NDMI011: Combinatorics and Graph Theory 1

Lecture \#12

Bounding the number of edges in graphs without certain subgraphs

Irena Penev

December 22, 2020

Definition

A graph is said to be triangle-free if it does not contain K_{3} as a subgraph. Equivalently, a graph G is triangle-free if $\omega(G) \leq 2$.

Definition

A graph is said to be triangle-free if it does not contain K_{3} as a subgraph. Equivalently, a graph G is triangle-free if $\omega(G) \leq 2$.

Theorem 1.1

Let n be a positive integer. Then
(a) any triangle-free graph on n vertices has at most $\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{n^{2}}{4}\right\rfloor$ edges;
(b) there exists a triangle-free graph on n vertices that has precisely $\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{n^{2}}{4}\right\rfloor$ edges.

Proof (outline).

Definition

A graph is said to be triangle-free if it does not contain K_{3} as a subgraph. Equivalently, a graph G is triangle-free if $\omega(G) \leq 2$.

Theorem 1.1

Let n be a positive integer. Then
(a) any triangle-free graph on n vertices has at most $\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{n^{2}}{4}\right\rfloor$ edges;
(b) there exists a triangle-free graph on n vertices that has precisely $\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{n^{2}}{4}\right\rfloor$ edges.

Proof (outline). For (b), we observe that the complete bipartite graph $K_{\lfloor n / 2\rfloor,\lceil n / 2\rceil}$ is triangle-free and has precisely n vertices and $\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$ edges.

Definition

A graph is said to be triangle-free if it does not contain K_{3} as a subgraph. Equivalently, a graph G is triangle-free if $\omega(G) \leq 2$.

Theorem 1.1

Let n be a positive integer. Then
(a) any triangle-free graph on n vertices has at most $\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{n^{2}}{4}\right\rfloor$ edges;
(b) there exists a triangle-free graph on n vertices that has precisely $\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{n^{2}}{4}\right\rfloor$ edges.

Proof (outline). For (b), we observe that the complete bipartite graph $K_{\lfloor n / 2\rfloor,\lceil n / 2\rceil}$ is triangle-free and has precisely n vertices and $\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$ edges.
Assume inductively that (a) holds for all $n^{\prime}<n$; we must prove it for n.

Definition

A graph is said to be triangle-free if it does not contain K_{3} as a subgraph. Equivalently, a graph G is triangle-free if $\omega(G) \leq 2$.

Theorem 1.1

Let n be a positive integer. Then
(a) any triangle-free graph on n vertices has at most

$$
\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{n^{2}}{4}\right\rfloor \text { edges; }
$$

(b) there exists a triangle-free graph on n vertices that has precisely $\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{n^{2}}{4}\right\rfloor$ edges.

Proof (outline). For (b), we observe that the complete bipartite graph $K_{\lfloor n / 2\rfloor,\lceil n / 2\rceil}$ is triangle-free and has precisely n vertices and $\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$ edges.
Assume inductively that (a) holds for all $n^{\prime}<n$; we must prove it for n. For $n=1$ and $n=2$, this is obvious. So, suppose $n \geq 3$, and let G be a triangle-free graph on n vertices.

Theorem 1.1

Let n be a positive integer. Then
(a) any triangle-free graph on n vertices has at most $\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{n^{2}}{4}\right\rfloor$ edges;
(b) there exists a triangle-free graph on n vertices that has precisely $\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{n^{2}}{4}\right\rfloor$ edges.

Proof (outline, continued). WMA G has at least one edge (say, $u v)$, for otherwise we are done. No vertex in $V(G) \backslash\{u, v\}$ is adjacent to both u and v (otherwise, we'd get a triangle).

Theorem 1.1

Let n be a positive integer. Then
(a) any triangle-free graph on n vertices has at most $\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{n^{2}}{4}\right\rfloor$ edges;
(b) there exists a triangle-free graph on n vertices that has precisely $\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{n^{2}}{4}\right\rfloor$ edges.

Proof (outline, continued). WMA G has at least one edge (say, $u v)$, for otherwise we are done. No vertex in $V(G) \backslash\{u, v\}$ is adjacent to both u and v (otherwise, we'd get a triangle).

By the induction hypothesis, $|E(G \backslash\{u, v\})| \leq\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor$.

Proof (outline, continued). Reminder: $|E(G \backslash\{u, v\})| \leq\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor$.

Proof (outline, continued). Reminder: $|E(G \backslash\{u, v\})| \leq\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor$.
Since the edges of G are precisely the edges of $G \backslash\{u, v\}$, plus the edges between $\{u, v\}$ and $V(G) \backslash\{u, v\}$, plus the edge $u v$, we see that

$$
\begin{aligned}
|E(G)| & \leq\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor+(n-2)+1 \\
& =\left\lfloor\frac{n^{2}-4 n+4}{4}\right\rfloor+n-1 \\
& =\left\lfloor\frac{n^{2}}{4}\right\rfloor
\end{aligned}
$$

which is what we needed to show.

The Cauchy-Schwarz inequality

All real numbers $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ satisfy

$$
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)
$$

The Cauchy-Schwarz inequality

All real numbers $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ satisfy

$$
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)
$$

Theorem 2.1

Let $n \in \mathbb{N}$. Any graph on n vertices that does not contain C_{4} as a subgraph has at most $\frac{1}{2}\left(n+n^{3 / 2}\right)$ edges.

C_{4}

Theorem 2.1

Let $n \in \mathbb{N}$. Any graph on n vertices that does not contain C_{4} as a subgraph has at most $\frac{1}{2}\left(n+n^{3 / 2}\right)$ edges.

Proof (outline).

Theorem 2.1

Let $n \in \mathbb{N}$. Any graph on n vertices that does not contain C_{4} as a subgraph has at most $\frac{1}{2}\left(n+n^{3 / 2}\right)$ edges.

Proof (outline). Let G be a graph on n vertices, and assume that G does not contain C_{4} as a subgraph.

Theorem 2.1

Let $n \in \mathbb{N}$. Any graph on n vertices that does not contain C_{4} as a subgraph has at most $\frac{1}{2}\left(n+n^{3 / 2}\right)$ edges.

Proof (outline). Let G be a graph on n vertices, and assume that G does not contain C_{4} as a subgraph. Clearly, we may assume that G has no isolated vertices.

Theorem 2.1

Let $n \in \mathbb{N}$. Any graph on n vertices that does not contain C_{4} as a subgraph has at most $\frac{1}{2}\left(n+n^{3 / 2}\right)$ edges.

Proof (outline). Let G be a graph on n vertices, and assume that G does not contain C_{4} as a subgraph. Clearly, we may assume that G has no isolated vertices. Let d_{1}, \ldots, d_{n} be the degrees of the vertices of G; since G is has no isolated veetices, we see that $d_{1}, \ldots, d_{n} \geq 1$.

Theorem 2.1

Let $n \in \mathbb{N}$. Any graph on n vertices that does not contain C_{4} as a subgraph has at most $\frac{1}{2}\left(n+n^{3 / 2}\right)$ edges.

Proof (outline). Let G be a graph on n vertices, and assume that G does not contain C_{4} as a subgraph. Clearly, we may assume that G has no isolated vertices. Let d_{1}, \ldots, d_{n} be the degrees of the vertices of G; since G is has no isolated veetices, we see that $d_{1}, \ldots, d_{n} \geq 1$.
Let $M=\left\{(v, A) \mid v \in V(G), A \in\binom{N_{G}(v)}{2}\right\}$.

$$
N_{G}(v)
$$

Now, we will count the number of elements of M in two ways.

Theorem 2.1

Let $n \in \mathbb{N}$. Any graph on n vertices that does not contain C_{4} as a subgraph has at most $\frac{1}{2}\left(n+n^{3 / 2}\right)$ edges.

Proof (outline, continued). Reminder:
$M=\left\{(v, A) \mid v \in V(G), A \in\binom{N_{G}(v)}{2}\right\}$.

Theorem 2.1

Let $n \in \mathbb{N}$. Any graph on n vertices that does not contain C_{4} as a subgraph has at most $\frac{1}{2}\left(n+n^{3 / 2}\right)$ edges.

Proof (outline, continued). Reminder:
$M=\left\{(v, A) \mid v \in V(G), A \in\binom{N_{G}(v)}{2}\right\}$.
First, for each $v \in V(G)$, there are precisely $\binom{d_{G}(v)}{2}$ choices of A
such that $(v, A) \in M$. So, $|M|=\sum_{v \in V(G)}\binom{d_{G}(v)}{2}=\sum_{i=1}^{n}\binom{d_{i}}{2}$.

Theorem 2.1

Let $n \in \mathbb{N}$. Any graph on n vertices that does not contain C_{4} as a subgraph has at most $\frac{1}{2}\left(n+n^{3 / 2}\right)$ edges.

Proof (outline, continued). Reminder:
$M=\left\{(v, A) \mid v \in V(G), A \in\binom{N_{G}(v)}{2}\right\} ;$
$|M|=\sum_{v \in V(G)}\binom{d_{G}(v)}{2}=\sum_{i=1}^{n}\binom{d_{i}}{2}$.

Theorem 2.1

Let $n \in \mathbb{N}$. Any graph on n vertices that does not contain C_{4} as a subgraph has at most $\frac{1}{2}\left(n+n^{3 / 2}\right)$ edges.

Proof (outline, continued). Reminder:

$$
M=\left\{(v, A) \mid v \in V(G), A \in\binom{N_{G}(v)}{2}\right\} ;
$$

$$
|M|=\sum_{v \in V(G)}\binom{d_{G}(v)}{2}=\sum_{i=1}^{n}\binom{d_{i}}{2} .
$$

We now bound $|M|$ above, as follows. Since G contains no C_{4} as a subgraph, we see that no two distinct elements of M have the same second coordinate. So, $|M| \leq\binom{ n}{2}$.

Theorem 2.1

Let $n \in \mathbb{N}$. Any graph on n vertices that does not contain C_{4} as a subgraph has at most $\frac{1}{2}\left(n+n^{3 / 2}\right)$ edges.

Proof (outline, continued). Reminder:
$M=\left\{(v, A) \mid v \in V(G), A \in\binom{N_{G}(v)}{2}\right\} ;$
$|M|=\sum_{v \in V(G)}\binom{d_{G}(v)}{2}=\sum_{i=1}^{n}\binom{d_{i}}{2}$.
We now bound $|M|$ above, as follows. Since G contains no C_{4} as a subgraph, we see that no two distinct elements of M have the same second coordinate. So, $|M| \leq\binom{ n}{2}$.

It follows that $\sum_{i=1}^{n}\binom{d_{i}}{2} \leq\binom{ n}{2}$.

Theorem 2.1

Let $n \in \mathbb{N}$. Any graph on n vertices that does not contain C_{4} as a subgraph has at most $\frac{1}{2}\left(n+n^{3 / 2}\right)$ edges.

Proof (outline, continued). Reminder: $\sum_{i=1}^{n}\binom{d_{i}}{2} \leq\binom{ n}{2}$.

Theorem 2.1

Let $n \in \mathbb{N}$. Any graph on n vertices that does not contain C_{4} as a subgraph has at most $\frac{1}{2}\left(n+n^{3 / 2}\right)$ edges.

Proof (outline, continued). Reminder: $\sum_{i=1}^{n}\binom{d_{i}}{2} \leq\binom{ n}{2}$.
Obviously, $\binom{n}{2} \leq \frac{n^{2}}{2}$, and since $d_{1}, \ldots, d_{n} \geq 1$, we see that $\binom{d_{i}}{2} \geq \frac{\left(d_{i}-1\right)^{2}}{2}$ for all $i \in\{1, \ldots, n\}$; consequently,

$$
\sum_{i=1}^{n} \frac{\left(d_{i}-1\right)^{2}}{2} \leq \sum_{i=1}^{n}\binom{d_{i}}{2} \leq\binom{ n}{2} \leq \frac{n^{2}}{2}
$$

and it follows that

$$
\sum_{i=1}^{n}\left(d_{i}-1\right)^{2} \leq n^{2}
$$

- Cauchy-Schwarz: $\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)$.

Theorem 2.1

Let $n \in \mathbb{N}$. Any graph on n vertices that does not contain C_{4} as a subgraph has at most $\frac{1}{2}\left(n+n^{3 / 2}\right)$ edges.

Proof (outline, continued). Reminder: $\sum_{i=1}^{n}\left(d_{i}-1\right)^{2} \leq n^{2}$.

- Cauchy-Schwarz: $\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)$.

Theorem 2.1

Let $n \in \mathbb{N}$. Any graph on n vertices that does not contain C_{4} as a subgraph has at most $\frac{1}{2}\left(n+n^{3 / 2}\right)$ edges.

Proof (outline, continued). Reminder: $\sum_{i=1}^{n}\left(d_{i}-1\right)^{2} \leq n^{2}$.

$$
\begin{array}{rlr}
\sum_{i=1}^{n}\left(d_{i}-1\right) & =\sum_{i=1}^{n}\left(d_{i}-1\right) \cdot 1 & \\
& \leq \sqrt{\sum_{i=1}^{n}\left(d_{i}-1\right)^{2}} \sqrt{\sum_{i=1}^{n} 1^{2}} \quad \text { by C-S } \leq \\
& =\sqrt{\sum_{i=1}^{n}\left(d_{i}-1\right)^{2} \sqrt{n}} & \\
& \leq \sqrt{n^{2}} \sqrt{n} & \\
& =n^{3 / 2} & \text { because } \sum_{i=1}^{n}\left(d_{i}-1\right)^{2} \leq n^{2}
\end{array}
$$

Theorem 2.1

Let $n \in \mathbb{N}$. Any graph on n vertices that does not contain C_{4} as a subgraph has at most $\frac{1}{2}\left(n+n^{3 / 2}\right)$ edges.

Proof (outline, continued). Reminder: $\sum_{i=1}^{n}\left(d_{i}-1\right) \leq n^{3 / 2}$.

Theorem 2.1

Let $n \in \mathbb{N}$. Any graph on n vertices that does not contain C_{4} as a subgraph has at most $\frac{1}{2}\left(n+n^{3 / 2}\right)$ edges.

Proof (outline, continued). Reminder: $\sum_{i=1}^{n}\left(d_{i}-1\right) \leq n^{3 / 2}$.
It now follows that

$$
|E(G)|=\frac{1}{2} \sum_{i=1}^{n} d_{i}=\frac{1}{2}\left(n+\sum_{i=1}^{n}\left(d_{i}-1\right)\right) \leq \frac{1}{2}\left(n+n^{3 / 2}\right)
$$

which is what we needed to show.

