NDMI011: Combinatorics and Graph Theory 1

Lecture \#14
 Linear codes

Irena Penev

1 Some Linear Algebra preliminaries

In what follows, for a field \mathbb{F} and a positive integer n, we denote by \mathbb{F}^{n} the set of all row vectors of length n whose entries are all in \mathbb{F}. For vectors $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ in \mathbb{F}^{n}, we define $\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i=1}^{n} x_{i} y_{i}$, where the summation and multiplication denote the operations from the field \mathbb{F}; note that $\langle\mathbf{x}, \mathbf{y}\rangle \in \mathbb{F}$. If $\langle\mathbf{x}, \mathbf{y}\rangle=0$, then \mathbf{x} and \mathbf{y} are said to be orthogonal.

Instead of multiplying matrices by column vectors on the right $(A \mathbf{x})$, we will multiply matrices by row vectors on the left ($\mathbf{x} A$). If A is an $n \times m$ matrix with entries in \mathbb{F}, and $\mathbf{x} \in \mathbb{F}^{n},{ }^{1}$ then we can think of \mathbf{x} as a $1 \times n$ matrix, and we can compute $\mathbf{x} A$ according to the usual rules of matrix multiplication. ${ }^{2}$ Note that if $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $A=\left[\begin{array}{c}\mathbf{r}_{1} \\ \vdots \\ \mathbf{r}_{n}\end{array}\right]$ (i.e. $\mathbf{r}_{1}, \ldots, \mathbf{r}_{n}$ are the rows of A, from top to bottom), then $\mathbf{x} A=\sum_{i=1}^{n} x_{i} \mathbf{r}_{i}$. Furthermore, if \mathbf{e}_{i} is the i-th standard basis vector of \mathbb{F}^{n}, i.e. the row vector whose i-th entry is 1 , and all of whose other entries are 0 , then $\mathbf{e}_{i} A$ is equal to the i-th row of A.

With these adjustments, all familiar theorems of Linear Algebra still hold, but with rows and columns reversed. For instance, Gaussian elimination is performed on columns, not rows. ${ }^{3}$

[^0]For a field \mathbb{F} and a subspace C of \mathbb{F}^{n}, we define $C^{\perp}=\left\{\mathbf{y} \in \mathbb{F}^{n} \mid\right.$ $\langle\mathbf{x}, \mathbf{y}\rangle=0$ for all $\mathbf{x} \in C\}$. It is easy to check that C^{\perp} is a subspace of $\mathbb{F}^{n} .^{4}$

Theorem 1.1. Let \mathbb{F} be a field, and let C be a subspace of \mathbb{F}^{n}. Then $\operatorname{dim} C+\operatorname{dim} C^{\perp}=n$.

Proof. Set $k=\operatorname{dim} C$; we must show that $\operatorname{dim} C^{\perp}=n-k$. If $k=0$, then $C=\{\mathbf{0}\}$ and $C^{\perp}=\mathbb{F}^{n}$, and it follows that $\operatorname{dim} C^{\perp}=n=n-k$. From now on, we assume that $k \geq 1$. Let $\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{k}\right\}$ be some basis for C, and let $G=\left[\begin{array}{c}\mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{k}\end{array}\right]$. Then $C^{\perp}=\left\{\mathbf{y} \in \mathbb{F}^{n} \mid \mathbf{y} G^{T}=\mathbf{0}\right\}=\operatorname{Ker}\left(G^{T}\right) .{ }^{5}$ By the Rank-nullity theorem, we have that $\operatorname{rank}\left(G^{T}\right)+\operatorname{dim} \operatorname{Ker}\left(G^{T}\right)=n$. But $\operatorname{rank}\left(G^{T}\right)=\operatorname{rank}(G)=k$ (because G has k rows, and they are linearly independent), and as we saw $C^{\perp}=\operatorname{Ker}\left(G^{T}\right)$. It follows that $k+\operatorname{dim} C^{\perp}=n$, i.e. $\operatorname{dim} C^{\perp}=n-k$.

Proposition 1.2. Let \mathbb{F} be a field, and let C be a subspace of \mathbb{F}^{n}. Then $\left(C^{\perp}\right)^{\perp}=C$.

Proof. Obviously, $C \subseteq\left(C^{\perp}\right)^{\perp} ;{ }^{6}$ since C and $\left(C^{\perp}\right)^{\perp}$ are both subspaces of \mathbb{F}^{n}, it follows that C is a subspace of $\left(C^{\perp}\right)^{\perp}$. On the other hand, by Theorem 1.1, we have that

$$
\operatorname{dim}\left(C^{\perp}\right)^{\perp}=n-\operatorname{dim} C^{\perp}=n-(n-\operatorname{dim} C)=\operatorname{dim} C
$$

and we deduce that $C=\left(C^{\perp}\right)^{\perp}$.

2 Linear codes

A linear code is a subspace C of a vector space \mathbb{F}_{q}^{n}, where \mathbb{F}_{q} is a finite field of size q (here, q is a prime power). ${ }^{7}$ Note that every linear code contains the zero vector.

Notationally, if the linear code C is an $(n, k, d)_{q}$-code, then we write that C is an $[n, k, d]_{q}$-code (here, square brackets indicate that C is a linear code). Clearly, an $[n, k, d]_{q}$-code is a subspace of $\mathbb{F}_{q}^{n} .{ }^{8}$ Furthermore, as our next proposition shows, the (vector space) dimension of an $[n, k, d]_{q}$-code is k.

[^1]Proposition 2.1. Let C be an $[n, k, d]_{q}$-code. Then $\operatorname{dim} C=k$, i.e. the dimension of C as a vector space is k.

Proof. Since C is an $[n, k, d]_{q}$-code, we know that C is a subspace of \mathbb{F}_{q}^{n}; set $\ell=\operatorname{dim} C$. We must show that $\ell=k$. Let $\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{\ell}\right\}$ be a basis for C. Then C is the set of all vectors of the form $\sum_{i=1}^{\ell} \alpha_{i} \mathbf{c}_{i}$, where $\alpha_{1}, \ldots, \alpha_{\ell} \in \mathbb{F}_{q}$. There are q choices for each $\alpha_{i}{ }^{9}$ and so there are q^{ℓ} choices for the ℓ-tuple $\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$. On the other hand, since $\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{\ell}\right\}$ is linearly independent (because it is a basis), we know that $\sum_{i=1}^{\ell} \alpha_{i} \mathbf{c}_{i}=\sum_{i=1}^{\ell} \beta_{i} \mathbf{c}_{i}$ (where $\alpha_{1}, \ldots, \alpha_{\ell}, \beta_{1}, \ldots, \beta_{\ell} \in \mathbb{F}_{q}$) if and only if $\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)=\left(\beta_{1}, \ldots, \beta_{\ell}\right)$. It follows that $|C|=q^{\ell}$, and consequently, $\ell=\log _{q}|C|$. Since $k=\log _{q}|C|$ (by definition), it follows that $\ell=k$, which is what we needed to show.

Now, suppose that $C \subseteq \mathbb{F}_{q}^{n}$ be an $[n, k, d]_{q}$-code, with $0<k<n$. By Proposition 2.1, we have that $\operatorname{dim} C=k$, and so C is a non-null proper subspace of \mathbb{F}_{q}^{n}. Let G be any matrix whose rows form a basis for C (in particular, $G \in \mathbb{F}_{q}^{k \times n}$); then G is called the generator matrix of the linear code C. Note that this implies that $C^{\perp}=\left\{\mathbf{y} \in \mathbb{F}_{q}^{n} \mid \mathbf{y} G^{T}=\mathbf{0}\right\}$. Next, suppose H is any matrix such that the rows of H^{T} form a basis for C^{\perp} (so, H^{T} is a generator matrix for C^{\perp}). The matrix H is called a parity check matrix for C, and by Proposition 1.2, it satisfies $C=\left\{\mathbf{x} \in \mathbb{F}_{q}^{n} \mid \mathbf{x} H=\mathbf{0}\right\},{ }^{10}$ i.e. $C=\operatorname{Ker}(H)$. Note that the parity check matrix H can be used to check whether a vector $\mathbf{x} \in \mathbb{F}_{q}^{n}$ is a codeword of C. Indeed, if $\mathbf{x} H=\mathbf{0}$, then $\mathbf{x} \in C$, and otherwise, $\mathbf{x} \notin C$. Note that, given a generator matrix for C, one can easily compute a parity check matrix for C, and vice versa.

Given a vector $\mathbf{x} \in \mathbb{F}_{q}^{n}$, the Hamming weight of \mathbf{x}, denoted by wt (\mathbf{x}), is the number of non-zero coordinates in \mathbf{x}.

Proposition 2.2. Let $C \varsubsetneqq \mathbb{F}_{q}^{n}$ be an $[n, k, d]_{q}$-code, with $0<k<n$, and let H be a parity check matrix for C. Then $d=\min \{w t(\mathbf{x}) \mid \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\}$.

Proof. Fix $\mathbf{x} \in C \backslash\{\mathbf{0}\}$ with minimum Hamming weight. We must show that $d=\mathrm{wt}(\mathbf{x})$.

First, since C is a linear code, we know that $\mathbf{0} \in C$, and so (since \mathbf{x} and $\mathbf{0}$ are distinct codewords in C) we have that $d(\mathbf{x}, \mathbf{0}) \geq d$. But obviously, $d(\mathbf{x}, \mathbf{0})=\mathrm{wt}(\mathbf{x})$, and it follows that $\mathrm{wt}(\mathbf{x}) \geq d$.

It remains to show that $\mathrm{wt}(\mathbf{x}) \leq d$. Fix distinct $\mathbf{y}, \mathbf{z} \in C$ such that $d(\mathbf{y}, \mathbf{z})=d .{ }^{11}$ Since C is a vector space, we know that $\mathbf{y}-\mathbf{z} \in C$, and so by the choice of \mathbf{x}, we have that $\mathrm{wt}(\mathbf{x}) \leq \mathrm{wt}(\mathbf{y}-\mathbf{z})$. But now

$$
d=d(\mathbf{y}, \mathbf{z})=\mathrm{wt}(\mathbf{y}-\mathbf{z}) \geq \mathrm{wt}(\mathbf{x})
$$

[^2]which is what we needed to show.

3 Hamming codes

Fix an integer $\ell \geq 2$, and set $n=2^{\ell}-1, k=2^{\ell}-\ell-1$, and $d=3$. Our goal in this section is to construct an $[n, k, d]_{2}$-code, called a Hamming code. ${ }^{12}$ We do this by constructing its parity check matrix H; then the code in question will simply be the subspace $C=\left\{\mathbf{x} \in \mathbb{F}_{2}^{n} \mid \mathbf{x} H=\mathbf{0}\right\}$.

Note that the binary representation of the integer $n=2^{\ell}-1$ is $\underbrace{1 \ldots 1}_{\ell}$. More generally, the binary representation of any integer in $\{1, \ldots, n\}$ has at most ℓ digits. Now, for all $i \in\{1, \ldots, n\}$, let $\mathbf{h}_{i} \in \mathbb{F}_{2}^{\ell}$ be the vector giving the binary representation of i, with zeros added to the front if necessary (so that the length of the representation is $\ell) .{ }^{13}$ Let

$$
H=\left[\begin{array}{c}
\mathbf{h}_{1} \\
\vdots \\
\mathbf{h}_{n}
\end{array}\right] .
$$

Note that $H \in \mathbb{F}_{2}^{n \times \ell}$. We now define the code C by setting

$$
C=\left\{\mathbf{x} \in \mathbb{F}_{2}^{n} \mid \mathbf{x} H=\mathbf{0}\right\} .
$$

Let us show that C is an $[n, k, d]_{2}$-code. Obviously, C is a subspace of $\mathbb{F}_{2}^{n} .^{14}$ Let us show that $\operatorname{dim} C=k .{ }^{15}$ As usual, for all $i \in\{1, \ldots, \ell\}$, let \mathbf{e}_{i}^{ℓ} be the vector in \mathbb{F}_{2}^{ℓ} whose i-th coordinate is 1 , and all of whose other coordinates are 0 . Then each of $\mathbf{e}_{1}^{\ell}, \ldots, \mathbf{e}_{\ell}^{\ell}$ is a row of H, and furthermore, the set $\left\{\mathbf{e}_{1}^{\ell}, \ldots, \mathbf{e}_{\ell}^{\ell}\right\}$ is a basis for $\mathbb{F}_{2}^{\ell} ; \operatorname{so}, \operatorname{rank}(H)=\ell$. The Rank-nullity theorem guarantees that $\operatorname{rank}(H)+\operatorname{dim} \operatorname{Ker}(H)=n$, and we deduce that $\operatorname{dim} \operatorname{Ker}(H)=n-\ell=k$. But $C=\operatorname{Ker}(H)$, and so $\operatorname{dim} C=k$.

It remains to show that the minimum distance of words in C is $d=3$. We will use Proposition 2.2. As usual, for all $i \in\{1, \ldots, n\}$, let \mathbf{e}_{i}^{n} be the vector in \mathbb{F}_{2}^{n} whose i-th coordinate is 1 , and all of whose other coordinates are 0 . Note that the vectors of \mathbb{F}_{2}^{n} of Hamming weight 1 are precisely the vectors $\mathbf{e}_{1}^{n}, \ldots, \mathbf{e}_{n}^{n}$. But note that, for all $i \in\{1, \ldots, n\}$, we have that $\mathbf{e}_{i} H=\mathbf{h}_{i} \neq \mathbf{0}$, and so $\mathbf{e}_{i} \notin C$. Next, vectors of \mathbb{F}_{2}^{n} of Hamming weight 2 are precisely the

[^3]vectors of the form $\mathbf{e}_{i}^{n}+\mathbf{e}_{j}^{n}$, with $i \neq j$. Now, for distinct $i, j \in\{1, \ldots, n\}$, we have that $\left(\mathbf{e}_{i}^{n}+\mathbf{e}_{j}^{n}\right) H=\mathbf{h}_{i}+\mathbf{h}_{j}$; since $\mathbf{h}_{i} \neq \mathbf{h}_{j}$ (and our field is \mathbb{F}_{2}), we have that $\mathbf{h}_{i}+\mathbf{h}_{j} \neq \mathbf{0}$, and it follows that $\mathbf{e}_{i}^{n}+\mathbf{e}_{j}^{n} \notin C$. We have now shown that C does not contain any non-zero vectors of Hamming weight at most two. On the other hand, C does contain a vector of Hamming weight at most three, e.g. the vector $\mathbf{e}_{1}^{n}+\mathbf{e}_{2}^{n}+\mathbf{e}_{3}^{n}{ }^{16} \operatorname{So}, \min \{\operatorname{wt}(\mathbf{x}) \mid \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\}=3=d$, and so by Proposition 2.2, we see that the minimum distance in C is d.

We have now shown that C is indeed an $[n, k, d]_{2}$-code, that is, C is a $\left[2^{\ell}-1,2^{\ell}-\ell-1,3\right]_{2}$-code. The code that we just constructed is called a Hamming code.

Finally, let us explain how error checking works for the Hamming code C that we just constructed. Suppose $\mathbf{w} \in \mathbb{F}_{2}^{n}$. Then by construction, $\mathbf{w} \in C$ if and only if $\mathbf{w} H=\mathbf{0}$. Suppose now that \mathbf{w} differs in exactly one coordinate from some codeword in C, that is, that \mathbf{w} can be obtained from a codeword in C by introducing one error (i.e. by changing exactly one 1 into 0 , or vice versa, in some codeword of C). This means that there exist some $\mathbf{x} \in C$ and $i \in\{1, \ldots, n\}$ such that $\mathbf{w}=\mathbf{x}+\mathbf{e}_{i}^{n}$, and so

$$
\begin{aligned}
\mathbf{w} H & =\left(\mathbf{x}+\mathbf{e}_{i}^{n}\right) H \\
& =\underbrace{\mathbf{x} H}_{=\mathbf{0}}+\underbrace{\mathbf{e}_{i}^{n} H}_{=\mathbf{h}_{i}} \\
& =\mathbf{h}_{i} .
\end{aligned}
$$

But \mathbf{h}_{i} is simply the integer i written in binary code! This means that if \mathbf{w} was obtained from a codeword in C by introducing exactly one error, then the coordinate of that error is the integer whose binary representation is given by the vector $\mathbf{w} H$; we can correct the error by altering the entry (from 1 to 0 , or vice versa) in that one coordinate of \mathbf{w}.

$$
\begin{aligned}
& { }^{16} \text { Indeed, } \\
& \left(\mathbf{e}_{1}^{n}+\mathbf{e}_{2}^{n}+\mathbf{e}_{3}^{n}\right) H=\mathbf{h}_{1}+\mathbf{h}_{2}+\mathbf{h}_{3} \\
& =(\underbrace{0, \ldots, 0}_{n-2}, 0,1)+(\underbrace{0, \ldots, 0}_{n-2}, 0,1)+(\underbrace{0, \ldots, 0}_{n-2}, 1,1) \\
& =0,
\end{aligned}
$$

and so $\mathbf{e}_{1}^{n}+\mathbf{e}_{2}^{n}+\mathbf{e}_{3}^{n} \in C$.

[^0]: ${ }^{1}$ So, A has n rows and m columns, and \mathbf{x} is a row vector of length n.
 ${ }^{2}$ Indeed, we multiply a $1 \times n$ matrix by an $n \times m$ matrix, and we obtain a $1 \times m$ matrix, i.e. a row vector of length m.
 ${ }^{3}$ Alternatively, given a matrix A, we can perform Gaussian elimination as follows: we first form the transpose A^{T}, then we perform the familial Gaussian elimination on rows to obtain a matrix B, and then we take the transpose of B. The result is the same as if we performed Gaussian elimination on the columns of A directly.

[^1]: ${ }^{4}$ Check this!
 ${ }^{5} \operatorname{Ker}\left(G^{T}\right)=\left\{\mathbf{y} \in \mathbb{F}^{n} \mid \mathbf{y} G^{T}=\mathbf{0}\right\}$ is simply the definition of $\operatorname{Ker}\left(G^{T}\right)$.
 ${ }^{6}$ Indeed, every vector in C is orthogonal to every vector in C^{\perp}. On the other hand, $\left(C^{\perp}\right)^{\perp}$ is the set of all vectors in \mathbb{F} that are orthogonal to every vector in C^{\perp}. It follows that $C \subseteq\left(C^{\perp}\right)^{\perp}$.
 ${ }^{7}$ So, elements of \mathbb{F}_{q} are row vectors of length n, all of whose entries are in the field \mathbb{F}_{q}.
 ${ }^{8}$ This is because the alphabet over which C is a code must be of size q, and since C is a linear code, it is a subspace of \mathbb{F}^{n}, where \mathbb{F} is some finite field. So, \mathbb{F} is a field of size q, and so it is equal (technically, isomorphic) to \mathbb{F}_{q} (because all fields of the same size are isomorphic.

[^2]: ${ }^{9}$ This is because $\left|\mathbb{F}_{q}\right|=q$.
 ${ }^{10}$ Let us check this. Clearly, $\left(C^{\perp}\right)^{\perp}=\left\{\mathbf{x} \in \mathbb{F}_{q}^{n} \mid \mathbf{x}\left(H^{T}\right)^{T}=\mathbf{0}\right\}=\left\{\mathbf{x} \in \mathbb{F}_{q}^{n} \mid \mathbf{x} H=\mathbf{0}\right\}$. Since $\left(C^{\perp}\right)^{\perp}=C$ (by Proposition 1.2), it follows that $C=\left\{\mathbf{x} \in \mathbb{F}_{q}^{n} \mid \mathbf{x} H=\mathbf{0}\right\}$.
 ${ }^{11}$ The minimum distance between codewords in C is d. So, there exists distinct vectors in C (say, \mathbf{y} and \mathbf{z}) whose distance is precisely d.

[^3]: ${ }^{12}$ It is also possible to construct " q-ary Hamming codes," which are over the (more general) field \mathbb{F}_{q}. For the sake of simplicity, though, we consider only binary Hamming codes, i.e. those over the field \mathbb{F}_{2}.
 ${ }^{13}$ For example, if $\ell=2$, then $n=3$, and we have that $\mathbf{h}_{1}=(0,1), \mathbf{h}_{2}=(1,0)$, and $\mathbf{h}_{3}=(1,1)$.
 ${ }^{14}$ So, C is a linear code, and furthermore, the first coordinate (i.e. the n-part) and the subscript (i.e. 2) of $[n, k, d]_{2}$ are correct.
 ${ }^{15}$ In view of Proposition 2.1, this will guarantee that second coordinate (i.e. the k-part) of $[n, k, d]_{2}$ is correct.

