NDMI011: Combinatorics and Graph Theory 1

Lecture #12Bounding the number of edges in graphs without certain subgraphs

Irena Penev

Graphs without K_3 as a subgraph 1

A graph is said to be *triangle-free* if it does not contain K_3 as a subgraph. Equivalently, a graph G is triangle-free if $\omega(G) \leq 2$.

The following theorem is a special case of "Turán's theorem."

Theorem 1.1. Let n be a positive integer. Then

- (a) any triangle-free graph on n vertices has at most $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$ edges;
- (b) there exists a triangle-free graph on n vertices that has precisely $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil =$ $\lfloor \frac{n^2}{4} \rfloor$ edges.

Proof. First, let us check that $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$. If n is even, then this is obvious. If n is odd, then there exists a non-negative integer k such that n = 2k + 1, and we compute

$$\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{2k+1}{2} \rfloor \lceil \frac{2k+1}{2} \rceil = k(k+1) = k^2 + k$$

and

$$\lfloor \frac{n^2}{4} \rfloor = \lfloor \frac{(2k+1)^2}{4} \rfloor = \lfloor \frac{4k^2+4k+1}{4} \rfloor = k^2+k,$$

and we deduce that $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$. For (b), we observe that the complete bipartite graph $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$ is triangle-free¹ and has precisely *n* vertices and $\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$ edges.

It remains to prove (a). We assume inductively that the claim holds for graphs on fewer than n vertices, i.e. that for all positive integers $\tilde{n} < n$, any triangle-free graph on \tilde{n} vertices has at most $\lfloor \frac{\tilde{n}^2}{4} \rfloor$ edges. It is clear that the

¹Indeed, all bipartite graphs are triangle free.

theorem holds for n = 1 and n = 2. So, we assume that $n \ge 3$, we fix a triangle-free graph G on n vertices, and we show that G has at most $\lfloor \frac{n^2}{4} \rfloor$ edges. If G has no edges, then this is obvious. So assume that G has at least one edge, say uv. Then $G \setminus \{u, v\}$ is triangle-free and has n - 2 vertices, and so by the induction hypothesis, it has at most $\lfloor \frac{(n-2)^2}{4} \rfloor$ edges. Further, since G is triangle-free, a vertex in $V(G) \setminus \{u, v\}$ can be adjacent to at most one of u, v, and so the number of edges between $\{u, v\}$ and $V(G) \setminus \{u, v\}$ is at most $|V(G) \setminus \{u, v\}| = n - 2$. Since the edges of G are precisely the edges of $G \setminus \{u, v\}$, plus the edges between $\{u, v\}$ and $V(G) \setminus \{u, v\}$, plus the edge uv, we see that

$$\begin{aligned} |E(G)| &\leq \left\lfloor \frac{(n-2)^2}{4} \right\rfloor + (n-2) + 1 \\ &= \left\lfloor \frac{n^2 - 4n + 4}{4} \right\rfloor + n - 1 \\ &= \left\lfloor \frac{n^2}{4} \right\rfloor, \end{aligned}$$

which is what we needed to show.

2 Graphs without C_4 as a subgraph

In what follows, we will use the Cauchy-Schwarz inequality (below).

The Cauchy-Schwarz inequality. All real numbers $a_1, \ldots, a_n, b_1, \ldots, b_n$ satisfy

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \leq \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right).$$

An *isolated vertex* is a vertex that has no neighbors.

Theorem 2.1. Let $n \in \mathbb{N}$. Any graph on n vertices that does not contain C_4 as a subgraph has at most $\frac{1}{2}(n+n^{3/2})$ edges.

Proof. Let G be a graph on n vertices, and assume that G does not contain C_4 as a subgraph. Clearly, we may assume that G has no isolated vertices.² Let d_1, \ldots, d_n be the degrees of the vertices of G^{3} ; since G is has no isolated veetices, we see that $d_1, \ldots, d_n \ge 1$.

Let $M = \{(v, A) \mid v \in V(G), A \in \binom{N_G(v)}{2}\}$.⁴ Now, we will count the number of elements of M in two ways.

 $^{^{2}}$ Why?

³The d_i 's are not necessarily distinct; d_i is the degree of the *i*-th vertex of G.

⁴In other words, M is the set of all ordered pairs $(v, \{u_1, u_2\})$ such that $v \in V(G)$, and $u_1, u_2 \in V(G)$ are two distinct neighbors of v. Note also that $(v, \{u_1, u_2\}) \in M$ if and only if u_1, v, u_2 is a (not necessarily) induced two-edge path of G. So, |M| is in fact the number of (not necessarily induced) two-edge paths in G.

First, for each $v \in V(G)$, there are precisely $\binom{d_G(v)}{2}$ choices of A such that $(v, A) \in M$. So, $|M| = \sum_{v \in V(G)} \binom{d_G(v)}{2} = \sum_{i=1}^n \binom{d_i}{2}$.

We now bound |M| above, as follows. Note that the second coordinate of any element of M is simply an element of $\binom{V(G)}{2}$; since |V(G)| = n, there are at most $\binom{n}{2}$ choices for the second coordinate of an element of M. On the other hand, since G contains no C_4 as a subgraph, we see that no two distinct elements of M have the same second coordinate. Indeed, suppose that (v_1, A) and (v_2, A) are distinct elements of M; we then set $A = \{u_1, u_2\}$, we and observe that v_1, u_1, v_2, u_2, v_1 is a (not necessarily induced) C_4 in G, a contradiction. So, $|M| \leq \binom{n}{2}$.

We now have that

$$\sum_{i=1}^{n} \binom{d_i}{2} \leq \binom{n}{2}.$$

Obviously, $\binom{n}{2} \leq \frac{n^2}{2}$, and since $d_1, \ldots, d_n \geq 1$, we see that $\binom{d_i}{2} \geq \frac{(d_i-1)^2}{2}$ for all $i \in \{1, \ldots, n\}$; consequently,

$$\sum_{i=1}^{n} \frac{(d_i-1)^2}{2} \le \sum_{i=1}^{n} {d_i \choose 2} \le {n \choose 2} \le \frac{n^2}{2},$$

and it follows that

$$\sum_{i=1}^{n} (d_i - 1)^2 \le n^2.$$

We now compute:

$$\sum_{i=1}^{n} (d_i - 1) = \sum_{i=1}^{n} (d_i - 1) \cdot 1$$

$$\leq \sqrt{\sum_{i=1}^{n} (d_i - 1)^2} \sqrt{\sum_{i=1}^{n} 1^2} \quad \text{by the Cauchy-Schwarz}$$
inequality

$$= \sqrt{\sum_{i=1}^{n} (d_i - 1)^2} \sqrt{n}$$

$$\leq \sqrt{n^2} \sqrt{n} \qquad \text{because } \sum_{i=1}^{n} (d_i - 1)^2 \leq n^2$$

$$= n^{3/2}.$$

It now follows that

$$|E(G)| = \frac{1}{2} \sum_{i=1}^{n} d_i = \frac{1}{2} \left(n + \sum_{i=1}^{n} (d_i - 1) \right) \leq \frac{1}{2} (n + n^{3/2}),$$

which is what we needed to show.

L				
L				
Ļ	-	-	-	ł