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Suppose a sender wishes to send a message (say, a sequence
of 1’s and 0’s) to a receiver.

If the communication channel is unreliable or noisy, the
message may get corrupted.

For instance, the sender may send 1011, and the receiver may
get 1001.
The receiver does not get colored strings! We use red to
emphasize errors.

In this case, the receiver has no chance of spotting and fixing
the error.
Can we help the receiver spot and fix errors?
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One strategy might be to agree to triple each bit (i.e. each 1
or 0). So, instead of 1011, we would send 111000111111.

Suppose just one error occurred, and the receiver received
111000110111.
Now the receiver knows that there was an error in the boxed
triple: 111000 110 111.
The receiver knows that the boxed triple should have been
either 000 or 111, and the latter (i.e. 111) is more likely
because it is more likely that only one error occurred than
that two errors did.
So, the receiver guesses that the message sent was
111000111111, which corresponds to 1011.
However, if more than one error occurs in a triple
corresponding to one bit, then the receiver will either fail to
detect the error or will correct it incorrectly.
For instance, if the receiver receives 111000100111, then he
will incorrectly guess that the sender sent 111000000111,
which corresponds to 1001.
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Here is another way to address the same problem. Consider
the Fano plane (below).
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We now form 16 row vectors of length seven as follows: we
take all possible incidence vectors of lines of the Fano plane,
the incidence vectors of the complements of the lines of the
Fano plane, plus the vectors (0, 0, 0, 0, 0, 0, 0) and
(1, 1, 1, 1, 1, 1, 1).

For example, the incidence vector of the line {1, 2, 4} is
(1, 1, 0, 1, 0, 0, 0).
For example, the incidence vector of the complement of the
line {1, 2, 4} is (0, 0, 1, 0, 1, 1, 1).

Let H be the set of these 16 vectors.
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The 16 vectors in H have the following two properties:
any two distinct vectors in H differ in at least three
places/coordinates;
for any vector w of 1’s and 0’s of length 7, there exists a
unique vector h ∈ H s.t. w and h differ in at most one
place/coordinate.

This means that if a sender sends a vector from H, and at
most one error is made during transmission, the receiver can
correctly guess which vector was sent.

Indeed, the receiver simply chooses the unique vector from H
that differs in at most one coordinate from the vector that the
receiver received.

How do we use H?
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There are precisely 16 stings of 1’s and 0’s of length four.

Indeed, these are simply the integers 0, 1, . . . , 15 written in
binary code.

So, we can set up a bijection π between the set of these 16
strings and the set H.
Now, suppose we wish to transmit a string of 1’s and 0’s of
length 4n, for some positive integer n.
We divide such a string into n consecutive blocks of length
four, and instead of sending these blocks, we send
(consecutively) the n vectors from H that correspond to them.
The advantage of this is that if, during transmission, at most
one error is made in each vector, the receiver will be able to
spot it and correct it, and then to read off (using π−1) the
sender’s original 4n-bit message.
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Note that, if we use H, then instead of sending 4n bits (the
number of bits in our original message), we send 7n bits.

If data is expensive, then this is an improvement over tripling
each bit (where we would send 3n bits for each n-bit message).
H is a type of “Hamming code,” sometimes called the
Hamming(7,4) code (because the original 4 bits are converted
into 7 bits).



Note that, if we use H, then instead of sending 4n bits (the
number of bits in our original message), we send 7n bits.
If data is expensive, then this is an improvement over tripling
each bit (where we would send 3n bits for each n-bit message).

H is a type of “Hamming code,” sometimes called the
Hamming(7,4) code (because the original 4 bits are converted
into 7 bits).



Note that, if we use H, then instead of sending 4n bits (the
number of bits in our original message), we send 7n bits.
If data is expensive, then this is an improvement over tripling
each bit (where we would send 3n bits for each n-bit message).
H is a type of “Hamming code,” sometimes called the
Hamming(7,4) code (because the original 4 bits are converted
into 7 bits).



Definition
An alphabet is some finite set of symbols Σ = {s0, . . . , sm}. A
word of length n is a string (or row vector) of length n of symbols
from our alphabet; Σn is the set of all words of length n using
symbols from the alphabet Σ. A code is a subset C of Σn.
Elements of the code are codewords.

Often, our alphabet is a finite field Fq, where q is prime
power.

Recall that, for a positive integer q, there is a field of size q iff
q is a prime power (i.e. q = pn, where p is a prime number
and n is a positive integer).
All finite fields of the same size are isomorphic.
If q a prime power, then Fq is the unique (up to isomorphism)
field of size q. Note that if p is a prime number, then Fp = Zp
(but this is only true if p is prime!).

Particularly often, our alphabet is F2 = Z2, which is simply
the binary code (and we can do addition and multiplication
modulo 2).
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Definition
Given words x = x1 . . . xn and y = y1 . . . yn in Σn (where Σ is some
alphabet), the Hamming distance between x and y, denoted by
d(x, y), is the number of places in which x and y differ, i.e.
d(x, y) = |{i ∈ {1, . . . , n} | xi 6= yi}|.

It is straightforward to check that the Hamming distance
d(·, ·) is a “metric” on Σn, that is, that is satisfies the
following three properties:

d(x , y) = 0⇔ x = y ;
d(x , y) = d(y , x);
d(x , y) + d(y , z) ≤ d(x , z).

The inequality from the third bullet point is referred to as the
triangle inequality.
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Codes are used as follows.
A sender would like to send a message to a receiver, and for
this, he uses some code C ⊆ Σn, where Σ is some alphabet.

There is a bijection π (known both to the sender and the
receiver) between all possible messages and the code C .
Now, the sender encodes his message (i.e. turns it into a
codeword in a code via the bijection) and sends it to the
receiver. The receiver receives this codeword, but possibly
with some errors.

If the sender sends the codeword x and the receiver receives
the word x̃ , then d(x , x̃) is the number of errors created during
transmission.

The receiver corrects the errors (this is possible if the number
of errors is small enough, where “small enough” depends on
the code used), and then recovers the original message using
π−1.



Codes are used as follows.
A sender would like to send a message to a receiver, and for
this, he uses some code C ⊆ Σn, where Σ is some alphabet.
There is a bijection π (known both to the sender and the
receiver) between all possible messages and the code C .

Now, the sender encodes his message (i.e. turns it into a
codeword in a code via the bijection) and sends it to the
receiver. The receiver receives this codeword, but possibly
with some errors.

If the sender sends the codeword x and the receiver receives
the word x̃ , then d(x , x̃) is the number of errors created during
transmission.

The receiver corrects the errors (this is possible if the number
of errors is small enough, where “small enough” depends on
the code used), and then recovers the original message using
π−1.



Codes are used as follows.
A sender would like to send a message to a receiver, and for
this, he uses some code C ⊆ Σn, where Σ is some alphabet.
There is a bijection π (known both to the sender and the
receiver) between all possible messages and the code C .
Now, the sender encodes his message (i.e. turns it into a
codeword in a code via the bijection) and sends it to the
receiver. The receiver receives this codeword, but possibly
with some errors.

If the sender sends the codeword x and the receiver receives
the word x̃ , then d(x , x̃) is the number of errors created during
transmission.

The receiver corrects the errors (this is possible if the number
of errors is small enough, where “small enough” depends on
the code used), and then recovers the original message using
π−1.



Codes are used as follows.
A sender would like to send a message to a receiver, and for
this, he uses some code C ⊆ Σn, where Σ is some alphabet.
There is a bijection π (known both to the sender and the
receiver) between all possible messages and the code C .
Now, the sender encodes his message (i.e. turns it into a
codeword in a code via the bijection) and sends it to the
receiver. The receiver receives this codeword, but possibly
with some errors.

If the sender sends the codeword x and the receiver receives
the word x̃ , then d(x , x̃) is the number of errors created during
transmission.

The receiver corrects the errors (this is possible if the number
of errors is small enough, where “small enough” depends on
the code used), and then recovers the original message using
π−1.
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On the one hand, we wish to send as many different messages
as possible, using as few bits as possible.
On the other hand, we wish to maximize the number of errors
that we can successfully correct.
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Suppose Σ is an alphabet of size at least two, and C ⊆ Σn is
a code containing at least two codewords. Here are some
parameters for the code C :

the codeword length is n;
the size of the alphabet is q = |Σ|;
the dimension of C is |C |, instead of which we often consider
the logarithm k = logq |C |;
the minimum distance in C is
d = min{d(x , y) | x , y ∈ C , x 6= y}.

A code with these parameters is an (n, k, d)q-code.

Note that if at most bd−1
2 c errors are made during the

transmission of a codeword, then the receiver can correctly
spot and correct the errors by selecting the (unique) codeword
with minimum Hamming distance from the word that he
received.



Suppose Σ is an alphabet of size at least two, and C ⊆ Σn is
a code containing at least two codewords. Here are some
parameters for the code C :

the codeword length is n;
the size of the alphabet is q = |Σ|;
the dimension of C is |C |, instead of which we often consider
the logarithm k = logq |C |;
the minimum distance in C is
d = min{d(x , y) | x , y ∈ C , x 6= y}.

A code with these parameters is an (n, k, d)q-code.
Note that if at most bd−1

2 c errors are made during the
transmission of a codeword, then the receiver can correctly
spot and correct the errors by selecting the (unique) codeword
with minimum Hamming distance from the word that he
received.



Suppose Σ is an alphabet of size at least two, and C ⊆ Σn is
a code containing at least two codewords. Here are some
parameters for the code C :

the codeword length is n;
the size of the alphabet is q = |Σ|;
the dimension of C is |C |, instead of which we often consider
the logarithm k = logq |C |;
the minimum distance in C is
d = min{d(x , y) | x , y ∈ C , x 6= y}.

A code with these parameters is an (n, k, d)q-code.

Example
The simplest code is the total code Σn, where Σ is an alphabet
with q = |Σ| ≥ 2 and n is a positive integer. The total code Σn is
an (n, n, 1)q code. If we use this code, we send little data, but we
cannot correct even a single error!
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Example
The repetition code Repn of length n over the alphabet Σ (with
q = |Σ| ≥ 2) is the code C = {x . . . x︸ ︷︷ ︸

n
| x ∈ Σ}. It is an

(n, 1, n)q-code. This code allows us to correct as many as bn−1
2 c

errors, but it uses a lot of data.
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the minimum distance in C is
d = min{d(x , y) | x , y ∈ C , x 6= y}.

A code with these parameters is an (n, k, d)q-code.

Example
The parity code C of length n (with n ≥ 2) over the alphabet F2;
it consists of all words of the form w1 . . .wn with w1, . . . ,wn ∈ F2
and

∑n
i=1 wi = 0. It is an (n, n − 1, 2)2-code.a

aWe have that |C | = 2n−1, because the first n − 1 symbols of a codeword
can be chosen arbitrarily (and there are 2n−1 ways of doing this), but the n-th
symbol is uniquely determined by the previous n − 1 ones (because the sum
must be 0). So, k = logq |C | = log2 2n−1 = n − 1.



Definition
Given vectors a = (a1, . . . , an)T and b = (b1, . . . , bn)T in Rn, the
standard inner product (or dot product) of a and b is
a · b =

∑n
i=1 aibi . Two vectors in Rn are orthogonal with respect

to the dot product if their dot product is zero.

Definition
A Hadamard matrix of order n is an n× n matrix whose entries are
all 1 or −1, and whose columns are pairwise orthogonal (with
respect to the dot product).
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Definition
A Hadamard matrix of order n is an n× n matrix whose entries are
all 1 or −1, and whose columns are pairwise orthogonal (with
respect to the dot product).

For example, the matrix

H2 =
[

1 1
1 −1

]

is Hadamard matrix of order 2.
Furthermore, if H is an n × n Hadamard matrix, then[

H H
H −H

]

is a Hadamard matrix of order 2n.



Definition
A Hadamard matrix of order n is an n× n matrix whose entries are
all 1 or −1, and whose columns are pairwise orthogonal (with
respect to the dot product).

Proposition 2.1
Let H be a Hadamard matrix of order n. Then HHT = nIn.a
Furthermore, HT is also a Hadamard matrix of order n.

aAs usual, In is the n × n identity matrix.

Proof. Lecture Notes.



Definition
If H is any Hadamard matrix of order n, then the Hadamard code
associated with H consists of all rows of H and all rows of −H.

This code has 2n codewords.
For this, we must check that no two rows of H are the same,
and that no row of H is equal to any row of −H. But this
follows from the fact that, by Proposition 2.1, HT is a
Hadamard matrix (details?).

It is easy to check that this is an (n, 1 + log2 n, n
2 )2-code.
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Definition
For positive integers n, d , q with n ≥ d and q ≥ 2, let Aq(n, d) be
the maximum size of a code (i.e. the maximum possible number of
codewords in a code) C with the following parameters:

the size of the alphabet is q;
the codeword length is n;
the minimum distance is at least d .



The Singleton bound
For all positive integers n, d , q s.t. n ≥ d and q ≥ 2, we have that
Aq(n, d) ≤ qn−d+1.

Proof.

We prove this by induction on n, keeping q fixed and
allowing d to vary. More precisely, we fix positive integers n, d , q
s.t. n ≥ d and q ≥ 2, and we assume inductively that for all
positive integers n′, d ′ with n′ ≥ d ′ and n′ < n, we have that
Aq(n′, d ′) ≤ qn′−d ′+1. We must show that Aq(n, d) ≤ qn−d+1.
Fix a code C over an alphabet Σ with |Σ| = q, and assume that
the codeword length in C is n and that the minimum distance
between codewords in C is at least d . We must show that
|C | ≤ qn−d+1. If d = 1, then

|C | ≤ |Σn| = qn = qn−d+1,

and we are done. So from now on, we assume that d ≥ 2.
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The Singleton bound
For all positive integers n, d , q s.t. n ≥ d and q ≥ 2, we have that
Aq(n, d) ≤ qn−d+1.

Proof (continued). Reminder: C ⊆ Σn, |Σ| = q, and the minimum
distance between codewords in C is at least d ≥ 2. WTS
|C | ≤ qn−d+1.

Let C̃ be the set of all words w1 . . .wn−d+1 in Σn−d+1 for which
there exist some wn−d+2, . . . ,wn ∈ Σ s.t.
w1 . . .wn−d+1wn−d+2 . . .wn ∈ C . WTS |C̃ | = |C |.
Define f : C → C̃ by setting f (w1 . . .wn) = w1 . . .wn−d+1 for all
w1 . . .wn ∈ C . WTS f is a bijection. By construction, f is onto C̃ .
Fix codewords w = w1 . . .wn and w′ = w ′1 . . .w ′n in C s.t.
f (w) = f (w′); then w1 . . .wn−d+1 = w ′1 . . .w ′n−d+1, and so
d(w,w′) ≤ d − 1. Since the minimum distance in C is at least d ,
we conclude that w = w′. So, f is one-to-one. Thus, f : C → C̃ is
a bijection, and we deduce that |C̃ | = |C |.
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The Singleton bound
For all positive integers n, d , q s.t. n ≥ d and q ≥ 2, we have that
Aq(n, d) ≤ qn−d+1.

Proof (continued). Now, C̃ is a code over Σ, with |Σ| = q, the
length of codewords in C̃ is n − d + 1 < n, and obviously, the
minimum distance in C̃ is at least 1. So, by the induction
hypothesis, we have that

|C̃ | ≤ Aq(n − d + 1, 1) ≤ q(n−d+1)−1+1 = qn−d+1.

Since |C̃ | = |C |, we deduce that |C | ≤ qn−d+1, which is what we
needed to show.



Definition
Suppose n, t, q are positive integers and Σ is an alphabet of size q.
For all w ∈ Σn, we let BΣn

t (w) be the “combinatorial ball” of
radius t around w, i.e. BΣn

t (w) is the set of all words in Σn whose
Hamming distance from w is at most t. When no confusion is
possible, we write Bt(w) instead of BΣn

t (w).

Proposition 3.1
Let n, t, q be positive integers s.t. n ≥ t and q ≥ 2, and let Σ be an
alphabet of size q. Then |Bt(w)| =

t∑
k=0

(n
k
)
(q − 1)k for all w ∈ Σn.
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Proposition 3.1
Let n, t, q be positive integers s.t. n ≥ t and q ≥ 2, and let Σ be an
alphabet of size q. Then |Bt(w)| =

t∑
k=0

(n
k
)
(q − 1)k for all w ∈ Σn.

Proof. Fix a word w ∈ Σn. We must show that the number of
words in Σn at distance at most t from w is precisely∑t

k=0
(n

k
)
(q − 1)k . Clearly, it suffices to show that for all

k ∈ {0, . . . , t}, the number of words in Σn at distance k from w is
precisely

(n
k
)
(q − 1)k . So, fix k ∈ {0, . . . , t}. There are

(n
k
)

ways to
choose the k places in which a word at Hamming distance k from
w differs from w. For each such choice, and for each of the k
selected placed, we have q− 1 ways of altering w in that place;1 so,
for all k places together, we get (q − 1)k ways of altering w. So,
there are precisely

(n
k
)
(q − 1)k words in Σn at distance k from w.

1Indeed, we can select any symbol from Σ, except the one that appears in
the selected place in the word w itself. Since |Σ| = q, we have q − 1 choices.



The Hamming bound
Let n, d , q be positive integers such that n ≥ d and q ≥ 2, and let
t = bd−1

2 c. Then Aq(n, d) ≤ qn∑t
k=0 (n

k)(q−1)k .

Proof.

Fix a code C ⊆ Σn, where Σ is an alphabet of size q, and
assume that the minimum distance between codewords in C is at
least d . We must show that |C | ≤ qn∑t

k=0 (n
k)(q−1)k . Set m = |C |

and C = {c1, . . . , cm}. Since the minimum Hamming distance
between codewords in C is at least d , and since t = bd−1

2 c, we see
that the combinatorial balls Bt(c1), . . . ,Bt(cm) are pairwise
disjoint. We now compute:
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The Hamming bound
Let n, d , q be positive integers such that n ≥ d and q ≥ 2, and let
t = bd−1

2 c. Then Aq(n, d) ≤ qn∑t
k=0 (n

k)(q−1)k .

Proof (continued).

qn = |Σn| because |Σ| = q
≥ |

m⋃
i=1

Bt(ci )|

=
m∑

i=1
|Bt(ci )| because Bt(c1), . . . ,Bt(cm)

are pairwise disjoint

= m
t∑

k=0

(n
k
)
(q − 1)k by Proposition 3.1

= |C |
t∑

k=0

(n
k
)
(q − 1)k because m = |C |

This implies that |C | ≤ qn∑t
k=0 (n

k)(q−1)k , which is what we needed to
show.



The Gilbert-Varshamov bound
Let n, d , q be positive integers such that n ≥ d and q ≥ 2. Then
Aq(n, d) ≥ qn∑d−1

k=0 (n
k)(q−1)k

.

Proof.

Fix a code C ⊆ Σn, where Σ is some alphabet of size q,
with minimum distance between codewords in C at least d , and
with |C | = Aq(n, d). WTS |C | ≥ qn∑d−1

k=0 (n
k)(q−1)k

.

Set m = |C | and C = {c1, . . . , cm}.
Claim. Σn =

⋃m
i=1 Bd−1(ci ).

Proof of the Claim. If
⋃m

i=1 Bd−1(ci ) $ Σn, then fix some
w ∈ Σn \

(⋃m
i=1 Bd−1(ci )

)
. Then d(w, ci ) ≥ d for all

i ∈ {1, . . . ,m}. We now form a new code C̃ := C ∪ {w};
obviously, C̃ ⊆ Σn, with |Σ| = q, and by construction, the
minimum distance in C̃ is at least d . But now the fact that
|C̃ | = |C |+ 1 = Aq(n, d) + 1 contradicts the definition of Aq(n, d).
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Proof (continued). We now compute:

qn = |Σn| because |Σ| = q
= |

m⋃
i=1

Bd−1(ci )| by the Claim

≤
m∑

i=1
|Bd−1(ci )|

= m
d−1∑
k=0

(n
k
)
(q − 1)k by Proposition 3.1

= |C |
d−1∑
k=0

(n
k
)
(q − 1)k because m = |C |

It follows that |C | ≥ qn∑d−1
k=0 (n

k)(q−1)k
, which is what we needed to

show.


