
NDMI011: Combinatorics and Graph Theory 1

Lecture #14

Linear codes

Irena Penev

January 5, 2020

This lecture consists of three parts:
a bit of Linear Algebra;

linear codes;
Hamming codes.

This lecture consists of three parts:
a bit of Linear Algebra;
linear codes;

Hamming codes.

This lecture consists of three parts:
a bit of Linear Algebra;
linear codes;
Hamming codes.

Part I: A bit of Linear Algebra

This is essentially a review of some Linear Algebra topics, but
we will use row vectors instead of column vectors, and we will
swap the roles of rows and columns in matrices.

Reason: this is customary in coding theory.

For a field F and a positive integer n, we denote by Fn the set
of all row vectors of length n whose entries are all in F.
For vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in Fn, we
define 〈x, y〉 =

∑n
i=1 xiyi , where the summation and

multiplication denote the operations from the field F.

So, 〈x, y〉 ∈ F.
If 〈x, y〉 = 0, then x and y are said to be orthogonal.

Part I: A bit of Linear Algebra
This is essentially a review of some Linear Algebra topics, but
we will use row vectors instead of column vectors, and we will
swap the roles of rows and columns in matrices.

Reason: this is customary in coding theory.

For a field F and a positive integer n, we denote by Fn the set
of all row vectors of length n whose entries are all in F.
For vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in Fn, we
define 〈x, y〉 =

∑n
i=1 xiyi , where the summation and

multiplication denote the operations from the field F.

So, 〈x, y〉 ∈ F.
If 〈x, y〉 = 0, then x and y are said to be orthogonal.

Part I: A bit of Linear Algebra
This is essentially a review of some Linear Algebra topics, but
we will use row vectors instead of column vectors, and we will
swap the roles of rows and columns in matrices.

Reason: this is customary in coding theory.
For a field F and a positive integer n, we denote by Fn the set
of all row vectors of length n whose entries are all in F.

For vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in Fn, we
define 〈x, y〉 =

∑n
i=1 xiyi , where the summation and

multiplication denote the operations from the field F.

So, 〈x, y〉 ∈ F.
If 〈x, y〉 = 0, then x and y are said to be orthogonal.

Part I: A bit of Linear Algebra
This is essentially a review of some Linear Algebra topics, but
we will use row vectors instead of column vectors, and we will
swap the roles of rows and columns in matrices.

Reason: this is customary in coding theory.
For a field F and a positive integer n, we denote by Fn the set
of all row vectors of length n whose entries are all in F.
For vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in Fn, we
define 〈x, y〉 =

∑n
i=1 xiyi , where the summation and

multiplication denote the operations from the field F.
So, 〈x, y〉 ∈ F.

If 〈x, y〉 = 0, then x and y are said to be orthogonal.

Part I: A bit of Linear Algebra
This is essentially a review of some Linear Algebra topics, but
we will use row vectors instead of column vectors, and we will
swap the roles of rows and columns in matrices.

Reason: this is customary in coding theory.
For a field F and a positive integer n, we denote by Fn the set
of all row vectors of length n whose entries are all in F.
For vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in Fn, we
define 〈x, y〉 =

∑n
i=1 xiyi , where the summation and

multiplication denote the operations from the field F.
So, 〈x, y〉 ∈ F.
If 〈x, y〉 = 0, then x and y are said to be orthogonal.

Instead of multiplying matrices by column vectors on the right
(Ax), we will multiply matrices by row vectors on the left
(xA).

If A is an n×m matrix with entries in F, and x ∈ Fn, then we
can think of x as a 1× n matrix, and we can compute xA
according to the usual rules of matrix multiplication.

We obtain a row vector of length m.

If x = (x1, . . . , xn) and A =

 r1
...
rn

 (i.e. r1, . . . , rn are the

rows of A, from top to bottom), then xA =
n∑

i=1
xi ri .

If ei is the i-th standard basis vector of Fn, i.e. the row vector
whose i-th entry is 1, and all of whose other entries are 0,
then eiA is equal to the i-th row of A.
With these adjustments, all familiar theorems of Linear
Algebra still hold, but with rows and columns reversed.

Instead of multiplying matrices by column vectors on the right
(Ax), we will multiply matrices by row vectors on the left
(xA).
If A is an n×m matrix with entries in F, and x ∈ Fn, then we
can think of x as a 1× n matrix, and we can compute xA
according to the usual rules of matrix multiplication.

We obtain a row vector of length m.

If x = (x1, . . . , xn) and A =

 r1
...
rn

 (i.e. r1, . . . , rn are the

rows of A, from top to bottom), then xA =
n∑

i=1
xi ri .

If ei is the i-th standard basis vector of Fn, i.e. the row vector
whose i-th entry is 1, and all of whose other entries are 0,
then eiA is equal to the i-th row of A.
With these adjustments, all familiar theorems of Linear
Algebra still hold, but with rows and columns reversed.

Instead of multiplying matrices by column vectors on the right
(Ax), we will multiply matrices by row vectors on the left
(xA).
If A is an n×m matrix with entries in F, and x ∈ Fn, then we
can think of x as a 1× n matrix, and we can compute xA
according to the usual rules of matrix multiplication.

We obtain a row vector of length m.

If x = (x1, . . . , xn) and A =

 r1
...
rn

 (i.e. r1, . . . , rn are the

rows of A, from top to bottom), then xA =
n∑

i=1
xi ri .

If ei is the i-th standard basis vector of Fn, i.e. the row vector
whose i-th entry is 1, and all of whose other entries are 0,
then eiA is equal to the i-th row of A.
With these adjustments, all familiar theorems of Linear
Algebra still hold, but with rows and columns reversed.

Instead of multiplying matrices by column vectors on the right
(Ax), we will multiply matrices by row vectors on the left
(xA).
If A is an n×m matrix with entries in F, and x ∈ Fn, then we
can think of x as a 1× n matrix, and we can compute xA
according to the usual rules of matrix multiplication.

We obtain a row vector of length m.

If x = (x1, . . . , xn) and A =

 r1
...
rn

 (i.e. r1, . . . , rn are the

rows of A, from top to bottom), then xA =
n∑

i=1
xi ri .

If ei is the i-th standard basis vector of Fn, i.e. the row vector
whose i-th entry is 1, and all of whose other entries are 0,
then eiA is equal to the i-th row of A.

With these adjustments, all familiar theorems of Linear
Algebra still hold, but with rows and columns reversed.

Instead of multiplying matrices by column vectors on the right
(Ax), we will multiply matrices by row vectors on the left
(xA).
If A is an n×m matrix with entries in F, and x ∈ Fn, then we
can think of x as a 1× n matrix, and we can compute xA
according to the usual rules of matrix multiplication.

We obtain a row vector of length m.

If x = (x1, . . . , xn) and A =

 r1
...
rn

 (i.e. r1, . . . , rn are the

rows of A, from top to bottom), then xA =
n∑

i=1
xi ri .

If ei is the i-th standard basis vector of Fn, i.e. the row vector
whose i-th entry is 1, and all of whose other entries are 0,
then eiA is equal to the i-th row of A.
With these adjustments, all familiar theorems of Linear
Algebra still hold, but with rows and columns reversed.

Definition
For a field F and a subspace C of Fn, we define
C⊥ = {y ∈ Fn | 〈x, y〉 = 0 for all x ∈ C}.

It is easy to see that C⊥ is a subspace of Fn.

Theorem 1.1
Let F be a field, and let C be a subspace of Fn. Then
dim C + dim C⊥ = n.

Proof (outline). This essentially follows from the Rank-nullity
theorem. (Details: Lecture Notes.)

Proposition 1.2
Let F be a field, and let C be a subspace of Fn. Then (C⊥)⊥ = C .

Proof. Lecture Notes.

Definition
For a field F and a subspace C of Fn, we define
C⊥ = {y ∈ Fn | 〈x, y〉 = 0 for all x ∈ C}.

It is easy to see that C⊥ is a subspace of Fn.

Theorem 1.1
Let F be a field, and let C be a subspace of Fn. Then
dim C + dim C⊥ = n.

Proof (outline). This essentially follows from the Rank-nullity
theorem. (Details: Lecture Notes.)

Proposition 1.2
Let F be a field, and let C be a subspace of Fn. Then (C⊥)⊥ = C .

Proof. Lecture Notes.

Definition
For a field F and a subspace C of Fn, we define
C⊥ = {y ∈ Fn | 〈x, y〉 = 0 for all x ∈ C}.

It is easy to see that C⊥ is a subspace of Fn.

Theorem 1.1
Let F be a field, and let C be a subspace of Fn. Then
dim C + dim C⊥ = n.

Proof (outline). This essentially follows from the Rank-nullity
theorem. (Details: Lecture Notes.)

Proposition 1.2
Let F be a field, and let C be a subspace of Fn. Then (C⊥)⊥ = C .

Proof. Lecture Notes.

Definition
For a field F and a subspace C of Fn, we define
C⊥ = {y ∈ Fn | 〈x, y〉 = 0 for all x ∈ C}.

It is easy to see that C⊥ is a subspace of Fn.

Theorem 1.1
Let F be a field, and let C be a subspace of Fn. Then
dim C + dim C⊥ = n.

Proof (outline). This essentially follows from the Rank-nullity
theorem. (Details: Lecture Notes.)

Proposition 1.2
Let F be a field, and let C be a subspace of Fn. Then (C⊥)⊥ = C .

Proof. Lecture Notes.

Part II: Linear codes

Definition
A linear code is a subspace C of a vector space Fn

q, where Fq is a
finite field of size q (here, q is a prime power).

Note that every linear code contains the zero vector.
If the linear code C is an (n, k, d)q-code, then we write that
C is an [n, k, d]q-code.

The square brackets indicate that C is a linear code.

An [n, k, d]q-code is a subspace of Fn
q.

Proposition 2.1
Let C be an [n, k, d]q-code. Then dim C = k, i.e. the dimension of
C as a vector space is k.

Part II: Linear codes
Definition
A linear code is a subspace C of a vector space Fn

q, where Fq is a
finite field of size q (here, q is a prime power).

Note that every linear code contains the zero vector.
If the linear code C is an (n, k, d)q-code, then we write that
C is an [n, k, d]q-code.

The square brackets indicate that C is a linear code.

An [n, k, d]q-code is a subspace of Fn
q.

Proposition 2.1
Let C be an [n, k, d]q-code. Then dim C = k, i.e. the dimension of
C as a vector space is k.

Part II: Linear codes
Definition
A linear code is a subspace C of a vector space Fn

q, where Fq is a
finite field of size q (here, q is a prime power).

Note that every linear code contains the zero vector.

If the linear code C is an (n, k, d)q-code, then we write that
C is an [n, k, d]q-code.

The square brackets indicate that C is a linear code.

An [n, k, d]q-code is a subspace of Fn
q.

Proposition 2.1
Let C be an [n, k, d]q-code. Then dim C = k, i.e. the dimension of
C as a vector space is k.

Part II: Linear codes
Definition
A linear code is a subspace C of a vector space Fn

q, where Fq is a
finite field of size q (here, q is a prime power).

Note that every linear code contains the zero vector.
If the linear code C is an (n, k, d)q-code, then we write that
C is an [n, k, d]q-code.

The square brackets indicate that C is a linear code.
An [n, k, d]q-code is a subspace of Fn

q.

Proposition 2.1
Let C be an [n, k, d]q-code. Then dim C = k, i.e. the dimension of
C as a vector space is k.

Part II: Linear codes
Definition
A linear code is a subspace C of a vector space Fn

q, where Fq is a
finite field of size q (here, q is a prime power).

Note that every linear code contains the zero vector.
If the linear code C is an (n, k, d)q-code, then we write that
C is an [n, k, d]q-code.

The square brackets indicate that C is a linear code.

An [n, k, d]q-code is a subspace of Fn
q.

Proposition 2.1
Let C be an [n, k, d]q-code. Then dim C = k, i.e. the dimension of
C as a vector space is k.

Part II: Linear codes
Definition
A linear code is a subspace C of a vector space Fn

q, where Fq is a
finite field of size q (here, q is a prime power).

Note that every linear code contains the zero vector.
If the linear code C is an (n, k, d)q-code, then we write that
C is an [n, k, d]q-code.

The square brackets indicate that C is a linear code.
An [n, k, d]q-code is a subspace of Fn

q.

Proposition 2.1
Let C be an [n, k, d]q-code. Then dim C = k, i.e. the dimension of
C as a vector space is k.

Part II: Linear codes
Definition
A linear code is a subspace C of a vector space Fn

q, where Fq is a
finite field of size q (here, q is a prime power).

Note that every linear code contains the zero vector.
If the linear code C is an (n, k, d)q-code, then we write that
C is an [n, k, d]q-code.

The square brackets indicate that C is a linear code.
An [n, k, d]q-code is a subspace of Fn

q.

Proposition 2.1
Let C be an [n, k, d]q-code. Then dim C = k, i.e. the dimension of
C as a vector space is k.

Proposition 2.1
Let C be an [n, k, d]q-code. Then dim C = k, i.e. the dimension of
C as a vector space is k.

Proof.

Since C is an [n, k, d]q-code, we know that C is a subspace
of Fn

q; set ` = dim C . WTS ` = k.
Let {c1, . . . , c`} be a basis for C . Then C is the set of all vectors
of the form

∑`
i=1 αici , where α1, . . . , α` ∈ Fq. There are q choices

for each αi , and so there are q` choices for the `-tuple
(α1, . . . , α`). On the other hand, since {c1, . . . , c`} is linearly
independent (because it is a basis), we know that∑`

i=1 αici =
∑`

i=1 βici iff (α1, . . . , α`) = (β1, . . . , β`). It follows
that |C | = q`, and consequently, ` = logq |C |.
Since k = logq |C | (by definition), it follows that ` = k, which is
what we needed to show.

Proposition 2.1
Let C be an [n, k, d]q-code. Then dim C = k, i.e. the dimension of
C as a vector space is k.

Proof. Since C is an [n, k, d]q-code, we know that C is a subspace
of Fn

q; set ` = dim C . WTS ` = k.

Let {c1, . . . , c`} be a basis for C . Then C is the set of all vectors
of the form

∑`
i=1 αici , where α1, . . . , α` ∈ Fq. There are q choices

for each αi , and so there are q` choices for the `-tuple
(α1, . . . , α`). On the other hand, since {c1, . . . , c`} is linearly
independent (because it is a basis), we know that∑`

i=1 αici =
∑`

i=1 βici iff (α1, . . . , α`) = (β1, . . . , β`). It follows
that |C | = q`, and consequently, ` = logq |C |.
Since k = logq |C | (by definition), it follows that ` = k, which is
what we needed to show.

Proposition 2.1
Let C be an [n, k, d]q-code. Then dim C = k, i.e. the dimension of
C as a vector space is k.

Proof. Since C is an [n, k, d]q-code, we know that C is a subspace
of Fn

q; set ` = dim C . WTS ` = k.
Let {c1, . . . , c`} be a basis for C .

Then C is the set of all vectors
of the form

∑`
i=1 αici , where α1, . . . , α` ∈ Fq. There are q choices

for each αi , and so there are q` choices for the `-tuple
(α1, . . . , α`). On the other hand, since {c1, . . . , c`} is linearly
independent (because it is a basis), we know that∑`

i=1 αici =
∑`

i=1 βici iff (α1, . . . , α`) = (β1, . . . , β`). It follows
that |C | = q`, and consequently, ` = logq |C |.
Since k = logq |C | (by definition), it follows that ` = k, which is
what we needed to show.

Proposition 2.1
Let C be an [n, k, d]q-code. Then dim C = k, i.e. the dimension of
C as a vector space is k.

Proof. Since C is an [n, k, d]q-code, we know that C is a subspace
of Fn

q; set ` = dim C . WTS ` = k.
Let {c1, . . . , c`} be a basis for C . Then C is the set of all vectors
of the form

∑`
i=1 αici , where α1, . . . , α` ∈ Fq. There are q choices

for each αi , and so there are q` choices for the `-tuple
(α1, . . . , α`).

On the other hand, since {c1, . . . , c`} is linearly
independent (because it is a basis), we know that∑`

i=1 αici =
∑`

i=1 βici iff (α1, . . . , α`) = (β1, . . . , β`). It follows
that |C | = q`, and consequently, ` = logq |C |.
Since k = logq |C | (by definition), it follows that ` = k, which is
what we needed to show.

Proposition 2.1
Let C be an [n, k, d]q-code. Then dim C = k, i.e. the dimension of
C as a vector space is k.

Proof. Since C is an [n, k, d]q-code, we know that C is a subspace
of Fn

q; set ` = dim C . WTS ` = k.
Let {c1, . . . , c`} be a basis for C . Then C is the set of all vectors
of the form

∑`
i=1 αici , where α1, . . . , α` ∈ Fq. There are q choices

for each αi , and so there are q` choices for the `-tuple
(α1, . . . , α`). On the other hand, since {c1, . . . , c`} is linearly
independent (because it is a basis), we know that∑`

i=1 αici =
∑`

i=1 βici iff (α1, . . . , α`) = (β1, . . . , β`).

It follows
that |C | = q`, and consequently, ` = logq |C |.
Since k = logq |C | (by definition), it follows that ` = k, which is
what we needed to show.

Proposition 2.1
Let C be an [n, k, d]q-code. Then dim C = k, i.e. the dimension of
C as a vector space is k.

Proof. Since C is an [n, k, d]q-code, we know that C is a subspace
of Fn

q; set ` = dim C . WTS ` = k.
Let {c1, . . . , c`} be a basis for C . Then C is the set of all vectors
of the form

∑`
i=1 αici , where α1, . . . , α` ∈ Fq. There are q choices

for each αi , and so there are q` choices for the `-tuple
(α1, . . . , α`). On the other hand, since {c1, . . . , c`} is linearly
independent (because it is a basis), we know that∑`

i=1 αici =
∑`

i=1 βici iff (α1, . . . , α`) = (β1, . . . , β`). It follows
that |C | = q`, and consequently, ` = logq |C |.

Since k = logq |C | (by definition), it follows that ` = k, which is
what we needed to show.

Proposition 2.1
Let C be an [n, k, d]q-code. Then dim C = k, i.e. the dimension of
C as a vector space is k.

Proof. Since C is an [n, k, d]q-code, we know that C is a subspace
of Fn

q; set ` = dim C . WTS ` = k.
Let {c1, . . . , c`} be a basis for C . Then C is the set of all vectors
of the form

∑`
i=1 αici , where α1, . . . , α` ∈ Fq. There are q choices

for each αi , and so there are q` choices for the `-tuple
(α1, . . . , α`). On the other hand, since {c1, . . . , c`} is linearly
independent (because it is a basis), we know that∑`

i=1 αici =
∑`

i=1 βici iff (α1, . . . , α`) = (β1, . . . , β`). It follows
that |C | = q`, and consequently, ` = logq |C |.
Since k = logq |C | (by definition), it follows that ` = k, which is
what we needed to show.

Suppose that C ⊆ Fn
q be an [n, k, d]q-code, with 0 < k < n.

By Proposition 2.1, dim C = k.
Let G be any matrix whose rows form a basis for C (in
particular, G ∈ Fk×n

q).

G is called the generator matrix of the linear code C .
We have C⊥ = {y ∈ Fn

q | yGT = 0}.

Suppose H is any matrix such that the rows of HT form a
basis for C⊥.

So, HT is a generator matrix for C⊥.
H is called a parity check matrix for C , and by Proposition 1.2,
it satisfies C = {x ∈ Fn

q | xH = 0}, i.e. C = Ker(H).

The parity check matrix H can be used to check whether a
vector x ∈ Fn

q is a codeword of C .

Indeed, if xH = 0, then x ∈ C , and otherwise, x /∈ C .

Note that, given a generator matrix for C , one can easily
compute a parity check matrix for C , and vice versa.

Suppose that C ⊆ Fn
q be an [n, k, d]q-code, with 0 < k < n.

By Proposition 2.1, dim C = k.

Let G be any matrix whose rows form a basis for C (in
particular, G ∈ Fk×n

q).

G is called the generator matrix of the linear code C .
We have C⊥ = {y ∈ Fn

q | yGT = 0}.

Suppose H is any matrix such that the rows of HT form a
basis for C⊥.

So, HT is a generator matrix for C⊥.
H is called a parity check matrix for C , and by Proposition 1.2,
it satisfies C = {x ∈ Fn

q | xH = 0}, i.e. C = Ker(H).

The parity check matrix H can be used to check whether a
vector x ∈ Fn

q is a codeword of C .

Indeed, if xH = 0, then x ∈ C , and otherwise, x /∈ C .

Note that, given a generator matrix for C , one can easily
compute a parity check matrix for C , and vice versa.

Suppose that C ⊆ Fn
q be an [n, k, d]q-code, with 0 < k < n.

By Proposition 2.1, dim C = k.
Let G be any matrix whose rows form a basis for C (in
particular, G ∈ Fk×n

q).

G is called the generator matrix of the linear code C .
We have C⊥ = {y ∈ Fn

q | yGT = 0}.

Suppose H is any matrix such that the rows of HT form a
basis for C⊥.

So, HT is a generator matrix for C⊥.
H is called a parity check matrix for C , and by Proposition 1.2,
it satisfies C = {x ∈ Fn

q | xH = 0}, i.e. C = Ker(H).

The parity check matrix H can be used to check whether a
vector x ∈ Fn

q is a codeword of C .

Indeed, if xH = 0, then x ∈ C , and otherwise, x /∈ C .

Note that, given a generator matrix for C , one can easily
compute a parity check matrix for C , and vice versa.

Suppose that C ⊆ Fn
q be an [n, k, d]q-code, with 0 < k < n.

By Proposition 2.1, dim C = k.
Let G be any matrix whose rows form a basis for C (in
particular, G ∈ Fk×n

q).
G is called the generator matrix of the linear code C .

We have C⊥ = {y ∈ Fn
q | yGT = 0}.

Suppose H is any matrix such that the rows of HT form a
basis for C⊥.

So, HT is a generator matrix for C⊥.
H is called a parity check matrix for C , and by Proposition 1.2,
it satisfies C = {x ∈ Fn

q | xH = 0}, i.e. C = Ker(H).

The parity check matrix H can be used to check whether a
vector x ∈ Fn

q is a codeword of C .

Indeed, if xH = 0, then x ∈ C , and otherwise, x /∈ C .

Note that, given a generator matrix for C , one can easily
compute a parity check matrix for C , and vice versa.

Suppose that C ⊆ Fn
q be an [n, k, d]q-code, with 0 < k < n.

By Proposition 2.1, dim C = k.
Let G be any matrix whose rows form a basis for C (in
particular, G ∈ Fk×n

q).
G is called the generator matrix of the linear code C .
We have C⊥ = {y ∈ Fn

q | yGT = 0}.

Suppose H is any matrix such that the rows of HT form a
basis for C⊥.

So, HT is a generator matrix for C⊥.
H is called a parity check matrix for C , and by Proposition 1.2,
it satisfies C = {x ∈ Fn

q | xH = 0}, i.e. C = Ker(H).

The parity check matrix H can be used to check whether a
vector x ∈ Fn

q is a codeword of C .

Indeed, if xH = 0, then x ∈ C , and otherwise, x /∈ C .

Note that, given a generator matrix for C , one can easily
compute a parity check matrix for C , and vice versa.

Suppose that C ⊆ Fn
q be an [n, k, d]q-code, with 0 < k < n.

By Proposition 2.1, dim C = k.
Let G be any matrix whose rows form a basis for C (in
particular, G ∈ Fk×n

q).
G is called the generator matrix of the linear code C .
We have C⊥ = {y ∈ Fn

q | yGT = 0}.

Suppose H is any matrix such that the rows of HT form a
basis for C⊥.

So, HT is a generator matrix for C⊥.
H is called a parity check matrix for C , and by Proposition 1.2,
it satisfies C = {x ∈ Fn

q | xH = 0}, i.e. C = Ker(H).
The parity check matrix H can be used to check whether a
vector x ∈ Fn

q is a codeword of C .

Indeed, if xH = 0, then x ∈ C , and otherwise, x /∈ C .

Note that, given a generator matrix for C , one can easily
compute a parity check matrix for C , and vice versa.

Suppose that C ⊆ Fn
q be an [n, k, d]q-code, with 0 < k < n.

By Proposition 2.1, dim C = k.
Let G be any matrix whose rows form a basis for C (in
particular, G ∈ Fk×n

q).
G is called the generator matrix of the linear code C .
We have C⊥ = {y ∈ Fn

q | yGT = 0}.

Suppose H is any matrix such that the rows of HT form a
basis for C⊥.

So, HT is a generator matrix for C⊥.
H is called a parity check matrix for C , and by Proposition 1.2,
it satisfies C = {x ∈ Fn

q | xH = 0}, i.e. C = Ker(H).

The parity check matrix H can be used to check whether a
vector x ∈ Fn

q is a codeword of C .

Indeed, if xH = 0, then x ∈ C , and otherwise, x /∈ C .

Note that, given a generator matrix for C , one can easily
compute a parity check matrix for C , and vice versa.

Suppose that C ⊆ Fn
q be an [n, k, d]q-code, with 0 < k < n.

By Proposition 2.1, dim C = k.
Let G be any matrix whose rows form a basis for C (in
particular, G ∈ Fk×n

q).
G is called the generator matrix of the linear code C .
We have C⊥ = {y ∈ Fn

q | yGT = 0}.

Suppose H is any matrix such that the rows of HT form a
basis for C⊥.

So, HT is a generator matrix for C⊥.
H is called a parity check matrix for C , and by Proposition 1.2,
it satisfies C = {x ∈ Fn

q | xH = 0}, i.e. C = Ker(H).
The parity check matrix H can be used to check whether a
vector x ∈ Fn

q is a codeword of C .

Indeed, if xH = 0, then x ∈ C , and otherwise, x /∈ C .
Note that, given a generator matrix for C , one can easily
compute a parity check matrix for C , and vice versa.

Suppose that C ⊆ Fn
q be an [n, k, d]q-code, with 0 < k < n.

By Proposition 2.1, dim C = k.
Let G be any matrix whose rows form a basis for C (in
particular, G ∈ Fk×n

q).
G is called the generator matrix of the linear code C .
We have C⊥ = {y ∈ Fn

q | yGT = 0}.

Suppose H is any matrix such that the rows of HT form a
basis for C⊥.

So, HT is a generator matrix for C⊥.
H is called a parity check matrix for C , and by Proposition 1.2,
it satisfies C = {x ∈ Fn

q | xH = 0}, i.e. C = Ker(H).
The parity check matrix H can be used to check whether a
vector x ∈ Fn

q is a codeword of C .
Indeed, if xH = 0, then x ∈ C , and otherwise, x /∈ C .

Note that, given a generator matrix for C , one can easily
compute a parity check matrix for C , and vice versa.

Suppose that C ⊆ Fn
q be an [n, k, d]q-code, with 0 < k < n.

By Proposition 2.1, dim C = k.
Let G be any matrix whose rows form a basis for C (in
particular, G ∈ Fk×n

q).
G is called the generator matrix of the linear code C .
We have C⊥ = {y ∈ Fn

q | yGT = 0}.

Suppose H is any matrix such that the rows of HT form a
basis for C⊥.

So, HT is a generator matrix for C⊥.
H is called a parity check matrix for C , and by Proposition 1.2,
it satisfies C = {x ∈ Fn

q | xH = 0}, i.e. C = Ker(H).
The parity check matrix H can be used to check whether a
vector x ∈ Fn

q is a codeword of C .
Indeed, if xH = 0, then x ∈ C , and otherwise, x /∈ C .

Note that, given a generator matrix for C , one can easily
compute a parity check matrix for C , and vice versa.

Definition
Given a vector x ∈ Fn

q, the Hamming weight of x, denoted by
wt(x), is the number of non-zero coordinates in x.

Proposition 2.2
Let C $ Fn

q be an [n, k, d]q-code, with 0 < k < n, and let H be a
parity check matrix for C . Then d = min{wt(x) | x ∈ C , x 6= 0}.

Proof. Fix x ∈ C \ {0} with minimum Hamming weight. WTS
d = wt(x).

Since C is a linear code, we know that 0 ∈ C , and so (since x and
0 are distinct codewords in C) we have that d(x, 0) ≥ d . But
obviously, d(x, 0) = wt(x), and it follows that wt(x) ≥ d .

WTS wt(x) ≤ d . Fix distinct y, z ∈ C such that d(y, z) = d . Since
C is a vector space, we know that y− z ∈ C , and so by the choice
of x, we have that wt(x) ≤ wt(y− z). But now
d = d(y, z) = wt(y− z) ≥ wt(x).

Definition
Given a vector x ∈ Fn

q, the Hamming weight of x, denoted by
wt(x), is the number of non-zero coordinates in x.

Proposition 2.2
Let C $ Fn

q be an [n, k, d]q-code, with 0 < k < n, and let H be a
parity check matrix for C . Then d = min{wt(x) | x ∈ C , x 6= 0}.

Proof.

Fix x ∈ C \ {0} with minimum Hamming weight. WTS
d = wt(x).

Since C is a linear code, we know that 0 ∈ C , and so (since x and
0 are distinct codewords in C) we have that d(x, 0) ≥ d . But
obviously, d(x, 0) = wt(x), and it follows that wt(x) ≥ d .

WTS wt(x) ≤ d . Fix distinct y, z ∈ C such that d(y, z) = d . Since
C is a vector space, we know that y− z ∈ C , and so by the choice
of x, we have that wt(x) ≤ wt(y− z). But now
d = d(y, z) = wt(y− z) ≥ wt(x).

Definition
Given a vector x ∈ Fn

q, the Hamming weight of x, denoted by
wt(x), is the number of non-zero coordinates in x.

Proposition 2.2
Let C $ Fn

q be an [n, k, d]q-code, with 0 < k < n, and let H be a
parity check matrix for C . Then d = min{wt(x) | x ∈ C , x 6= 0}.

Proof. Fix x ∈ C \ {0} with minimum Hamming weight. WTS
d = wt(x).

Since C is a linear code, we know that 0 ∈ C , and so (since x and
0 are distinct codewords in C) we have that d(x, 0) ≥ d . But
obviously, d(x, 0) = wt(x), and it follows that wt(x) ≥ d .

WTS wt(x) ≤ d . Fix distinct y, z ∈ C such that d(y, z) = d . Since
C is a vector space, we know that y− z ∈ C , and so by the choice
of x, we have that wt(x) ≤ wt(y− z). But now
d = d(y, z) = wt(y− z) ≥ wt(x).

Definition
Given a vector x ∈ Fn

q, the Hamming weight of x, denoted by
wt(x), is the number of non-zero coordinates in x.

Proposition 2.2
Let C $ Fn

q be an [n, k, d]q-code, with 0 < k < n, and let H be a
parity check matrix for C . Then d = min{wt(x) | x ∈ C , x 6= 0}.

Proof. Fix x ∈ C \ {0} with minimum Hamming weight. WTS
d = wt(x).

Since C is a linear code, we know that 0 ∈ C , and so (since x and
0 are distinct codewords in C) we have that d(x, 0) ≥ d . But
obviously, d(x, 0) = wt(x), and it follows that wt(x) ≥ d .

WTS wt(x) ≤ d . Fix distinct y, z ∈ C such that d(y, z) = d . Since
C is a vector space, we know that y− z ∈ C , and so by the choice
of x, we have that wt(x) ≤ wt(y− z). But now
d = d(y, z) = wt(y− z) ≥ wt(x).

Definition
Given a vector x ∈ Fn

q, the Hamming weight of x, denoted by
wt(x), is the number of non-zero coordinates in x.

Proposition 2.2
Let C $ Fn

q be an [n, k, d]q-code, with 0 < k < n, and let H be a
parity check matrix for C . Then d = min{wt(x) | x ∈ C , x 6= 0}.

Proof. Fix x ∈ C \ {0} with minimum Hamming weight. WTS
d = wt(x).

Since C is a linear code, we know that 0 ∈ C , and so (since x and
0 are distinct codewords in C) we have that d(x, 0) ≥ d . But
obviously, d(x, 0) = wt(x), and it follows that wt(x) ≥ d .

WTS wt(x) ≤ d .

Fix distinct y, z ∈ C such that d(y, z) = d . Since
C is a vector space, we know that y− z ∈ C , and so by the choice
of x, we have that wt(x) ≤ wt(y− z). But now
d = d(y, z) = wt(y− z) ≥ wt(x).

Definition
Given a vector x ∈ Fn

q, the Hamming weight of x, denoted by
wt(x), is the number of non-zero coordinates in x.

Proposition 2.2
Let C $ Fn

q be an [n, k, d]q-code, with 0 < k < n, and let H be a
parity check matrix for C . Then d = min{wt(x) | x ∈ C , x 6= 0}.

Proof. Fix x ∈ C \ {0} with minimum Hamming weight. WTS
d = wt(x).

Since C is a linear code, we know that 0 ∈ C , and so (since x and
0 are distinct codewords in C) we have that d(x, 0) ≥ d . But
obviously, d(x, 0) = wt(x), and it follows that wt(x) ≥ d .

WTS wt(x) ≤ d . Fix distinct y, z ∈ C such that d(y, z) = d .

Since
C is a vector space, we know that y− z ∈ C , and so by the choice
of x, we have that wt(x) ≤ wt(y− z). But now
d = d(y, z) = wt(y− z) ≥ wt(x).

Definition
Given a vector x ∈ Fn

q, the Hamming weight of x, denoted by
wt(x), is the number of non-zero coordinates in x.

Proposition 2.2
Let C $ Fn

q be an [n, k, d]q-code, with 0 < k < n, and let H be a
parity check matrix for C . Then d = min{wt(x) | x ∈ C , x 6= 0}.

Proof. Fix x ∈ C \ {0} with minimum Hamming weight. WTS
d = wt(x).

Since C is a linear code, we know that 0 ∈ C , and so (since x and
0 are distinct codewords in C) we have that d(x, 0) ≥ d . But
obviously, d(x, 0) = wt(x), and it follows that wt(x) ≥ d .

WTS wt(x) ≤ d . Fix distinct y, z ∈ C such that d(y, z) = d . Since
C is a vector space, we know that y− z ∈ C , and so by the choice
of x, we have that wt(x) ≤ wt(y− z).

But now
d = d(y, z) = wt(y− z) ≥ wt(x).

Definition
Given a vector x ∈ Fn

q, the Hamming weight of x, denoted by
wt(x), is the number of non-zero coordinates in x.

Proposition 2.2
Let C $ Fn

q be an [n, k, d]q-code, with 0 < k < n, and let H be a
parity check matrix for C . Then d = min{wt(x) | x ∈ C , x 6= 0}.

Proof. Fix x ∈ C \ {0} with minimum Hamming weight. WTS
d = wt(x).

Since C is a linear code, we know that 0 ∈ C , and so (since x and
0 are distinct codewords in C) we have that d(x, 0) ≥ d . But
obviously, d(x, 0) = wt(x), and it follows that wt(x) ≥ d .

WTS wt(x) ≤ d . Fix distinct y, z ∈ C such that d(y, z) = d . Since
C is a vector space, we know that y− z ∈ C , and so by the choice
of x, we have that wt(x) ≤ wt(y− z). But now
d = d(y, z) = wt(y− z) ≥ wt(x).

Part III: Hamming codes

Fix an integer ` ≥ 2, and set n = 2` − 1, k = 2` − `− 1, and
d = 3.
Our goal in this section is to construct an [n, k, d]2-code,
called a Hamming code.

It is also possible to construct “q-ary Hamming codes,” which
are over the (more general) field Fq.
For the sake of simplicity, though, we consider only binary
Hamming codes, i.e. those over the field F2.

We do this by constructing its parity check matrix H; then the
code in question will simply be the subspace
C = {x ∈ Fn

2 | xH = 0}.

Part III: Hamming codes

Fix an integer ` ≥ 2, and set n = 2` − 1, k = 2` − `− 1, and
d = 3.

Our goal in this section is to construct an [n, k, d]2-code,
called a Hamming code.

It is also possible to construct “q-ary Hamming codes,” which
are over the (more general) field Fq.
For the sake of simplicity, though, we consider only binary
Hamming codes, i.e. those over the field F2.

We do this by constructing its parity check matrix H; then the
code in question will simply be the subspace
C = {x ∈ Fn

2 | xH = 0}.

Part III: Hamming codes

Fix an integer ` ≥ 2, and set n = 2` − 1, k = 2` − `− 1, and
d = 3.
Our goal in this section is to construct an [n, k, d]2-code,
called a Hamming code.

It is also possible to construct “q-ary Hamming codes,” which
are over the (more general) field Fq.
For the sake of simplicity, though, we consider only binary
Hamming codes, i.e. those over the field F2.

We do this by constructing its parity check matrix H; then the
code in question will simply be the subspace
C = {x ∈ Fn

2 | xH = 0}.

Part III: Hamming codes

Fix an integer ` ≥ 2, and set n = 2` − 1, k = 2` − `− 1, and
d = 3.
Our goal in this section is to construct an [n, k, d]2-code,
called a Hamming code.

It is also possible to construct “q-ary Hamming codes,” which
are over the (more general) field Fq.
For the sake of simplicity, though, we consider only binary
Hamming codes, i.e. those over the field F2.

We do this by constructing its parity check matrix H; then the
code in question will simply be the subspace
C = {x ∈ Fn

2 | xH = 0}.

Part III: Hamming codes

Fix an integer ` ≥ 2, and set n = 2` − 1, k = 2` − `− 1, and
d = 3.
Our goal in this section is to construct an [n, k, d]2-code,
called a Hamming code.

It is also possible to construct “q-ary Hamming codes,” which
are over the (more general) field Fq.
For the sake of simplicity, though, we consider only binary
Hamming codes, i.e. those over the field F2.

We do this by constructing its parity check matrix H; then the
code in question will simply be the subspace
C = {x ∈ Fn

2 | xH = 0}.

Reminder: ` ≥ 2, n = 2` − 1, k = 2` − `− 1, and d = 3.

For all i ∈ {1, . . . , n}, let hi ∈ F`
2 be the vector giving the

binary representation of i , with zeros added to the front if
necessary (so that the length of the representation is `).

Let H =

 h1
...

hn

. Note that H ∈ Fn×`
2 .

Let C = {x ∈ Fn
2 | xH = 0}. WTS [n, k, d]2-code.

Obviously, C is a subspace of Fn
2.

So, C is a linear code, and furthermore, n and the subscript 2
in [n, k, d]2 are correct.

Each of e`
1, . . . , e`

` is a row of H, and {e`
1, . . . , e`

`} is a basis
for F`

2; so, rank(H) = `.
By the Rank-nullity theorem, rank(H) + dim Ker(H) = n.
So, dim Ker(H) = n − ` = k.
But C = Ker(H), and so dim C = k.

So, k in [n, k, d]2 is correct.

Reminder: ` ≥ 2, n = 2` − 1, k = 2` − `− 1, and d = 3.
For all i ∈ {1, . . . , n}, let hi ∈ F`

2 be the vector giving the
binary representation of i , with zeros added to the front if
necessary (so that the length of the representation is `).

Let H =

 h1
...

hn

. Note that H ∈ Fn×`
2 .

Let C = {x ∈ Fn
2 | xH = 0}. WTS [n, k, d]2-code.

Obviously, C is a subspace of Fn
2.

So, C is a linear code, and furthermore, n and the subscript 2
in [n, k, d]2 are correct.

Each of e`
1, . . . , e`

` is a row of H, and {e`
1, . . . , e`

`} is a basis
for F`

2; so, rank(H) = `.
By the Rank-nullity theorem, rank(H) + dim Ker(H) = n.
So, dim Ker(H) = n − ` = k.
But C = Ker(H), and so dim C = k.

So, k in [n, k, d]2 is correct.

Reminder: ` ≥ 2, n = 2` − 1, k = 2` − `− 1, and d = 3.
For all i ∈ {1, . . . , n}, let hi ∈ F`

2 be the vector giving the
binary representation of i , with zeros added to the front if
necessary (so that the length of the representation is `).

Let H =

 h1
...

hn

. Note that H ∈ Fn×`
2 .

Let C = {x ∈ Fn
2 | xH = 0}. WTS [n, k, d]2-code.

Obviously, C is a subspace of Fn
2.

So, C is a linear code, and furthermore, n and the subscript 2
in [n, k, d]2 are correct.

Each of e`
1, . . . , e`

` is a row of H, and {e`
1, . . . , e`

`} is a basis
for F`

2; so, rank(H) = `.
By the Rank-nullity theorem, rank(H) + dim Ker(H) = n.
So, dim Ker(H) = n − ` = k.
But C = Ker(H), and so dim C = k.

So, k in [n, k, d]2 is correct.

Reminder: ` ≥ 2, n = 2` − 1, k = 2` − `− 1, and d = 3.
For all i ∈ {1, . . . , n}, let hi ∈ F`

2 be the vector giving the
binary representation of i , with zeros added to the front if
necessary (so that the length of the representation is `).

Let H =

 h1
...

hn

. Note that H ∈ Fn×`
2 .

Let C = {x ∈ Fn
2 | xH = 0}. WTS [n, k, d]2-code.

Obviously, C is a subspace of Fn
2.

So, C is a linear code, and furthermore, n and the subscript 2
in [n, k, d]2 are correct.

Each of e`
1, . . . , e`

` is a row of H, and {e`
1, . . . , e`

`} is a basis
for F`

2; so, rank(H) = `.
By the Rank-nullity theorem, rank(H) + dim Ker(H) = n.
So, dim Ker(H) = n − ` = k.
But C = Ker(H), and so dim C = k.

So, k in [n, k, d]2 is correct.

Reminder: ` ≥ 2, n = 2` − 1, k = 2` − `− 1, and d = 3.
For all i ∈ {1, . . . , n}, let hi ∈ F`

2 be the vector giving the
binary representation of i , with zeros added to the front if
necessary (so that the length of the representation is `).

Let H =

 h1
...

hn

. Note that H ∈ Fn×`
2 .

Let C = {x ∈ Fn
2 | xH = 0}. WTS [n, k, d]2-code.

Obviously, C is a subspace of Fn
2.

So, C is a linear code, and furthermore, n and the subscript 2
in [n, k, d]2 are correct.

Each of e`
1, . . . , e`

` is a row of H, and {e`
1, . . . , e`

`} is a basis
for F`

2; so, rank(H) = `.
By the Rank-nullity theorem, rank(H) + dim Ker(H) = n.
So, dim Ker(H) = n − ` = k.
But C = Ker(H), and so dim C = k.

So, k in [n, k, d]2 is correct.

Reminder: ` ≥ 2, n = 2` − 1, k = 2` − `− 1, and d = 3.
For all i ∈ {1, . . . , n}, let hi ∈ F`

2 be the vector giving the
binary representation of i , with zeros added to the front if
necessary (so that the length of the representation is `).

Let H =

 h1
...

hn

. Note that H ∈ Fn×`
2 .

Let C = {x ∈ Fn
2 | xH = 0}. WTS [n, k, d]2-code.

Obviously, C is a subspace of Fn
2.

So, C is a linear code, and furthermore, n and the subscript 2
in [n, k, d]2 are correct.

Each of e`
1, . . . , e`

` is a row of H, and {e`
1, . . . , e`

`} is a basis
for F`

2; so, rank(H) = `.

By the Rank-nullity theorem, rank(H) + dim Ker(H) = n.
So, dim Ker(H) = n − ` = k.
But C = Ker(H), and so dim C = k.

So, k in [n, k, d]2 is correct.

Reminder: ` ≥ 2, n = 2` − 1, k = 2` − `− 1, and d = 3.
For all i ∈ {1, . . . , n}, let hi ∈ F`

2 be the vector giving the
binary representation of i , with zeros added to the front if
necessary (so that the length of the representation is `).

Let H =

 h1
...

hn

. Note that H ∈ Fn×`
2 .

Let C = {x ∈ Fn
2 | xH = 0}. WTS [n, k, d]2-code.

Obviously, C is a subspace of Fn
2.

So, C is a linear code, and furthermore, n and the subscript 2
in [n, k, d]2 are correct.

Each of e`
1, . . . , e`

` is a row of H, and {e`
1, . . . , e`

`} is a basis
for F`

2; so, rank(H) = `.
By the Rank-nullity theorem, rank(H) + dim Ker(H) = n.

So, dim Ker(H) = n − ` = k.
But C = Ker(H), and so dim C = k.

So, k in [n, k, d]2 is correct.

Reminder: ` ≥ 2, n = 2` − 1, k = 2` − `− 1, and d = 3.
For all i ∈ {1, . . . , n}, let hi ∈ F`

2 be the vector giving the
binary representation of i , with zeros added to the front if
necessary (so that the length of the representation is `).

Let H =

 h1
...

hn

. Note that H ∈ Fn×`
2 .

Let C = {x ∈ Fn
2 | xH = 0}. WTS [n, k, d]2-code.

Obviously, C is a subspace of Fn
2.

So, C is a linear code, and furthermore, n and the subscript 2
in [n, k, d]2 are correct.

Each of e`
1, . . . , e`

` is a row of H, and {e`
1, . . . , e`

`} is a basis
for F`

2; so, rank(H) = `.
By the Rank-nullity theorem, rank(H) + dim Ker(H) = n.
So, dim Ker(H) = n − ` = k.

But C = Ker(H), and so dim C = k.
So, k in [n, k, d]2 is correct.

Reminder: ` ≥ 2, n = 2` − 1, k = 2` − `− 1, and d = 3.
For all i ∈ {1, . . . , n}, let hi ∈ F`

2 be the vector giving the
binary representation of i , with zeros added to the front if
necessary (so that the length of the representation is `).

Let H =

 h1
...

hn

. Note that H ∈ Fn×`
2 .

Let C = {x ∈ Fn
2 | xH = 0}. WTS [n, k, d]2-code.

Obviously, C is a subspace of Fn
2.

So, C is a linear code, and furthermore, n and the subscript 2
in [n, k, d]2 are correct.

Each of e`
1, . . . , e`

` is a row of H, and {e`
1, . . . , e`

`} is a basis
for F`

2; so, rank(H) = `.
By the Rank-nullity theorem, rank(H) + dim Ker(H) = n.
So, dim Ker(H) = n − ` = k.
But C = Ker(H), and so dim C = k.

So, k in [n, k, d]2 is correct.

Reminder: C = {x ∈ Fn
2 | xH = 0}. WTS [n, k, d]2-code.

It remains to show that the d in [n, k, d]3 is correct, i.e. that
the minimum distance in C is d = 3.
By Proposition 2.2, it suffices to show that the minimum
Hamming weight of a non-zero vector in C is d = 3.
Vectors of Fn

2 of Hamming weight 1 are precisely the vectors
en

1, . . . , en
n.

For all i ∈ {1, . . . , n}, eiH = hi 6= 0, and so ei /∈ C .

Vectors of Fn
2 of Hamming weight 2 are precisely the vectors

of the form en
i + en

j , with i 6= j .

For distinct i , j ∈ {1, . . . , n}, (en
i + en

j)H = hi + hj 6= 0, and so
en

i + en
j /∈ C .

So, C does not contain any non-zero vectors of Hamming
weight at most two.
C does contain a vector of Hamming weight at most three,
e.g. the vector en

1 + en
2 + en

3.
Because: (en

1 + en
2 + en

3)H = h1 + h2 + h3 = 0.
So, min{wt(x) | x ∈ C , x 6= 0} = 3 = d .

So, d from [n, k, d]2 is correct.

Reminder: C = {x ∈ Fn
2 | xH = 0}. WTS [n, k, d]2-code.

It remains to show that the d in [n, k, d]3 is correct, i.e. that
the minimum distance in C is d = 3.

By Proposition 2.2, it suffices to show that the minimum
Hamming weight of a non-zero vector in C is d = 3.
Vectors of Fn

2 of Hamming weight 1 are precisely the vectors
en

1, . . . , en
n.

For all i ∈ {1, . . . , n}, eiH = hi 6= 0, and so ei /∈ C .

Vectors of Fn
2 of Hamming weight 2 are precisely the vectors

of the form en
i + en

j , with i 6= j .

For distinct i , j ∈ {1, . . . , n}, (en
i + en

j)H = hi + hj 6= 0, and so
en

i + en
j /∈ C .

So, C does not contain any non-zero vectors of Hamming
weight at most two.
C does contain a vector of Hamming weight at most three,
e.g. the vector en

1 + en
2 + en

3.
Because: (en

1 + en
2 + en

3)H = h1 + h2 + h3 = 0.
So, min{wt(x) | x ∈ C , x 6= 0} = 3 = d .

So, d from [n, k, d]2 is correct.

Reminder: C = {x ∈ Fn
2 | xH = 0}. WTS [n, k, d]2-code.

It remains to show that the d in [n, k, d]3 is correct, i.e. that
the minimum distance in C is d = 3.
By Proposition 2.2, it suffices to show that the minimum
Hamming weight of a non-zero vector in C is d = 3.

Vectors of Fn
2 of Hamming weight 1 are precisely the vectors

en
1, . . . , en

n.

For all i ∈ {1, . . . , n}, eiH = hi 6= 0, and so ei /∈ C .

Vectors of Fn
2 of Hamming weight 2 are precisely the vectors

of the form en
i + en

j , with i 6= j .

For distinct i , j ∈ {1, . . . , n}, (en
i + en

j)H = hi + hj 6= 0, and so
en

i + en
j /∈ C .

So, C does not contain any non-zero vectors of Hamming
weight at most two.
C does contain a vector of Hamming weight at most three,
e.g. the vector en

1 + en
2 + en

3.
Because: (en

1 + en
2 + en

3)H = h1 + h2 + h3 = 0.
So, min{wt(x) | x ∈ C , x 6= 0} = 3 = d .

So, d from [n, k, d]2 is correct.

Reminder: C = {x ∈ Fn
2 | xH = 0}. WTS [n, k, d]2-code.

It remains to show that the d in [n, k, d]3 is correct, i.e. that
the minimum distance in C is d = 3.
By Proposition 2.2, it suffices to show that the minimum
Hamming weight of a non-zero vector in C is d = 3.
Vectors of Fn

2 of Hamming weight 1 are precisely the vectors
en

1, . . . , en
n.

For all i ∈ {1, . . . , n}, eiH = hi 6= 0, and so ei /∈ C .
Vectors of Fn

2 of Hamming weight 2 are precisely the vectors
of the form en

i + en
j , with i 6= j .

For distinct i , j ∈ {1, . . . , n}, (en
i + en

j)H = hi + hj 6= 0, and so
en

i + en
j /∈ C .

So, C does not contain any non-zero vectors of Hamming
weight at most two.
C does contain a vector of Hamming weight at most three,
e.g. the vector en

1 + en
2 + en

3.
Because: (en

1 + en
2 + en

3)H = h1 + h2 + h3 = 0.
So, min{wt(x) | x ∈ C , x 6= 0} = 3 = d .

So, d from [n, k, d]2 is correct.

Reminder: C = {x ∈ Fn
2 | xH = 0}. WTS [n, k, d]2-code.

It remains to show that the d in [n, k, d]3 is correct, i.e. that
the minimum distance in C is d = 3.
By Proposition 2.2, it suffices to show that the minimum
Hamming weight of a non-zero vector in C is d = 3.
Vectors of Fn

2 of Hamming weight 1 are precisely the vectors
en

1, . . . , en
n.

For all i ∈ {1, . . . , n}, eiH = hi 6= 0, and so ei /∈ C .

Vectors of Fn
2 of Hamming weight 2 are precisely the vectors

of the form en
i + en

j , with i 6= j .

For distinct i , j ∈ {1, . . . , n}, (en
i + en

j)H = hi + hj 6= 0, and so
en

i + en
j /∈ C .

So, C does not contain any non-zero vectors of Hamming
weight at most two.
C does contain a vector of Hamming weight at most three,
e.g. the vector en

1 + en
2 + en

3.
Because: (en

1 + en
2 + en

3)H = h1 + h2 + h3 = 0.
So, min{wt(x) | x ∈ C , x 6= 0} = 3 = d .

So, d from [n, k, d]2 is correct.

Reminder: C = {x ∈ Fn
2 | xH = 0}. WTS [n, k, d]2-code.

It remains to show that the d in [n, k, d]3 is correct, i.e. that
the minimum distance in C is d = 3.
By Proposition 2.2, it suffices to show that the minimum
Hamming weight of a non-zero vector in C is d = 3.
Vectors of Fn

2 of Hamming weight 1 are precisely the vectors
en

1, . . . , en
n.

For all i ∈ {1, . . . , n}, eiH = hi 6= 0, and so ei /∈ C .
Vectors of Fn

2 of Hamming weight 2 are precisely the vectors
of the form en

i + en
j , with i 6= j .

For distinct i , j ∈ {1, . . . , n}, (en
i + en

j)H = hi + hj 6= 0, and so
en

i + en
j /∈ C .

So, C does not contain any non-zero vectors of Hamming
weight at most two.
C does contain a vector of Hamming weight at most three,
e.g. the vector en

1 + en
2 + en

3.
Because: (en

1 + en
2 + en

3)H = h1 + h2 + h3 = 0.
So, min{wt(x) | x ∈ C , x 6= 0} = 3 = d .

So, d from [n, k, d]2 is correct.

Reminder: C = {x ∈ Fn
2 | xH = 0}. WTS [n, k, d]2-code.

It remains to show that the d in [n, k, d]3 is correct, i.e. that
the minimum distance in C is d = 3.
By Proposition 2.2, it suffices to show that the minimum
Hamming weight of a non-zero vector in C is d = 3.
Vectors of Fn

2 of Hamming weight 1 are precisely the vectors
en

1, . . . , en
n.

For all i ∈ {1, . . . , n}, eiH = hi 6= 0, and so ei /∈ C .
Vectors of Fn

2 of Hamming weight 2 are precisely the vectors
of the form en

i + en
j , with i 6= j .

For distinct i , j ∈ {1, . . . , n}, (en
i + en

j)H = hi + hj 6= 0, and so
en

i + en
j /∈ C .

So, C does not contain any non-zero vectors of Hamming
weight at most two.
C does contain a vector of Hamming weight at most three,
e.g. the vector en

1 + en
2 + en

3.
Because: (en

1 + en
2 + en

3)H = h1 + h2 + h3 = 0.
So, min{wt(x) | x ∈ C , x 6= 0} = 3 = d .

So, d from [n, k, d]2 is correct.

Reminder: C = {x ∈ Fn
2 | xH = 0}. WTS [n, k, d]2-code.

It remains to show that the d in [n, k, d]3 is correct, i.e. that
the minimum distance in C is d = 3.
By Proposition 2.2, it suffices to show that the minimum
Hamming weight of a non-zero vector in C is d = 3.
Vectors of Fn

2 of Hamming weight 1 are precisely the vectors
en

1, . . . , en
n.

For all i ∈ {1, . . . , n}, eiH = hi 6= 0, and so ei /∈ C .
Vectors of Fn

2 of Hamming weight 2 are precisely the vectors
of the form en

i + en
j , with i 6= j .

For distinct i , j ∈ {1, . . . , n}, (en
i + en

j)H = hi + hj 6= 0, and so
en

i + en
j /∈ C .

So, C does not contain any non-zero vectors of Hamming
weight at most two.

C does contain a vector of Hamming weight at most three,
e.g. the vector en

1 + en
2 + en

3.
Because: (en

1 + en
2 + en

3)H = h1 + h2 + h3 = 0.
So, min{wt(x) | x ∈ C , x 6= 0} = 3 = d .

So, d from [n, k, d]2 is correct.

Reminder: C = {x ∈ Fn
2 | xH = 0}. WTS [n, k, d]2-code.

It remains to show that the d in [n, k, d]3 is correct, i.e. that
the minimum distance in C is d = 3.
By Proposition 2.2, it suffices to show that the minimum
Hamming weight of a non-zero vector in C is d = 3.
Vectors of Fn

2 of Hamming weight 1 are precisely the vectors
en

1, . . . , en
n.

For all i ∈ {1, . . . , n}, eiH = hi 6= 0, and so ei /∈ C .
Vectors of Fn

2 of Hamming weight 2 are precisely the vectors
of the form en

i + en
j , with i 6= j .

For distinct i , j ∈ {1, . . . , n}, (en
i + en

j)H = hi + hj 6= 0, and so
en

i + en
j /∈ C .

So, C does not contain any non-zero vectors of Hamming
weight at most two.
C does contain a vector of Hamming weight at most three,
e.g. the vector en

1 + en
2 + en

3.
Because: (en

1 + en
2 + en

3)H = h1 + h2 + h3 = 0.

So, min{wt(x) | x ∈ C , x 6= 0} = 3 = d .

So, d from [n, k, d]2 is correct.

Reminder: C = {x ∈ Fn
2 | xH = 0}. WTS [n, k, d]2-code.

It remains to show that the d in [n, k, d]3 is correct, i.e. that
the minimum distance in C is d = 3.
By Proposition 2.2, it suffices to show that the minimum
Hamming weight of a non-zero vector in C is d = 3.
Vectors of Fn

2 of Hamming weight 1 are precisely the vectors
en

1, . . . , en
n.

For all i ∈ {1, . . . , n}, eiH = hi 6= 0, and so ei /∈ C .
Vectors of Fn

2 of Hamming weight 2 are precisely the vectors
of the form en

i + en
j , with i 6= j .

For distinct i , j ∈ {1, . . . , n}, (en
i + en

j)H = hi + hj 6= 0, and so
en

i + en
j /∈ C .

So, C does not contain any non-zero vectors of Hamming
weight at most two.
C does contain a vector of Hamming weight at most three,
e.g. the vector en

1 + en
2 + en

3.
Because: (en

1 + en
2 + en

3)H = h1 + h2 + h3 = 0.
So, min{wt(x) | x ∈ C , x 6= 0} = 3 = d .

So, d from [n, k, d]2 is correct.

Reminder: C = {x ∈ Fn
2 | xH = 0}. WTS [n, k, d]2-code.

It remains to show that the d in [n, k, d]3 is correct, i.e. that
the minimum distance in C is d = 3.
By Proposition 2.2, it suffices to show that the minimum
Hamming weight of a non-zero vector in C is d = 3.
Vectors of Fn

2 of Hamming weight 1 are precisely the vectors
en

1, . . . , en
n.

For all i ∈ {1, . . . , n}, eiH = hi 6= 0, and so ei /∈ C .
Vectors of Fn

2 of Hamming weight 2 are precisely the vectors
of the form en

i + en
j , with i 6= j .

For distinct i , j ∈ {1, . . . , n}, (en
i + en

j)H = hi + hj 6= 0, and so
en

i + en
j /∈ C .

So, C does not contain any non-zero vectors of Hamming
weight at most two.
C does contain a vector of Hamming weight at most three,
e.g. the vector en

1 + en
2 + en

3.
Because: (en

1 + en
2 + en

3)H = h1 + h2 + h3 = 0.
So, min{wt(x) | x ∈ C , x 6= 0} = 3 = d .

So, d from [n, k, d]2 is correct.

What about error correction for the Hamming code C that we
just constructed?

Suppose w ∈ Fn
2 differs in exactly one coordinate from some

codeword in C , that is, that w can be obtained from a
codeword in C by introducing one error (i.e. by changing
exactly one 1 into 0, or vice versa, in some codeword of C).
Then there exist some x ∈ C and i ∈ {1, . . . , n} such that
w = x + en

i , and so

wH = (x + en
i)H = xH︸︷︷︸

=0

+ en
i H︸︷︷︸

=hi

= hi .

But hi is simply the integer i written in binary code!
So, if w was obtained from a codeword in C by introducing
exactly one error, then the coordinate of that error is the
integer whose binary representation is given by the vector wH.
We can correct the error by altering the entry (from 1 to 0, or
vice versa) in that one coordinate of w.

What about error correction for the Hamming code C that we
just constructed?
Suppose w ∈ Fn

2 differs in exactly one coordinate from some
codeword in C , that is, that w can be obtained from a
codeword in C by introducing one error (i.e. by changing
exactly one 1 into 0, or vice versa, in some codeword of C).

Then there exist some x ∈ C and i ∈ {1, . . . , n} such that
w = x + en

i , and so

wH = (x + en
i)H = xH︸︷︷︸

=0

+ en
i H︸︷︷︸

=hi

= hi .

But hi is simply the integer i written in binary code!
So, if w was obtained from a codeword in C by introducing
exactly one error, then the coordinate of that error is the
integer whose binary representation is given by the vector wH.
We can correct the error by altering the entry (from 1 to 0, or
vice versa) in that one coordinate of w.

What about error correction for the Hamming code C that we
just constructed?
Suppose w ∈ Fn

2 differs in exactly one coordinate from some
codeword in C , that is, that w can be obtained from a
codeword in C by introducing one error (i.e. by changing
exactly one 1 into 0, or vice versa, in some codeword of C).
Then there exist some x ∈ C and i ∈ {1, . . . , n} such that
w = x + en

i , and so

wH = (x + en
i)H = xH︸︷︷︸

=0

+ en
i H︸︷︷︸

=hi

= hi .

But hi is simply the integer i written in binary code!
So, if w was obtained from a codeword in C by introducing
exactly one error, then the coordinate of that error is the
integer whose binary representation is given by the vector wH.
We can correct the error by altering the entry (from 1 to 0, or
vice versa) in that one coordinate of w.

What about error correction for the Hamming code C that we
just constructed?
Suppose w ∈ Fn

2 differs in exactly one coordinate from some
codeword in C , that is, that w can be obtained from a
codeword in C by introducing one error (i.e. by changing
exactly one 1 into 0, or vice versa, in some codeword of C).
Then there exist some x ∈ C and i ∈ {1, . . . , n} such that
w = x + en

i , and so

wH = (x + en
i)H = xH︸︷︷︸

=0

+ en
i H︸︷︷︸

=hi

= hi .

But hi is simply the integer i written in binary code!

So, if w was obtained from a codeword in C by introducing
exactly one error, then the coordinate of that error is the
integer whose binary representation is given by the vector wH.
We can correct the error by altering the entry (from 1 to 0, or
vice versa) in that one coordinate of w.

What about error correction for the Hamming code C that we
just constructed?
Suppose w ∈ Fn

2 differs in exactly one coordinate from some
codeword in C , that is, that w can be obtained from a
codeword in C by introducing one error (i.e. by changing
exactly one 1 into 0, or vice versa, in some codeword of C).
Then there exist some x ∈ C and i ∈ {1, . . . , n} such that
w = x + en

i , and so

wH = (x + en
i)H = xH︸︷︷︸

=0

+ en
i H︸︷︷︸

=hi

= hi .

But hi is simply the integer i written in binary code!
So, if w was obtained from a codeword in C by introducing
exactly one error, then the coordinate of that error is the
integer whose binary representation is given by the vector wH.

We can correct the error by altering the entry (from 1 to 0, or
vice versa) in that one coordinate of w.

What about error correction for the Hamming code C that we
just constructed?
Suppose w ∈ Fn

2 differs in exactly one coordinate from some
codeword in C , that is, that w can be obtained from a
codeword in C by introducing one error (i.e. by changing
exactly one 1 into 0, or vice versa, in some codeword of C).
Then there exist some x ∈ C and i ∈ {1, . . . , n} such that
w = x + en

i , and so

wH = (x + en
i)H = xH︸︷︷︸

=0

+ en
i H︸︷︷︸

=hi

= hi .

But hi is simply the integer i written in binary code!
So, if w was obtained from a codeword in C by introducing
exactly one error, then the coordinate of that error is the
integer whose binary representation is given by the vector wH.
We can correct the error by altering the entry (from 1 to 0, or
vice versa) in that one coordinate of w.

