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Lecture #12

Bounding the number of edges in graphs without

certain subgraphs

Irena Penev

1 Graphs without K3 as a subgraph

A graph is said to be triangle-free if it does not contain K3 as a subgraph.
Equivalently, a graph G is triangle-free if ω(G) ≤ 2.

The following theorem is a special case of “Turán’s theorem.”

Theorem 1.1. Let n be a positive integer. Then

(a) any triangle-free graph on n vertices has at most bn2 cd
n
2 e = bn2

4 c edges;

(b) there exists a triangle-free graph on n vertices that has precisely bn2 cd
n
2 e =

bn2

4 c edges.

Proof. First, let us check that bn2 cd
n
2 e = bn2

4 c. If n is even, then this is
obvious. If n is odd, then there exists a non-negative integer k such that
n = 2k + 1, and we compute

bn2 cd
n
2 e = b2k+1

2 cd
2k+1
2 e = k(k + 1) = k2 + k

and

bn2

4 c = b (2k+1)2

4 c = b4k2+4k+1
4 c = k2 + k,

and we deduce that bn2 cd
n
2 e = bn2

4 c.
For (b), we observe that the complete bipartite graph Kbn/2c,dn/2e is

triangle-free1 and has precisely n vertices and bn2 cd
n
2 e edges.

It remains to prove (a). We assume inductively that the claim holds for
graphs on fewer than n vertices, i.e. that for all positive integers ñ < n, any
triangle-free graph on ñ vertices has at most b ñ2

4 c edges. It is clear that the

1Indeed, all bipartite graphs are triangle free.
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theorem holds for n = 1 and n = 2. So, we assume that n ≥ 3, we fix a
triangle-free graph G on n vertices, and we show that G has at most bn2

4 c
edges. If G has no edges, then this is obvious. So assume that G has at least
one edge, say uv. Then G \ {u, v} is triangle-free and has n− 2 vertices, and

so by the induction hypothesis, it has at most b (n−2)
2

4 c edges. Further, since
G is triangle-free, a vertex in V (G) \ {u, v} can be adjacent to at most one
of u, v, and so the number of edges between {u, v} and V (G) \ {u, v} is at
most |V (G) \ {u, v}| = n− 2. Since the edges of G are precisely the edges of
G \ {u, v}, plus the edges between {u, v} and V (G) \ {u, v}, plus the edge
uv, we see that

|E(G)| ≤ b (n−2)
2

4 c+ (n− 2) + 1

= bn2−4n+4
4 c+ n− 1

= bn2

4 c,

which is what we needed to show.

2 Graphs without C4 as a subgraph

In what follows, we will use the Cauchy-Schwarz inequality (below).

The Cauchy-Schwarz inequality. All real numbers a1, . . . , an, b1, . . . , bn
satisfy ( n∑

i=1
aibi

)2
≤

( n∑
i=1

a2i

)( n∑
i=1

b2i

)
.

An isolated vertex is a vertex that has no neighbors.

Theorem 2.1. Let n ∈ N. Any graph on n vertices that does not contain
C4 as a subgraph has at most 1

2(n + n3/2) edges.

Proof. Let G be a graph on n vertices, and assume that G does not contain
C4 as a subgraph. Clearly, we may assume that G has no isolated vertices.2

Let d1, . . . , dn be the degrees of the vertices of G;3 since G is has no isolated
veetices, we see that d1, . . . , dn ≥ 1.

Let M = {(v,A) | v ∈ V (G), A ∈
(
NG(v)

2

)
}.4 Now, we will count the

number of elements of M in two ways.

2Why?
3The di’s are not necessarily distinct; di is the degree of the i-th vertex of G.
4In other words, M is the set of all ordered pairs (v, {u1, u2}) such that v ∈ V (G), and

u1, u2 ∈ V (G) are two distinct neighbors of v. Note also that (v, {u1, u2}) ∈ M if and only
if u1, v, u2 is a (not necessarily) induced two-edge path of G. So, |M | is in fact the number
of (not necessarily induced) two-edge paths in G.
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First, for each v ∈ V (G), there are precisely
(
dG(v)

2

)
choices of A such

that (v,A) ∈M . So, |M | =
∑

v∈V (G)

(
dG(v)

2

)
=

n∑
i=1

(
di
2

)
.

We now bound |M | above, as follows. Note that the second coordinate
of any element of M is simply an element of

(
V (G)
2

)
; since |V (G)| = n, there

are at most
(
n
2

)
choices for the second coordinate of an element of M . On

the other hand, since G contains no C4 as a subgraph, we see that no two
distinct elements of M have the same second coordinate. Indeed, suppose
that (v1, A) and (v2, A) are distinct elements of M ; we then set A = {u1, u2},
we and observe that v1, u1, v2, u2, v1 is a (not necessarily induced) C4 in G,
a contradiction. So, |M | ≤

(
n
2

)
.

We now have that
n∑

i=1

(
di
2

)
≤

(
n
2

)
.

Obviously,
(
n
2

)
≤ n2

2 , and since d1, . . . , dn ≥ 1, we see that
(
di
2

)
≥ (di−1)2

2 for
all i ∈ {1, . . . , n}; consequently,

n∑
i=1

(di−1)2
2 ≤

n∑
i=1

(
di
2

)
≤

(
n
2

)
≤ n2

2 ,

and it follows that
n∑

i=1
(di − 1)2 ≤ n2.

We now compute:

n∑
i=1

(di − 1) =
n∑

i=1
(di − 1) · 1

≤
√

n∑
i=1

(di − 1)2

√
n∑

i=1
12 by the Cauchy-Schwarz

inequality

=

√
n∑

i=1
(di − 1)2

√
n

≤
√
n2
√
n because

n∑
i=1

(di − 1)2 ≤ n2

= n3/2.

It now follows that

|E(G)| = 1
2

n∑
i=1

di = 1
2

(
n +

n∑
i=1

(di − 1)
)
≤ 1

2(n + n3/2),

which is what we needed to show.
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