NDMI011: Combinatorics and Graph Theory 1

Lecture \#12
 Bounding the number of edges in graphs without certain subgraphs

Irena Penev

1 Graphs without K_{3} as a subgraph

A graph is said to be triangle-free if it does not contain K_{3} as a subgraph. Equivalently, a graph G is triangle-free if $\omega(G) \leq 2$.

The following theorem is a special case of "Turán's theorem."
Theorem 1.1. Let n be a positive integer. Then
(a) any triangle-free graph on n vertices has at most $\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{n^{2}}{4}\right\rfloor$ edges;
(b) there exists a triangle-free graph on n vertices that has precisely $\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil=$ $\left\lfloor\frac{n^{2}}{4}\right\rfloor$ edges.

Proof. First, let us check that $\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{n^{2}}{4}\right\rfloor$. If n is even, then this is obvious. If n is odd, then there exists a non-negative integer k such that $n=2 k+1$, and we compute

$$
\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{2 k+1}{2}\right\rfloor\left\lceil\frac{2 k+1}{2}\right\rceil=k(k+1)=k^{2}+k
$$

and

$$
\left\lfloor\frac{n^{2}}{4}\right\rfloor=\left\lfloor\frac{(2 k+1)^{2}}{4}\right\rfloor=\left\lfloor\frac{4 k^{2}+4 k+1}{4}\right\rfloor=k^{2}+k \text {, }
$$

and we deduce that $\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{n^{2}}{4}\right\rfloor$.
For (b), we observe that the complete bipartite graph $K_{\lfloor n / 2\rfloor,\lceil n / 2\rceil}$ is triangle-free ${ }^{1}$ and has precisely n vertices and $\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$ edges.

It remains to prove (a). We assume inductively that the claim holds for graphs on fewer than n vertices, i.e. that for all positive integers $\widetilde{n}<n$, any triangle-free graph on \widetilde{n} vertices has at most $\left\lfloor\frac{\widetilde{n}^{2}}{4}\right\rfloor$ edges. It is clear that the

[^0]theorem holds for $n=1$ and $n=2$. So, we assume that $n \geq 3$, we fix a triangle-free graph G on n vertices, and we show that G has at most $\left\lfloor\frac{n^{2}}{4}\right\rfloor$ edges. If G has no edges, then this is obvious. So assume that G has at least one edge, say $u v$. Then $G \backslash\{u, v\}$ is triangle-free and has $n-2$ vertices, and so by the induction hypothesis, it has at most $\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor$ edges. Further, since G is triangle-free, a vertex in $V(G) \backslash\{u, v\}$ can be adjacent to at most one of u, v, and so the number of edges between $\{u, v\}$ and $V(G) \backslash\{u, v\}$ is at most $|V(G) \backslash\{u, v\}|=n-2$. Since the edges of G are precisely the edges of $G \backslash\{u, v\}$, plus the edges between $\{u, v\}$ and $V(G) \backslash\{u, v\}$, plus the edge $u v$, we see that
\[

$$
\begin{aligned}
|E(G)| & \leq\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor+(n-2)+1 \\
& =\left\lfloor\frac{n^{2}-4 n+4}{4}\right\rfloor+n-1 \\
& =\left\lfloor\frac{n^{2}}{4}\right\rfloor
\end{aligned}
$$
\]

which is what we needed to show.

2 Graphs without C_{4} as a subgraph

In what follows, we will use the Cauchy-Schwarz inequality (below).
The Cauchy-Schwarz inequality. All real numbers $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ satisfy

$$
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right) .
$$

An isolated vertex is a vertex that has no neighbors.
Theorem 2.1. Let $n \in \mathbb{N}$. Any graph on n vertices that does not contain C_{4} as a subgraph has at most $\frac{1}{2}\left(n+n^{3 / 2}\right)$ edges.

Proof. Let G be a graph on n vertices, and assume that G does not contain C_{4} as a subgraph. Clearly, we may assume that G has no isolated vertices. ${ }^{2}$ Let d_{1}, \ldots, d_{n} be the degrees of the vertices of $G ;{ }^{3}$ since G is has no isolated veetices, we see that $d_{1}, \ldots, d_{n} \geq 1$.

Let $M=\left\{(v, A) \mid v \in V(G), A \in\binom{N_{G}(v)}{2}\right\} .{ }^{4}$ Now, we will count the number of elements of M in two ways.

[^1]First, for each $v \in V(G)$, there are precisely $\binom{d_{G}(v)}{2}$ choices of A such that $(v, A) \in M$. So, $|M|=\sum_{v \in V(G)}\binom{d_{G}(v)}{2}=\sum_{i=1}^{n}\binom{d_{i}}{2}$.

We now bound $|M|$ above, as follows. Note that the second coordinate of any element of M is simply an element of $\binom{V(G)}{2}$; since $|V(G)|=n$, there are at most $\binom{n}{2}$ choices for the second coordinate of an element of M. On the other hand, since G contains no C_{4} as a subgraph, we see that no two distinct elements of M have the same second coordinate. Indeed, suppose that $\left(v_{1}, A\right)$ and $\left(v_{2}, A\right)$ are distinct elements of M; we then set $A=\left\{u_{1}, u_{2}\right\}$, we and observe that $v_{1}, u_{1}, v_{2}, u_{2}, v_{1}$ is a (not necessarily induced) C_{4} in G, a contradiction. So, $|M| \leq\binom{ n}{2}$.

We now have that

$$
\sum_{i=1}^{n}\binom{d_{i}}{2} \leq\binom{ n}{2}
$$

Obviously, $\binom{n}{2} \leq \frac{n^{2}}{2}$, and since $d_{1}, \ldots, d_{n} \geq 1$, we see that $\binom{d_{i}}{2} \geq \frac{\left(d_{i}-1\right)^{2}}{2}$ for all $i \in\{1, \ldots, n\}$; consequently,

$$
\sum_{i=1}^{n} \frac{\left(d_{i}-1\right)^{2}}{2} \leq \sum_{i=1}^{n}\binom{d_{i}}{2} \leq\binom{ n}{2} \leq \frac{n^{2}}{2}
$$

and it follows that

$$
\sum_{i=1}^{n}\left(d_{i}-1\right)^{2} \leq n^{2}
$$

We now compute:

$$
\begin{array}{rlr}
\sum_{i=1}^{n}\left(d_{i}-1\right) & =\sum_{i=1}^{n}\left(d_{i}-1\right) \cdot 1 & \\
& \leq \sqrt{\sum_{i=1}^{n}\left(d_{i}-1\right)^{2}} \sqrt{\sum_{i=1}^{n} 1^{2}} \quad & \text { by the Cauchy-Schwarz } \\
\text { inequality }
\end{array} \quad \begin{aligned}
& \text { (} \\
& \\
&
\end{aligned}
$$

It now follows that

$$
|E(G)|=\frac{1}{2} \sum_{i=1}^{n} d_{i}=\frac{1}{2}\left(n+\sum_{i=1}^{n}\left(d_{i}-1\right)\right) \leq \frac{1}{2}\left(n+n^{3 / 2}\right)
$$

which is what we needed to show.

[^0]: ${ }^{1}$ Indeed, all bipartite graphs are triangle free.

[^1]: ${ }^{2}$ Why?
 ${ }^{3}$ The d_{i} 's are not necessarily distinct; d_{i} is the degree of the i-th vertex of G.
 ${ }^{4}$ In other words, M is the set of all ordered pairs $\left(v,\left\{u_{1}, u_{2}\right\}\right)$ such that $v \in V(G)$, and $u_{1}, u_{2} \in V(G)$ are two distinct neighbors of v. Note also that $\left(v,\left\{u_{1}, u_{2}\right\}\right) \in M$ if and only if u_{1}, v, u_{2} is a (not necessarily) induced two-edge path of G. So, $|M|$ is in fact the number of (not necessarily induced) two-edge paths in G.

