NDMI011: Combinatorics and Graph Theory 1

Lecture #12

Bounding the number of edges in graphs without certain subgraphs

Irena Penev

December 22, 2020

A graph is said to be *triangle-free* if it does not contain K_3 as a subgraph. Equivalently, a graph G is triangle-free if $\omega(G) \leq 2$.

A graph is said to be *triangle-free* if it does not contain K_3 as a subgraph. Equivalently, a graph G is triangle-free if $\omega(G) \leq 2$.

Theorem 1.1

Let n be a positive integer. Then

- (a) any triangle-free graph on *n* vertices has at most $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges;
- (b) there exists a triangle-free graph on *n* vertices that has precisely $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges.

Proof (outline).

A graph is said to be *triangle-free* if it does not contain K_3 as a subgraph. Equivalently, a graph G is triangle-free if $\omega(G) \leq 2$.

Theorem 1.1

Let n be a positive integer. Then

(a) any triangle-free graph on *n* vertices has at most $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges;

(b) there exists a triangle-free graph on *n* vertices that has precisely $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges.

Proof (outline). For (b), we observe that the complete bipartite graph $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$ is triangle-free and has precisely *n* vertices and $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$ edges.

A graph is said to be *triangle-free* if it does not contain K_3 as a subgraph. Equivalently, a graph G is triangle-free if $\omega(G) \leq 2$.

Theorem 1.1

Let n be a positive integer. Then

- (a) any triangle-free graph on *n* vertices has at most $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges;
- (b) there exists a triangle-free graph on *n* vertices that has precisely $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges.

Proof (outline). For (b), we observe that the complete bipartite graph $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$ is triangle-free and has precisely *n* vertices and $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$ edges.

Assume inductively that (a) holds for all n' < n; we must prove it for n.

A graph is said to be *triangle-free* if it does not contain K_3 as a subgraph. Equivalently, a graph G is triangle-free if $\omega(G) \leq 2$.

Theorem 1.1

Let n be a positive integer. Then

(a) any triangle-free graph on *n* vertices has at most $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges;

(b) there exists a triangle-free graph on *n* vertices that has precisely $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges.

Proof (outline). For (b), we observe that the complete bipartite graph $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$ is triangle-free and has precisely *n* vertices and $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$ edges.

Assume inductively that (a) holds for all n' < n; we must prove it for n. For n = 1 and n = 2, this is obvious. So, suppose $n \ge 3$, and let G be a triangle-free graph on n vertices.

Theorem 1.1

Let n be a positive integer. Then

(a) any triangle-free graph on *n* vertices has at most $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges;

(b) there exists a triangle-free graph on *n* vertices that has precisely $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges.

Proof (outline, continued). WMA *G* has at least one edge (say, uv), for otherwise we are done. No vertex in $V(G) \setminus \{u, v\}$ is adjacent to both u and v (otherwise, we'd get a triangle).

Theorem 1.1

Let n be a positive integer. Then

(a) any triangle-free graph on *n* vertices has at most $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges;

(b) there exists a triangle-free graph on *n* vertices that has precisely $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges.

Proof (outline, continued). WMA *G* has at least one edge (say, uv), for otherwise we are done. No vertex in $V(G) \setminus \{u, v\}$ is adjacent to both u and v (otherwise, we'd get a triangle).

By the induction hypothesis, $|E(G \setminus \{u, v\})| \leq \lfloor \frac{(n-2)^2}{4} \rfloor$.

Proof (outline, continued). Reminder: $|E(G \setminus \{u, v\})| \leq \lfloor \frac{(n-2)^2}{4} \rfloor$.

Proof (outline, continued). Reminder: $|E(G \setminus \{u, v\})| \leq \lfloor \frac{(n-2)^2}{4} \rfloor$. Since the edges of *G* are precisely the edges of $G \setminus \{u, v\}$, plus the edges between $\{u, v\}$ and $V(G) \setminus \{u, v\}$, plus the edge *uv*, we see that

$$|E(G)| \leq \lfloor \frac{(n-2)^2}{4} \rfloor + (n-2) + 1$$

$$= \lfloor \frac{n^2 - 4n + 4}{4} \rfloor + n - 1$$

$$= \lfloor \frac{n^2}{4} \rfloor$$

which is what we needed to show.

The Cauchy-Schwarz inequality

All real numbers $a_1, \ldots, a_n, b_1, \ldots, b_n$ satisfy

$$\left(\sum_{i=1}^{n}a_{i}b_{i}\right)^{2} \leq \left(\sum_{i=1}^{n}a_{i}^{2}\right)\left(\sum_{i=1}^{n}b_{i}^{2}\right).$$

The Cauchy-Schwarz inequality

All real numbers $a_1, \ldots, a_n, b_1, \ldots, b_n$ satisfy

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \leq \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right).$$

Theorem 2.1

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline).

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline). Let G be a graph on n vertices, and assume that G does not contain C_4 as a subgraph.

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline). Let G be a graph on n vertices, and assume that G does not contain C_4 as a subgraph. Clearly, we may assume that G has no isolated vertices.

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline). Let G be a graph on n vertices, and assume that G does not contain C_4 as a subgraph. Clearly, we may assume that G has no isolated vertices. Let d_1, \ldots, d_n be the degrees of the vertices of G; since G is has no isolated veetices, we see that $d_1, \ldots, d_n \ge 1$.

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline). Let *G* be a graph on *n* vertices, and assume that *G* does not contain *C*₄ as a subgraph. Clearly, we may assume that *G* has no isolated vertices. Let d_1, \ldots, d_n be the degrees of the vertices of *G*; since *G* is has no isolated veetices, we see that $d_1, \ldots, d_n \ge 1$. Let $M = \{(v, A) \mid v \in V(G), A \in \binom{N_G(v)}{2}\}$.

Now, we will count the number of elements of M in two ways.

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline, continued). Reminder: $M = \{ (v, A) \mid v \in V(G), A \in \binom{N_G(v)}{2} \}.$

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline, continued). Reminder: $M = \{(v, A) \mid v \in V(G), A \in \binom{N_G(v)}{2}\}.$

First, for each $v \in V(G)$, there are precisely $\binom{d_G(v)}{2}$ choices of A such that $(v, A) \in M$. So, $|M| = \sum_{v \in V(G)} \binom{d_G(v)}{2} = \sum_{i=1}^n \binom{d_i}{2}$.

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline, continued). Reminder:

$$M = \{ (v, A) \mid v \in V(G), A \in \binom{N_G(v)}{2} \};$$

$$|M| = \sum_{v \in V(G)} \binom{d_G(v)}{2} = \sum_{i=1}^n \binom{d_i}{2}.$$

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline, continued). Reminder:

$$M = \{ (v, A) \mid v \in V(G), A \in \binom{N_G(v)}{2} \};$$

$$|M| = \sum_{v \in V(G)} \binom{d_G(v)}{2} = \sum_{i=1}^n \binom{d_i}{2}.$$

We now bound |M| above, as follows. Since *G* contains no C_4 as a subgraph, we see that no two distinct elements of *M* have the same second coordinate. So, $|M| \leq {n \choose 2}$.

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline, continued). Reminder:

$$M = \{(v, A) \mid v \in V(G), A \in \binom{N_G(v)}{2}\};$$

$$|M| = \sum_{v \in V(G)} \binom{d_G(v)}{2} = \sum_{i=1}^n \binom{d_i}{2}.$$

We now bound |M| above, as follows. Since *G* contains no C_4 as a subgraph, we see that no two distinct elements of *M* have the same second coordinate. So, $|M| \leq {n \choose 2}$.

It follows that $\sum_{i=1}^{n} {d_i \choose 2} \leq {n \choose 2}$.

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline, continued). Reminder: $\sum_{i=1}^{n} {d_i \choose 2} \leq {n \choose 2}$.

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline, continued). Reminder: $\sum_{i=1}^{n} {d_i \choose 2} \leq {n \choose 2}.$ Obviously, ${n \choose 2} \leq \frac{n^2}{2}$, and since $d_1, \ldots, d_n \geq 1$, we see that ${d_i \choose 2} \geq \frac{(d_i-1)^2}{2}$ for all $i \in \{1, \ldots, n\}$; consequently, $\sum_{i=1}^{n} \frac{(d_i-1)^2}{2} \leq \sum_{i=1}^{n} {d_i \choose 2} \leq {n \choose 2} \leq \frac{n^2}{2},$

and it follows that

$$\sum_{i=1}^n (d_i-1)^2 \leq n^2.$$

• Cauchy-Schwarz:
$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \leq \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right).$$

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline, continued). Reminder: $\sum_{i=1}^{n} (d_i - 1)^2 \le n^2$.

• Cauchy-Schwarz:
$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \leq \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right).$$

Let $n \in \mathbb{N}$. Any graph on n vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline, continued). Reminder: $\sum_{i=1}^{n} (d_i - 1)^2 \le n^2$.

$$\begin{array}{rcl} \sum\limits_{i=1}^{n} (d_{i}-1) & = & \sum\limits_{i=1}^{n} (d_{i}-1) \cdot 1 \\ & \leq & \sqrt{\sum\limits_{i=1}^{n} (d_{i}-1)^{2}} \sqrt{\sum\limits_{i=1}^{n} 1^{2}} & \text{ by C-S} \leq \\ & = & \sqrt{\sum\limits_{i=1}^{n} (d_{i}-1)^{2}} \sqrt{n} \\ & \leq & \sqrt{n^{2}} \sqrt{n} & \text{ because } \sum\limits_{i=1}^{n} (d_{i}-1)^{2} \leq n^{2} \\ & = & n^{3/2}. \end{array}$$

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline, continued). Reminder: $\sum_{i=1}^{n} (d_i - 1) \le n^{3/2}$.

Let $n \in \mathbb{N}$. Any graph on *n* vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n + n^{3/2})$ edges.

Proof (outline, continued). Reminder:
$$\sum_{i=1}^{n} (d_i - 1) \le n^{3/2}$$
.
It now follows that

$$|E(G)| = \frac{1}{2} \sum_{i=1}^{n} d_i = \frac{1}{2} \Big(n + \sum_{i=1}^{n} (d_i - 1) \Big) \leq \frac{1}{2} (n + n^{3/2}),$$

which is what we needed to show.