Let $C=\left\{\mathbf{x} \in \mathbb{F}_{2}^{n} \mid \mathbf{x H}=\mathbf{0}\right\}$. WTS $[n, k, d]_{2}$-code.
- Obviously, C is a subspace of \mathbb{F}_{2}^{n}.
- So, C is a linear code, and furthermore, n and the subscript 2 in $[n, k, d]_{2}$ are correct.
- Each of $\mathbf{e}_{1}^{\ell}, \ldots, \mathbf{e}_{\ell}^{\ell}$ is a row of H, and $\left\{\mathbf{e}_{1}^{\ell}, \ldots, \mathbf{e}_{\ell}^{\ell}\right\}$ is a basis for \mathbb{F}_{2}^{ℓ}; so, $\operatorname{rank}(H)=\ell$.
- Reminder: $\ell \geq 2, n=2^{\ell}-1, k=2^{\ell}-\ell-1$, and $d=3$.
- For all $i \in\{1, \ldots, n\}$, let $\mathbf{h}_{i} \in \mathbb{F}_{2}^{\ell}$ be the vector giving the binary representation of i, with zeros added to the front if necessary (so that the length of the representation is ℓ).
- Let $H=\left[\begin{array}{c}\mathbf{h}_{1} \\ \vdots \\ \mathbf{h}_{n}\end{array}\right]$. Note that $H \in \mathbb{F}_{2}^{n \times \ell}$.
- Let $C=\left\{\mathbf{x} \in \mathbb{F}_{2}^{n} \mid \mathbf{x H}=\mathbf{0}\right\}$. WTS $[n, k, d]_{2}$-code.
- Obviously, C is a subspace of \mathbb{F}_{2}^{n}.
- So, C is a linear code, and furthermore, n and the subscript 2 in $[n, k, d]_{2}$ are correct.
- Each of $\mathbf{e}_{1}^{\ell}, \ldots, \mathbf{e}_{\ell}^{\ell}$ is a row of H, and $\left\{\mathbf{e}_{1}^{\ell}, \ldots, \mathbf{e}_{\ell}^{\ell}\right\}$ is a basis for \mathbb{F}_{2}^{ℓ}; so, $\operatorname{rank}(H)=\ell$.
- By the Rank-nullity theorem, $\operatorname{rank}(H)+\operatorname{dim} \operatorname{Ker}(H)=n$.
- Reminder: $\ell \geq 2, n=2^{\ell}-1, k=2^{\ell}-\ell-1$, and $d=3$.
- For all $i \in\{1, \ldots, n\}$, let $\mathbf{h}_{i} \in \mathbb{F}_{2}^{\ell}$ be the vector giving the binary representation of i, with zeros added to the front if necessary (so that the length of the representation is ℓ).
- Let $H=\left[\begin{array}{c}\mathbf{h}_{1} \\ \vdots \\ \mathbf{h}_{n}\end{array}\right]$. Note that $H \in \mathbb{F}_{2}^{n \times \ell}$.
- Let $C=\left\{\mathbf{x} \in \mathbb{F}_{2}^{n} \mid \mathbf{x H}=\mathbf{0}\right\}$. WTS $[n, k, d]_{2}$-code.
- Obviously, C is a subspace of \mathbb{F}_{2}^{n}.
- So, C is a linear code, and furthermore, n and the subscript 2 in $[n, k, d]_{2}$ are correct.
- Each of $\mathbf{e}_{1}^{\ell}, \ldots, \mathbf{e}_{\ell}^{\ell}$ is a row of H, and $\left\{\mathbf{e}_{1}^{\ell}, \ldots, \mathbf{e}_{\ell}^{\ell}\right\}$ is a basis for \mathbb{F}_{2}^{ℓ}; so, $\operatorname{rank}(H)=\ell$.
- By the Rank-nullity theorem, $\operatorname{rank}(H)+\operatorname{dim} \operatorname{Ker}(H)=n$.
- So, $\operatorname{dim} \operatorname{Ker}(H)=n-\ell=k$.
- Reminder: $\ell \geq 2, n=2^{\ell}-1, k=2^{\ell}-\ell-1$, and $d=3$.
- For all $i \in\{1, \ldots, n\}$, let $\mathbf{h}_{i} \in \mathbb{F}_{2}^{\ell}$ be the vector giving the binary representation of i, with zeros added to the front if necessary (so that the length of the representation is ℓ).
- Let $H=\left[\begin{array}{c}\mathbf{h}_{1} \\ \vdots \\ \mathbf{h}_{n}\end{array}\right]$. Note that $H \in \mathbb{F}_{2}^{n \times \ell}$.
- Let $C=\left\{\mathbf{x} \in \mathbb{F}_{2}^{n} \mid \mathbf{x H}=\mathbf{0}\right\}$. WTS $[n, k, d]_{2}$-code.
- Obviously, C is a subspace of \mathbb{F}_{2}^{n}.
- So, C is a linear code, and furthermore, n and the subscript 2 in $[n, k, d]_{2}$ are correct.
- Each of $\mathbf{e}_{1}^{\ell}, \ldots, \mathbf{e}_{\ell}^{\ell}$ is a row of H, and $\left\{\mathbf{e}_{1}^{\ell}, \ldots, \mathbf{e}_{\ell}^{\ell}\right\}$ is a basis for \mathbb{F}_{2}^{ℓ}; so, $\operatorname{rank}(H)=\ell$.
- By the Rank-nullity theorem, $\operatorname{rank}(H)+\operatorname{dim} \operatorname{Ker}(H)=n$.
- So, $\operatorname{dim} \operatorname{Ker}(H)=n-\ell=k$.
- But $C=\operatorname{Ker}(H)$, and so $\operatorname{dim} C=k$.
- So, k in $[n, k, d]_{2}$ is correct.
- Reminder: $C=\left\{\mathbf{x} \in \mathbb{F}_{2}^{n} \mid \mathbf{x H}=\mathbf{0}\right\}$. WTS $[n, k, d]_{2}$-code.
- Reminder: $C=\left\{\mathbf{x} \in \mathbb{F}_{2}^{n} \mid \mathbf{x H}=\mathbf{0}\right\}$. WTS $[n, k, d]_{2}$-code.
- It remains to show that the d in $[n, k, d]_{3}$ is correct, i.e. that the minimum distance in C is $d=3$.
- Reminder: $C=\left\{\mathbf{x} \in \mathbb{F}_{2}^{n} \mid \mathbf{x H}=\mathbf{0}\right\}$. WTS $[n, k, d]_{2}$-code.
- It remains to show that the d in $[n, k, d]_{3}$ is correct, i.e. that the minimum distance in C is $d=3$.
- By Proposition 2.2, it suffices to show that the minimum Hamming weight of a non-zero vector in C is $d=3$.
- Reminder: $C=\left\{\mathbf{x} \in \mathbb{F}_{2}^{n} \mid \mathbf{x H}=\mathbf{0}\right\}$. WTS $[n, k, d]_{2}$-code.
- It remains to show that the d in $[n, k, d]_{3}$ is correct, i.e. that the minimum distance in C is $d=3$.
- By Proposition 2.2, it suffices to show that the minimum Hamming weight of a non-zero vector in C is $d=3$.
- Vectors of \mathbb{F}_{2}^{n} of Hamming weight 1 are precisely the vectors $\mathbf{e}_{1}^{n}, \ldots, \mathbf{e}_{n}^{n}$.
- Reminder: $C=\left\{\mathbf{x} \in \mathbb{F}_{2}^{n} \mid \mathbf{x H}=\mathbf{0}\right\}$. WTS $[n, k, d]_{2}$-code.
- It remains to show that the d in $[n, k, d]_{3}$ is correct, i.e. that the minimum distance in C is $d=3$.
- By Proposition 2.2, it suffices to show that the minimum Hamming weight of a non-zero vector in C is $d=3$.
- Vectors of \mathbb{F}_{2}^{n} of Hamming weight 1 are precisely the vectors $\mathbf{e}_{1}^{n}, \ldots, \mathbf{e}_{n}^{n}$.
- For all $i \in\{1, \ldots, n\}, \mathbf{e}_{i} H=\mathbf{h}_{i} \neq \mathbf{0}$, and so $\mathbf{e}_{i} \notin C$.
- Reminder: $C=\left\{\mathbf{x} \in \mathbb{F}_{2}^{n} \mid \mathbf{x H}=\mathbf{0}\right\}$. WTS $[n, k, d]_{2}$-code.
- It remains to show that the d in $[n, k, d]_{3}$ is correct, i.e. that the minimum distance in C is $d=3$.
- By Proposition 2.2, it suffices to show that the minimum Hamming weight of a non-zero vector in C is $d=3$.
- Vectors of \mathbb{F}_{2}^{n} of Hamming weight 1 are precisely the vectors $\mathbf{e}_{1}^{n}, \ldots, \mathbf{e}_{n}^{n}$.
- For all $i \in\{1, \ldots, n\}, \mathbf{e}_{i} H=\mathbf{h}_{i} \neq \mathbf{0}$, and so $\mathbf{e}_{i} \notin C$.
- Vectors of \mathbb{F}_{2}^{n} of Hamming weight 2 are precisely the vectors of the form $\mathbf{e}_{i}^{n}+\mathbf{e}_{j}^{n}$, with $i \neq j$.
- Reminder: $C=\left\{\mathbf{x} \in \mathbb{F}_{2}^{n} \mid \mathbf{x H}=\mathbf{0}\right\}$. WTS $[n, k, d]_{2}$-code.
- It remains to show that the d in $[n, k, d]_{3}$ is correct, i.e. that the minimum distance in C is $d=3$.
- By Proposition 2.2, it suffices to show that the minimum Hamming weight of a non-zero vector in C is $d=3$.
- Vectors of \mathbb{F}_{2}^{n} of Hamming weight 1 are precisely the vectors $\mathbf{e}_{1}^{n}, \ldots, \mathbf{e}_{n}^{n}$.
- For all $i \in\{1, \ldots, n\}, \mathbf{e}_{i} H=\mathbf{h}_{i} \neq \mathbf{0}$, and so $\mathbf{e}_{i} \notin C$.
- Vectors of \mathbb{F}_{2}^{n} of Hamming weight 2 are precisely the vectors of the form $\mathbf{e}_{i}^{n}+\mathbf{e}_{j}^{n}$, with $i \neq j$.
- For distinct $i, j \in\{1, \ldots, n\},\left(\mathbf{e}_{i}^{n}+\mathbf{e}_{j}^{n}\right) H=\mathbf{h}_{i}+\mathbf{h}_{j} \neq \mathbf{0}$, and so $\mathbf{e}_{i}^{n}+\mathbf{e}_{j}^{n} \notin C$.
- Reminder: $C=\left\{\mathbf{x} \in \mathbb{F}_{2}^{n} \mid \mathbf{x H}=\mathbf{0}\right\}$. WTS $[n, k, d]_{2}$-code.
- It remains to show that the d in $[n, k, d]_{3}$ is correct, i.e. that the minimum distance in C is $d=3$.
- By Proposition 2.2, it suffices to show that the minimum Hamming weight of a non-zero vector in C is $d=3$.
- Vectors of \mathbb{F}_{2}^{n} of Hamming weight 1 are precisely the vectors $\mathbf{e}_{1}^{n}, \ldots, \mathbf{e}_{n}^{n}$.
- For all $i \in\{1, \ldots, n\}, \mathbf{e}_{i} H=\mathbf{h}_{i} \neq \mathbf{0}$, and so $\mathbf{e}_{i} \notin C$.
- Vectors of \mathbb{F}_{2}^{n} of Hamming weight 2 are precisely the vectors of the form $\mathbf{e}_{i}^{n}+\mathbf{e}_{j}^{n}$, with $i \neq j$.
- For distinct $i, j \in\{1, \ldots, n\},\left(\mathbf{e}_{i}^{n}+\mathbf{e}_{j}^{n}\right) H=\mathbf{h}_{i}+\mathbf{h}_{j} \neq \mathbf{0}$, and so $\mathbf{e}_{i}^{n}+\mathbf{e}_{j}^{n} \notin C$.
- So, C does not contain any non-zero vectors of Hamming weight at most two.
- Reminder: $C=\left\{\mathbf{x} \in \mathbb{F}_{2}^{n} \mid \mathbf{x H}=\mathbf{0}\right\}$. WTS $[n, k, d]_{2}$-code.
- It remains to show that the d in $[n, k, d]_{3}$ is correct, i.e. that the minimum distance in C is $d=3$.
- By Proposition 2.2, it suffices to show that the minimum Hamming weight of a non-zero vector in C is $d=3$.
- Vectors of \mathbb{F}_{2}^{n} of Hamming weight 1 are precisely the vectors $\mathbf{e}_{1}^{n}, \ldots, \mathbf{e}_{n}^{n}$.
- For all $i \in\{1, \ldots, n\}, \mathbf{e}_{i} H=\mathbf{h}_{i} \neq \mathbf{0}$, and so $\mathbf{e}_{i} \notin C$.
- Vectors of \mathbb{F}_{2}^{n} of Hamming weight 2 are precisely the vectors of the form $\mathbf{e}_{i}^{n}+\mathbf{e}_{j}^{n}$, with $i \neq j$.
- For distinct $i, j \in\{1, \ldots, n\},\left(\mathbf{e}_{i}^{n}+\mathbf{e}_{j}^{n}\right) H=\mathbf{h}_{i}+\mathbf{h}_{j} \neq \mathbf{0}$, and so $\mathbf{e}_{i}^{n}+\mathbf{e}_{j}^{n} \notin C$.
- So, C does not contain any non-zero vectors of Hamming weight at most two.
- C does contain a vector of Hamming weight at most three, e.g. the vector $\mathbf{e}_{1}^{n}+\mathbf{e}_{2}^{n}+\mathbf{e}_{3}^{n}$.
- Because: $\left(\mathbf{e}_{1}^{n}+\mathbf{e}_{2}^{n}+\mathbf{e}_{3}^{n}\right) H=\mathbf{h}_{1}+\mathbf{h}_{2}+\mathbf{h}_{3}=\mathbf{0}$.
- Reminder: $C=\left\{\mathbf{x} \in \mathbb{F}_{2}^{n} \mid \mathbf{x H}=\mathbf{0}\right\}$. WTS $[n, k, d]_{2}$-code.
- It remains to show that the d in $[n, k, d]_{3}$ is correct, i.e. that the minimum distance in C is $d=3$.
- By Proposition 2.2, it suffices to show that the minimum Hamming weight of a non-zero vector in C is $d=3$.
- Vectors of \mathbb{F}_{2}^{n} of Hamming weight 1 are precisely the vectors $\mathbf{e}_{1}^{n}, \ldots, \mathbf{e}_{n}^{n}$.
- For all $i \in\{1, \ldots, n\}, \mathbf{e}_{i} H=\mathbf{h}_{i} \neq \mathbf{0}$, and so $\mathbf{e}_{i} \notin C$.
- Vectors of \mathbb{F}_{2}^{n} of Hamming weight 2 are precisely the vectors of the form $\mathbf{e}_{i}^{n}+\mathbf{e}_{j}^{n}$, with $i \neq j$.
- For distinct $i, j \in\{1, \ldots, n\},\left(\mathbf{e}_{i}^{n}+\mathbf{e}_{j}^{n}\right) H=\mathbf{h}_{i}+\mathbf{h}_{j} \neq \mathbf{0}$, and so $\mathbf{e}_{i}^{n}+\mathbf{e}_{j}^{n} \notin C$.
- So, C does not contain any non-zero vectors of Hamming weight at most two.
- C does contain a vector of Hamming weight at most three, e.g. the vector $\mathbf{e}_{1}^{n}+\mathbf{e}_{2}^{n}+\mathbf{e}_{3}^{n}$.
- Because: $\left(\mathbf{e}_{1}^{n}+\mathbf{e}_{2}^{n}+\mathbf{e}_{3}^{n}\right) H=\mathbf{h}_{1}+\mathbf{h}_{2}+\mathbf{h}_{3}=\mathbf{0}$.
- So, $\min \{\mathrm{wt}(\mathbf{x}) \mid \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\}=3=d$.
- Reminder: $C=\left\{\mathbf{x} \in \mathbb{F}_{2}^{n} \mid \mathbf{x H}=\mathbf{0}\right\}$. WTS $[n, k, d]_{2}$-code.
- It remains to show that the d in $[n, k, d]_{3}$ is correct, i.e. that the minimum distance in C is $d=3$.
- By Proposition 2.2, it suffices to show that the minimum Hamming weight of a non-zero vector in C is $d=3$.
- Vectors of \mathbb{F}_{2}^{n} of Hamming weight 1 are precisely the vectors $\mathbf{e}_{1}^{n}, \ldots, \mathbf{e}_{n}^{n}$.
- For all $i \in\{1, \ldots, n\}, \mathbf{e}_{i} H=\mathbf{h}_{i} \neq \mathbf{0}$, and so $\mathbf{e}_{i} \notin C$.
- Vectors of \mathbb{F}_{2}^{n} of Hamming weight 2 are precisely the vectors of the form $\mathbf{e}_{i}^{n}+\mathbf{e}_{j}^{n}$, with $i \neq j$.
- For distinct $i, j \in\{1, \ldots, n\},\left(\mathbf{e}_{i}^{n}+\mathbf{e}_{j}^{n}\right) H=\mathbf{h}_{i}+\mathbf{h}_{j} \neq \mathbf{0}$, and so $\mathbf{e}_{i}^{n}+\mathbf{e}_{j}^{n} \notin C$.
- So, C does not contain any non-zero vectors of Hamming weight at most two.
- C does contain a vector of Hamming weight at most three, e.g. the vector $\mathbf{e}_{1}^{n}+\mathbf{e}_{2}^{n}+\mathbf{e}_{3}^{n}$.
- Because: $\left(\mathbf{e}_{1}^{n}+\mathbf{e}_{2}^{n}+\mathbf{e}_{3}^{n}\right) H=\mathbf{h}_{1}+\mathbf{h}_{2}+\mathbf{h}_{3}=\mathbf{0}$.
- So, $\min \{w t(\mathbf{x}) \mid \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\}=3=d$.
- So, d from $[n, k, d]_{2}$ is correct.
- What about error correction for the Hamming code C that we just constructed?
- What about error correction for the Hamming code C that we just constructed?
- Suppose $\mathbf{w} \in \mathbb{F}_{2}^{n}$ differs in exactly one coordinate from some codeword in C, that is, that \mathbf{w} can be obtained from a codeword in C by introducing one error (i.e. by changing exactly one 1 into 0 , or vice versa, in some codeword of C).
- What about error correction for the Hamming code C that we just constructed?
- Suppose $\mathbf{w} \in \mathbb{F}_{2}^{n}$ differs in exactly one coordinate from some codeword in C, that is, that \mathbf{w} can be obtained from a codeword in C by introducing one error (i.e. by changing exactly one 1 into 0 , or vice versa, in some codeword of C).
- Then there exist some $\mathbf{x} \in C$ and $i \in\{1, \ldots, n\}$ such that $\mathbf{w}=\mathbf{x}+\mathbf{e}_{i}^{n}$, and so

$$
\mathbf{w} H=\left(\mathbf{x}+\mathbf{e}_{i}^{n}\right) H=\underbrace{\mathbf{x} H}_{=0}+\underbrace{\mathbf{e}_{i}^{n} H}_{=\mathbf{h}_{i}}=\mathbf{h}_{i} .
$$

- What about error correction for the Hamming code C that we just constructed?
- Suppose $\mathbf{w} \in \mathbb{F}_{2}^{n}$ differs in exactly one coordinate from some codeword in C, that is, that \mathbf{w} can be obtained from a codeword in C by introducing one error (i.e. by changing exactly one 1 into 0 , or vice versa, in some codeword of C).
- Then there exist some $\mathbf{x} \in C$ and $i \in\{1, \ldots, n\}$ such that $\mathbf{w}=\mathbf{x}+\mathbf{e}_{i}^{n}$, and so

$$
\mathbf{w} H=\left(\mathbf{x}+\mathbf{e}_{i}^{n}\right) H=\underbrace{\mathbf{x} H}_{=0}+\underbrace{\mathbf{e}_{i}^{n} H}_{=\mathbf{h}_{i}}=\mathbf{h}_{i} .
$$

- But \mathbf{h}_{i} is simply the integer i written in binary code!
- What about error correction for the Hamming code C that we just constructed?
- Suppose $\mathbf{w} \in \mathbb{F}_{2}^{n}$ differs in exactly one coordinate from some codeword in C, that is, that \mathbf{w} can be obtained from a codeword in C by introducing one error (i.e. by changing exactly one 1 into 0 , or vice versa, in some codeword of C).
- Then there exist some $\mathbf{x} \in C$ and $i \in\{1, \ldots, n\}$ such that $\mathbf{w}=\mathbf{x}+\mathbf{e}_{i}^{n}$, and so

$$
\mathbf{w} H=\left(\mathbf{x}+\mathbf{e}_{i}^{n}\right) H=\underbrace{\mathbf{x} H}_{=\mathbf{0}}+\underbrace{\mathbf{e}_{i}^{n} H}_{=\mathbf{h}_{i}}=\mathbf{h}_{i} .
$$

- But \mathbf{h}_{i} is simply the integer i written in binary code!
- So, if \mathbf{w} was obtained from a codeword in C by introducing exactly one error, then the coordinate of that error is the integer whose binary representation is given by the vector $\mathbf{w} H$.
- What about error correction for the Hamming code C that we just constructed?
- Suppose $\mathbf{w} \in \mathbb{F}_{2}^{n}$ differs in exactly one coordinate from some codeword in C, that is, that \mathbf{w} can be obtained from a codeword in C by introducing one error (i.e. by changing exactly one 1 into 0 , or vice versa, in some codeword of C).
- Then there exist some $\mathbf{x} \in C$ and $i \in\{1, \ldots, n\}$ such that $\mathbf{w}=\mathbf{x}+\mathbf{e}_{i}^{n}$, and so

$$
\mathbf{w} H=\left(\mathbf{x}+\mathbf{e}_{i}^{n}\right) H=\underbrace{\mathbf{x} H}_{=\mathbf{0}}+\underbrace{\mathbf{e}_{i}^{n} H}_{=\mathbf{h}_{i}}=\mathbf{h}_{i} .
$$

- But \mathbf{h}_{i} is simply the integer i written in binary code!
- So, if \mathbf{w} was obtained from a codeword in C by introducing exactly one error, then the coordinate of that error is the integer whose binary representation is given by the vector $\mathbf{w} H$.
- We can correct the error by altering the entry (from 1 to 0 , or vice versa) in that one coordinate of \mathbf{w}.

