NDMI011: Combinatorics and Graph Theory 1

Lecture \#11

Ramsey theory and Kőnig's infinity lemma

Irena Penev

December 21, 2020

- Reminder: For positive integers k and $\ell, R(k, \ell)$ the smallest $N \in \mathbb{N}$ such that every graph G on at least N vertices satisfies either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.
- Reminder: For positive integers k and $\ell, R(k, \ell)$ the smallest $N \in \mathbb{N}$ such that every graph G on at least N vertices satisfies either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.
- Numbers $R(k, \ell)$ (with $k, \ell \in \mathbb{N}$) are called Ramsey numbers, and we proved that they exist in Lecture Notes 10.
- Reminder: For positive integers k and $\ell, R(k, \ell)$ the smallest $N \in \mathbb{N}$ such that every graph G on at least N vertices satisfies either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.
- Numbers $R(k, \ell)$ (with $k, \ell \in \mathbb{N}$) are called Ramsey numbers, and we proved that they exist in Lecture Notes 10.
- There's another way to think about Ramsey numbers!
- Any graph G corresponds to a complete graph on the same vertex set, and whose edges are colored black or white, with an edge colored black if it was an edge of the graph G, and colored white otherwise.

- Any graph G corresponds to a complete graph on the same vertex set, and whose edges are colored black or white, with an edge colored black if it was an edge of the graph G, and colored white otherwise.

- Now $R(k, \ell)$ (with $k, \ell \in \mathbb{N}$) is the smallest $N \in \mathbb{N}$ such that any complete graph on at least N vertices, and whose edges are colored black or white, has either a monochromatic black complete subgraph of size k, or a monochromatic white complete subgraph of size ℓ.
- Any graph G corresponds to a complete graph on the same vertex set, and whose edges are colored black or white, with an edge colored black if it was an edge of the graph G, and colored white otherwise.

- Now $R(k, \ell)$ (with $k, \ell \in \mathbb{N}$) is the smallest $N \in \mathbb{N}$ such that any complete graph on at least N vertices, and whose edges are colored black or white, has either a monochromatic black complete subgraph of size k, or a monochromatic white complete subgraph of size ℓ.
- If instead of black and white, we use colors 1 and 2 , then a coloring of the complete graph on vertex set X is simply a function $c:\binom{X}{2} \rightarrow[2]$.
- $\binom{X}{p}$ is the set of all p-element subsets of X.
- So, $R(k, \ell)$ (with $k, \ell \in \mathbb{N}$) is the smallest $N \in \mathbb{N}$ such that for all finite sets X with $|X| \geq N$, and all colorings $c:\binom{X}{2} \rightarrow$ [2], either there exists a set $A_{1} \in\binom{X}{k}$ such that c assigns color 1 to each set in $\binom{A_{1}}{2}$, or there exists a set $A_{2} \in\binom{X}{\ell}$ such that c assigns color 2 to each set in $\binom{A_{2}}{2}$.
- So, $R(k, \ell)$ (with $k, \ell \in \mathbb{N}$) is the smallest $N \in \mathbb{N}$ such that for all finite sets X with $|X| \geq N$, and all colorings $c:\binom{X}{2} \rightarrow$ [2], either there exists a set $A_{1} \in\binom{X}{k}$ such that c assigns color 1 to each set in $\binom{A_{1}}{2}$, or there exists a set $A_{2} \in\binom{X}{\ell}$ such that c assigns color 2 to each set in $\binom{A_{2}}{2}$.
- This can be generalized!

Definition

A hypergraph is an ordered pair $H=(V(H), E(H))$, where $V(H)$ is some non-empty finite set, and $E(H) \subseteq \mathscr{P}(V(H)) \backslash\{\emptyset\}$. Members of $V(H)$ are called vertices and members of $E(H)$ are called edges of the hypergraph H.

Definition

A hypergraph is an ordered pair $H=(V(H), E(H))$, where $V(H)$ is some non-empty finite set, and $E(H) \subseteq \mathscr{P}(V(H)) \backslash\{\emptyset\}$. Members of $V(H)$ are called vertices and members of $E(H)$ are called edges of the hypergraph H.

Definition

For a positive integer p, a hypergraph is p-uniform if all its edges have precisely p vertices. A hypergraph is uniform if it is p-uniform for some p.

Definition

A hypergraph is an ordered pair $H=(V(H), E(H))$, where $V(H)$ is some non-empty finite set, and $E(H) \subseteq \mathscr{P}(V(H)) \backslash\{\emptyset\}$. Members of $V(H)$ are called vertices and members of $E(H)$ are called edges of the hypergraph H.

Definition

For a positive integer p, a hypergraph is p-uniform if all its edges have precisely p vertices. A hypergraph is uniform if it is p-uniform for some p.

- So, if H is a p-uniform hypergraph, then $E(H) \subseteq\binom{V(H)}{p}$.

Definition

A hypergraph is an ordered pair $H=(V(H), E(H))$, where $V(H)$ is some non-empty finite set, and $E(H) \subseteq \mathscr{P}(V(H)) \backslash\{\emptyset\}$. Members of $V(H)$ are called vertices and members of $E(H)$ are called edges of the hypergraph H.

Definition

For a positive integer p, a hypergraph is p-uniform if all its edges have precisely p vertices. A hypergraph is uniform if it is p-uniform for some p.

- So, if H is a p-uniform hypergraph, then $E(H) \subseteq\binom{V(H)}{p}$.
- A graph is simply a 2-uniform hypergraph.

Definition

Given $p, t, k_{1}, \ldots, k_{t} \in \mathbb{N}$, the Ramsey number $R^{p}\left(k_{1}, \ldots, k_{t}\right)$ is the smallest $N \in \mathbb{N}$ (if it exists) such that for all finite sets X with $|X| \geq N$, and all colorings (i.e. functions) $c:\binom{X}{p} \rightarrow[t]$, ${ }^{a}$ there exist an index $i \in[t]$ and a set $A_{i} \in\binom{X}{k_{i}}$ such that c assigns color i to each element of $\binom{A_{i}}{p}$.

[^0]
Definition

Given $p, t, k_{1}, \ldots, k_{t} \in \mathbb{N}$, the Ramsey number $R^{p}\left(k_{1}, \ldots, k_{t}\right)$ is the smallest $N \in \mathbb{N}$ (if it exists) such that for all finite sets X with $|X| \geq N$, and all colorings (i.e. functions) $c:\binom{X}{p} \rightarrow[t]$, ${ }^{a}$ there exist an index $i \in[t]$ and a set $A_{i} \in\binom{X}{k_{i}}$ such that c assigns color i to each element of $\binom{A_{i}}{p}$.

[^1]- With this set-up, we have that $R(k, \ell)=R^{2}(k, \ell)$.

Definition

Given $p, t, k_{1}, \ldots, k_{t} \in \mathbb{N}$, the Ramsey number $R^{p}\left(k_{1}, \ldots, k_{t}\right)$ is the smallest $N \in \mathbb{N}$ (if it exists) such that for all finite sets X with $|X| \geq N$, and all colorings (i.e. functions) $c:\binom{X}{p} \rightarrow[t]$, ${ }^{a}$ there exist an index $i \in[t]$ and a set $A_{i} \in\binom{X}{k_{i}}$ such that c assigns color i to each element of $\binom{A_{i}}{p}$.

[^2]- With this set-up, we have that $R(k, \ell)=R^{2}(k, \ell)$.

Ramsey's theorem (hypergraph version)

For all $p, t, k_{1}, \ldots, k_{t} \in \mathbb{N}$, the number $R^{p}\left(k_{1}, \ldots, k_{t}\right)$ exists.

Ramsey's theorem (hypergraph version)
For all $p, t, k_{1}, \ldots, k_{t} \in \mathbb{N}$, the number $R^{p}\left(k_{1}, \ldots, k_{t}\right)$ exists.

- In the Lecture Notes, we give two different proofs of the theorem above.

Ramsey's theorem (hypergraph version)

For all $p, t, k_{1}, \ldots, k_{t} \in \mathbb{N}$, the number $R^{p}\left(k_{1}, \ldots, k_{t}\right)$ exists.

- In the Lecture Notes, we give two different proofs of the theorem above.
- One proof is a generalization of the proof of existence of the numbers $R(k, \ell)$ from Lecture Notes 10 .

Ramsey's theorem (hypergraph version)

For all $p, t, k_{1}, \ldots, k_{t} \in \mathbb{N}$, the number $R^{p}\left(k_{1}, \ldots, k_{t}\right)$ exists.

- In the Lecture Notes, we give two different proofs of the theorem above.
- One proof is a generalization of the proof of existence of the numbers $R(k, \ell)$ from Lecture Notes 10 .
- The other one uses the infinite version of Ramsey's theorem.

Ramsey's theorem (hypergraph version)

For all $p, t, k_{1}, \ldots, k_{t} \in \mathbb{N}$, the number $R^{p}\left(k_{1}, \ldots, k_{t}\right)$ exists.

- In the Lecture Notes, we give two different proofs of the theorem above.
- One proof is a generalization of the proof of existence of the numbers $R(k, \ell)$ from Lecture Notes 10 .
- The other one uses the infinite version of Ramsey's theorem.
- Here, we will present only the second proof.

Ramsey's theorem (hypergraph version)

For all $p, t, k_{1}, \ldots, k_{t} \in \mathbb{N}$, the number $R^{p}\left(k_{1}, \ldots, k_{t}\right)$ exists.

- In the Lecture Notes, we give two different proofs of the theorem above.
- One proof is a generalization of the proof of existence of the numbers $R(k, \ell)$ from Lecture Notes 10 .
- The other one uses the infinite version of Ramsey's theorem.
- Here, we will present only the second proof.
- But first, let's look at a geometric application!

Definition

A set X of points in the plane is convex if for all distinct $x_{1}, x_{2} \in X$, the line segment between x_{1} and x_{2} lies in X. The convex hull of a non-empty set S of points in the plane is the smallest convex set in the plane that includes S.

convex

non-convex

- If S is a finite set of points in the plane containing at least three non-collinear points, then the convex hull of S is a convex polygon (with its interior), and the vertices of this polygon are all in S.

- If S is a finite set of points in the plane containing at least three non-collinear points, then the convex hull of S is a convex polygon (with its interior), and the vertices of this polygon are all in S.

Definition

(Pairwise distinct) points $x_{1}, \ldots, x_{t}(t \geq 3)$ in the plane are in convex position if they are the vertices of some convex polygon.

- If S is a finite set of points in the plane containing at least three non-collinear points, then the convex hull of S is a convex polygon (with its interior), and the vertices of this polygon are all in S.

Definition

(Pairwise distinct) points $x_{1}, \ldots, x_{t}(t \geq 3)$ in the plane are in convex position if they are the vertices of some convex polygon.

- Equivalently, (pairwise distinct) points $x_{1}, \ldots, x_{t}(t \geq 3)$ in the plane are in convex position if their convex hull is a convex t-gon whose vertices are precisely x_{1}, \ldots, x_{t} (not necessarily in that order).

Lemma 1.1
Any set of five points in the plane, no three of which are collinear, contains four points in convex position.

Proof (outline).

Lemma 1.1

Any set of five points in the plane, no three of which are collinear, contains four points in convex position.

Proof (outline). Let a_{1}, \ldots, a_{5} be five point in the plane, no three of which are collinear. We now consider the convex hull of these five points.

Lemma 1.1

Any set of five points in the plane, no three of which are collinear, contains four points in convex position.

Proof (outline). Let a_{1}, \ldots, a_{5} be five point in the plane, no three of which are collinear. We now consider the convex hull of these five points.

WMA the convex hull is a triangle, for otherwise we are done.

Lemma 1.1

Any set of five points in the plane, no three of which are collinear, contains four points in convex position.

Proof (outline, continued).

If $a_{5} \in C_{i, j}$, then $a_{i}, a_{4}, a_{5}, a_{j}$ are the vertices of a convex quadrilateral, and we are done.

The Erdős-Szekeres theorem

Let $t \geq 4$ be an integer. Any set of at least $R^{4}(5, t)$ points in the plane, no three of which are collinear, contains t points in convex position.

Proof (outline).

The Erdős-Szekeres theorem

Let $t \geq 4$ be an integer. Any set of at least $R^{4}(5, t)$ points in the plane, no three of which are collinear, contains t points in convex position.

Proof (outline). We consider a set S of at least $R^{4}(5, t)$ points in the plane, and we assume that no three of these points are collinear.

The Erdős-Szekeres theorem

Let $t \geq 4$ be an integer. Any set of at least $R^{4}(5, t)$ points in the plane, no three of which are collinear, contains t points in convex position.

Proof (outline). We consider a set S of at least $R^{4}(5, t)$ points in the plane, and we assume that no three of these points are collinear. We now consider a coloring $c:\binom{S}{4} \rightarrow$ [2] defined as follows: for all $X \in\binom{S}{4}, c(X)=1$ if the four points of X are not in convex position, and $c(X)=2$ if they are in convex position.

The Erdős-Szekeres theorem

Let $t \geq 4$ be an integer. Any set of at least $R^{4}(5, t)$ points in the plane, no three of which are collinear, contains t points in convex position.

Proof (outline). We consider a set S of at least $R^{4}(5, t)$ points in the plane, and we assume that no three of these points are collinear. We now consider a coloring $c:\binom{S}{4} \rightarrow$ [2] defined as follows: for all $X \in\binom{S}{4}, c(X)=1$ if the four points of X are not in convex position, and $c(X)=2$ if they are in convex position. Since $|S| \geq R^{4}(5, t)$, we know that either there exists some $A_{1} \in\binom{S}{5}$ such that c assigns color 1 to all elements of $\binom{A_{1}}{4}$, or there exists some $A_{2} \in\binom{S}{t}$ such that c assigns color 2 to all elements of $\binom{A_{2}}{4}$.

The Erdős-Szekeres theorem

Let $t \geq 4$ be an integer. Any set of at least $R^{4}(5, t)$ points in the plane, no three of which are collinear, contains t points in convex position.

Proof (outline, continued).

The Erdős-Szekeres theorem

Let $t \geq 4$ be an integer. Any set of at least $R^{4}(5, t)$ points in the plane, no three of which are collinear, contains t points in convex position.

Proof (outline, continued). Suppose that there exists some $A_{1} \in\binom{S}{5}$ such that c assigns color 1 to all elements of $\binom{A_{1}}{4}$.

The Erdős-Szekeres theorem

Let $t \geq 4$ be an integer. Any set of at least $R^{4}(5, t)$ points in the plane, no three of which are collinear, contains t points in convex position.

Proof (outline, continued). Suppose that there exists some $A_{1} \in\binom{S}{5}$ such that c assigns color 1 to all elements of $\binom{A_{1}}{4}$. Then A_{1} is a set of five points in the plane, no three of which are collinear, and no four of which are in convex position. But this contradicts Lemma 1.1.

The Erdős-Szekeres theorem

Let $t \geq 4$ be an integer. Any set of at least $R^{4}(5, t)$ points in the plane, no three of which are collinear, contains t points in convex position.

Proof (outline, continued).

The Erdős-Szekeres theorem

Let $t \geq 4$ be an integer. Any set of at least $R^{4}(5, t)$ points in the plane, no three of which are collinear, contains t points in convex position.

Proof (outline, continued). It now follows that there exists some $A_{2} \in\binom{S}{t}$ such that c assigns color 2 to all elements of $\binom{A_{2}}{4}$. Then A_{2} is a set of t points in the plane, no three of which are collinear, and any four of which are in convex position.

The Erdős-Szekeres theorem

Let $t \geq 4$ be an integer. Any set of at least $R^{4}(5, t)$ points in the plane, no three of which are collinear, contains t points in convex position.

Proof (outline, continued). It now follows that there exists some $A_{2} \in\binom{S}{t}$ such that c assigns color 2 to all elements of $\binom{A_{2}}{4}$. Then A_{2} is a set of t points in the plane, no three of which are collinear, and any four of which are in convex position. We now consider the convex hull of A_{2}.

The Erdős-Szekeres theorem

Let $t \geq 4$ be an integer. Any set of at least $R^{4}(5, t)$ points in the plane, no three of which are collinear, contains t points in convex position.

Proof (outline, continued).

If some point of S is not a vertex of the polygon, then we get four points of A_{4} that are not in convex position.

Ramsey's theorem (infinite version)

For all $t, p \in \mathbb{N}$, all infinite sets X, and all colorings $c:\binom{X}{p} \rightarrow[t]$, there exists an infinite set $A \subseteq X$ such that $c \upharpoonright\binom{A}{p}$ is constant.

Proof.

Ramsey's theorem (infinite version)

For all $t, p \in \mathbb{N}$, all infinite sets X, and all colorings $c:\binom{X}{p} \rightarrow[t]$, there exists an infinite set $A \subseteq X$ such that $c \upharpoonright\binom{A}{p}$ is constant.

Proof. We fix $t \in \mathbb{N}$, and we proceed by induction on p.

Ramsey's theorem (infinite version)

For all $t, p \in \mathbb{N}$, all infinite sets X, and all colorings $c:\binom{X}{p} \rightarrow[t]$, there exists an infinite set $A \subseteq X$ such that $c \upharpoonright\binom{A}{p}$ is constant.

Proof. We fix $t \in \mathbb{N}$, and we proceed by induction on p.
For $p=1$, we fix an infinite set X and a coloring $c:\binom{X}{1} \rightarrow[t]$. For all $i \in[t]$, we set $C_{i}=\{x \in X \mid c(\{x\})=i\}$. Then $\left(C_{1}, \ldots, C_{t}\right)$ is a partition of X, and consequently, at least one of the sets C_{1}, \ldots, C_{t}, say C_{i}, is infinite. Furthermore, $c \upharpoonright\binom{C_{i}}{1}$ is constant (indeed, it assigns color i to each element of $\binom{C_{i}}{1}$). So, the theorem is true for $p=1$.

Ramsey's theorem (infinite version)

For all $t, p \in \mathbb{N}$, all infinite sets X, and all colorings $c:\binom{X}{p} \rightarrow[t]$, there exists an infinite set $A \subseteq X$ such that $c \upharpoonright\binom{A}{p}$ is constant.

Proof (continued). Fix $p \in \mathbb{N}$, and assume the theorem is true for p. We must show that it is true for $p+1$.

Ramsey's theorem (infinite version)

For all $t, p \in \mathbb{N}$, all infinite sets X, and all colorings $c:\binom{X}{p} \rightarrow[t]$, there exists an infinite set $A \subseteq X$ such that $c \upharpoonright\binom{A}{p}$ is constant.

Proof (continued). Fix $p \in \mathbb{N}$, and assume the theorem is true for p. We must show that it is true for $p+1$. Fix an infinite set X and a coloring $c:\binom{X}{p+1} \rightarrow[t]$.

Ramsey's theorem (infinite version)

For all $t, p \in \mathbb{N}$, all infinite sets X, and all colorings $c:\binom{X}{p} \rightarrow[t]$, there exists an infinite set $A \subseteq X$ such that $c \upharpoonright\binom{A}{p}$ is constant.

Proof (continued). Fix $p \in \mathbb{N}$, and assume the theorem is true for p. We must show that it is true for $p+1$. Fix an infinite set X and a coloring $c:\binom{X}{p+1} \rightarrow[t]$. Our goal is to recursively construct a sequence $\left\{X_{n}\right\}_{n=1}^{\infty}$ of infinite subsets of X and a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of elements of X with the following three properties:

- $x_{n} \in X_{n}$ for all $n \in \mathbb{N}$;
- $X_{n+1} \subseteq X_{n} \backslash\left\{x_{n}\right\}$ for all $n \in \mathbb{N}$;
- for all $n \in \mathbb{N}, c$ assigns the same color to all sets of the form $\left\{x_{n}\right\} \cup X$, with $X \in\binom{X_{n+1}}{p}$.

Ramsey's theorem (infinite version)

For all $t, p \in \mathbb{N}$, all infinite sets X, and all colorings $c:\binom{X}{p} \rightarrow[t]$, there exists an infinite set $A \subseteq X$ such that $c \upharpoonright\binom{A}{p}$ is constant.

Proof (continued). First, we set $X_{1}=X$ and we choose $x_{1} \in X$ arbitrarily. Now, having constructed X_{1}, \ldots, X_{n} and x_{1}, \ldots, x_{n}, we construct X_{n+1} and x_{n+1} as follows. We define an auxiliary coloring $c_{n}:\left(\underset{p}{X_{n} \backslash\left\{x_{n}\right\}}\right) \rightarrow[t]$ by setting $c_{n}(A)=c\left(A \cup\left\{x_{n}\right\}\right)$ for all $A \in\binom{X_{n} \backslash\left\{x_{n}\right\}}{p}$. Since $X_{n} \backslash\left\{x_{n}\right\}$ is infinite, the induction hypothesis guarantees that there exists some infinite set $X_{n+1} \subseteq X_{n} \backslash\left\{x_{n}\right\}$ such that $c_{n} \upharpoonright\binom{X_{n+1}}{p}$ is constant. But now by construction, we have that c assigns the same color to all sets of the form $\left\{x_{n}\right\} \cup X$, with $X \in\binom{X_{n+1}}{p}$. Finally, we choose $x_{n+1} \in X_{n+1}$ arbitrarily.

Ramsey's theorem (infinite version)

For all $t, p \in \mathbb{N}$, all infinite sets X, and all colorings $c:\binom{X}{p} \rightarrow[t]$, there exists an infinite set $A \subseteq X$ such that $c \upharpoonright\binom{A}{p}$ is constant.

Proof (continued). We have now constructed a sequence $\left\{X_{n}\right\}_{n=1}^{\infty}$ of infinite subsets of X and a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of elements of X with the following three properties:

- $x_{n} \in X_{n}$ for all $n \in \mathbb{N}$;
- $X_{n+1} \subseteq X_{n} \backslash\left\{x_{n}\right\}$ for all $n \in \mathbb{N}$;
- for all $n \in \mathbb{N}, c$ assigns the same color to all sets of the form $\left\{x_{n}\right\} \cup X$, with $X \in\binom{X_{n+1}}{p}$.

Ramsey's theorem (infinite version)

For all $t, p \in \mathbb{N}$, all infinite sets X, and all colorings $c:\binom{X}{p} \rightarrow[t]$, there exists an infinite set $A \subseteq X$ such that $c \upharpoonright\binom{A}{p}$ is constant.

Proof (continued). We have now constructed a sequence $\left\{X_{n}\right\}_{n=1}^{\infty}$ of infinite subsets of X and a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of elements of X with the following three properties:

- $x_{n} \in X_{n}$ for all $n \in \mathbb{N}$;
- $X_{n+1} \subseteq X_{n} \backslash\left\{x_{n}\right\}$ for all $n \in \mathbb{N}$;
- for all $n \in \mathbb{N}, c$ assigns the same color to all sets of the form $\left\{x_{n}\right\} \cup X$, with $X \in\binom{x_{n+1}}{p}$.
It follows from the construction that for all $n \in \mathbb{N}$, the coloring c assigns the same color to all sets of the form $\left\{x_{n}\right\} \cup\left\{x_{j_{1}}, \ldots, x_{j_{p}}\right\}$, with $n<j_{1}<\cdots<j_{p}$; let us say this color is associated with x_{n}.

Ramsey's theorem (infinite version)

For all $t, p \in \mathbb{N}$, all infinite sets X, and all colorings $c:\binom{X}{p} \rightarrow[t]$, there exists an infinite set $A \subseteq X$ such that $c \upharpoonright\binom{A}{p}$ is constant.

Proof (continued). Reminder: For all $n \in \mathbb{N}$, the coloring c assigns the same color to all sets of the form $\left\{x_{n}\right\} \cup\left\{x_{j_{1}}, \ldots, x_{j_{p}}\right\}$, with $n<j_{1}<\cdots<j_{p}$; this color is associated with x_{n}.

Ramsey's theorem (infinite version)

For all $t, p \in \mathbb{N}$, all infinite sets X, and all colorings $c:\binom{X}{p} \rightarrow[t]$, there exists an infinite set $A \subseteq X$ such that $c \upharpoonright\binom{A}{p}$ is constant.

Proof (continued). Reminder: For all $n \in \mathbb{N}$, the coloring c assigns the same color to all sets of the form $\left\{x_{n}\right\} \cup\left\{x_{j_{1}}, \ldots, x_{j_{p}}\right\}$, with $n<j_{1}<\cdots<j_{p}$; this color is associated with x_{n}.
For all $i \in[t]$, we let $A_{i}=\left\{x_{n} \mid n \in \mathbb{N}, i\right.$ is associated with $\left.x_{n}\right\}$.

Ramsey's theorem (infinite version)

For all $t, p \in \mathbb{N}$, all infinite sets X, and all colorings $c:\binom{X}{p} \rightarrow[t]$, there exists an infinite set $A \subseteq X$ such that $c \upharpoonright\binom{A}{p}$ is constant.

Proof (continued). Reminder: For all $n \in \mathbb{N}$, the coloring c assigns the same color to all sets of the form $\left\{x_{n}\right\} \cup\left\{x_{j_{1}}, \ldots, x_{j_{p}}\right\}$, with $n<j_{1}<\cdots<j_{p}$; this color is associated with x_{n}.
For all $i \in[t]$, we let $A_{i}=\left\{x_{n} \mid n \in \mathbb{N}, i\right.$ is associated with $\left.x_{n}\right\}$. Then $\left(A_{1}, \ldots, A_{t}\right)$ is a partition of the infinite set $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$, and we deduce that at least one of the sets A_{1}, \ldots, A_{t}, say A_{i}, is infinite. But now $c \upharpoonright\binom{A_{i}}{p+1}$ is constant (it assigns i to all elements of $\binom{A_{i}}{p+1}$). This completes the induction.

Definition

An infinite graph (i.e. graph with an infinite vertex set) is locally finite if each vertex has finite degree.

Definition

An infinite graph (i.e. graph with an infinite vertex set) is locally finite if each vertex has finite degree.

Definition

A ray in an infinite graph G is a sequence $x_{0}, x_{1}, x_{2}, x_{3}, \ldots$ of pairwise distinct vertices such that for all integers $n \geq 0, x_{n} x_{n+1}$ is an edge of G.

Definition

An infinite graph (i.e. graph with an infinite vertex set) is locally finite if each vertex has finite degree.

Definition

A ray in an infinite graph G is a sequence $x_{0}, x_{1}, x_{2}, x_{3}, \ldots$ of pairwise distinct vertices such that for all integers $n \geq 0, x_{n} x_{n+1}$ is an edge of G.

Kőnig's infinity lemma

Every infinite, locally finite rooted tree (T, r) contains a ray starting at r (i.e. a ray of the form r, x_{1}, x_{2}, \ldots).

Kőnig's infinity lemma

Every infinite, locally finite rooted tree (T, r) contains a ray starting at r (i.e. a ray of the form r, x_{1}, x_{2}, \ldots).

Definition

Given $p, t, k_{1}, \ldots, k_{t} \in \mathbb{N}$, the Ramsey number $R^{p}\left(k_{1}, \ldots, k_{t}\right)$ is the smallest $N \in \mathbb{N}$ (if it exists) such that for all finite sets X with $|X| \geq N$, and all colorings (i.e. functions) $c:\binom{X}{p} \rightarrow[t]$, ${ }^{a}$ there exist an index $i \in[t]$ and a set $A_{i} \in\binom{X}{k_{i}}$ such that c assigns color i to each element of $\binom{A_{i}}{p}$.
${ }^{a}$ So, c is an assignment of colors to the edges of the "complete" p-uniform hypergraph on vertex set X.

Ramsey's theorem (hypergraph version)

For all $p, t, k_{1}, \ldots, k_{t} \in \mathbb{N}$, the number $R^{p}\left(k_{1}, \ldots, k_{t}\right)$ exists.

Ramsey's theorem (hypergraph version)

For all $p, t, k_{1}, \ldots, k_{t} \in \mathbb{N}$, the number $R^{p}\left(k_{1}, \ldots, k_{t}\right)$ exists.
Proof.

Ramsey's theorem (hypergraph version)

For all $p, t, k_{1}, \ldots, k_{t} \in \mathbb{N}$, the number $R^{p}\left(k_{1}, \ldots, k_{t}\right)$ exists.
Proof. Clearly, it suffices to show that for all $p, t, k \in \mathbb{N}$, the Ramsey number $R^{p}(\underbrace{k, \ldots, k}_{t})$ exists.

Ramsey's theorem (hypergraph version)

For all $p, t, k_{1}, \ldots, k_{t} \in \mathbb{N}$, the number $R^{p}\left(k_{1}, \ldots, k_{t}\right)$ exists.
Proof. Clearly, it suffices to show that for all $p, t, k \in \mathbb{N}$, the Ramsey number $R^{p}(\underbrace{k, \ldots, k}_{t})$ exists. Suppose that for some $p, t, k \in \mathbb{N}$, the number $R^{p}(\underbrace{k, \ldots, k}_{t})$ does not exist. Now, for each integer $n \geq p$, we say that a coloring $c:\binom{[n]}{p} \rightarrow[t]$ is n-bad if there is no set $A \in\binom{[n]}{k}$ such that $c \upharpoonright\binom{A}{p}$ is constant; a coloring is bad if it is n-bad for some integer $n \geq p$.

Ramsey's theorem (hypergraph version)

For all $p, t, k_{1}, \ldots, k_{t} \in \mathbb{N}$, the number $R^{p}\left(k_{1}, \ldots, k_{t}\right)$ exists.
Proof. Clearly, it suffices to show that for all $p, t, k \in \mathbb{N}$, the Ramsey number $R^{p}(\underbrace{k, \ldots, k}_{t})$ exists. Suppose that for some $p, t, k \in \mathbb{N}$, the number $R^{p}(\underbrace{k, \ldots, k}_{t})$ does not exist. Now, for each integer $n \geq p$, we say that a coloring $c:\binom{[n]}{p} \rightarrow[t]$ is n-bad if there is no set $A \in\binom{[n]}{k}$ such that $c \upharpoonright\binom{A}{p}$ is constant; a coloring is bad if it is n-bad for some integer $n \geq p$. Since $R^{p}(\underbrace{k, \ldots, k}_{t})$ does not exist, we see that for all integers $n \geq p$, there is at least one n-bad coloring.

Ramsey's theorem (hypergraph version)

For all $p, t, k_{1}, \ldots, k_{t} \in \mathbb{N}$, the number $R^{p}\left(k_{1}, \ldots, k_{t}\right)$ exists.
Proof (continued). Now, let C be the set of all bad colorings, and let T be the graph on the vertex set $C \cup\{r\}$ (where $r \notin C$), with adjacency as follows:

- r is adjacent to all p-bad colorings, and to no other elements of C;
- for all integers $n \geq p$, n-bad colorings are pairwise non-adjacent;
- for all integers $n \geq p$, an n-bad coloring c_{n} is adjacent to an ($n+1$)-bad coloring c_{n+1} iff c_{n+1} is an extension of $c_{n} ;{ }^{1}$
- for all integers $n_{1}, n_{2} \geq p$ such that $\left|n_{1}-n_{2}\right| \geq 2$, no n_{1}-bad coloring is adjacent to any n_{2}-bad coloring.

Ramsey's theorem (hypergraph version)

For all $p, t, k_{1}, \ldots, k_{t} \in \mathbb{N}$, the number $R^{p}\left(k_{1}, \ldots, k_{t}\right)$ exists.
Proof (continued). Now, let C be the set of all bad colorings, and let T be the graph on the vertex set $C \cup\{r\}$ (where $r \notin C$), with adjacency as follows:

- r is adjacent to all p-bad colorings, and to no other elements of C;
- for all integers $n \geq p$, n-bad colorings are pairwise non-adjacent;
- for all integers $n \geq p$, an n-bad coloring c_{n} is adjacent to an ($n+1$)-bad coloring c_{n+1} iff c_{n+1} is an extension of $c_{n} ;{ }^{1}$
- for all integers $n_{1}, n_{2} \geq p$ such that $\left|n_{1}-n_{2}\right| \geq 2$, no n_{1}-bad coloring is adjacent to any n_{2}-bad coloring.
Now (T, r) is a rooted tree. Furthermore, for each integer $n \geq p$, the number of n-bad colorings is finite, and it follows from the construction of T that the T is locally finite.

Ramsey's theorem (hypergraph version)

For all $p, t, k_{1}, \ldots, k_{t} \in \mathbb{N}$, the number $R^{p}\left(k_{1}, \ldots, k_{t}\right)$ exists.
Proof (continued). Now, let C be the set of all bad colorings, and let T be the graph on the vertex set $C \cup\{r\}$ (where $r \notin C$), with adjacency as follows:

- r is adjacent to all p-bad colorings, and to no other elements of C;
- for all integers $n \geq p$, n-bad colorings are pairwise non-adjacent;
- for all integers $n \geq p$, an n-bad coloring c_{n} is adjacent to an $(n+1)$-bad coloring c_{n+1} iff c_{n+1} is an extension of c_{n}; ${ }^{1}$
- for all integers $n_{1}, n_{2} \geq p$ such that $\left|n_{1}-n_{2}\right| \geq 2$, no n_{1}-bad coloring is adjacent to any n_{2}-bad coloring.
Now (T, r) is a rooted tree. Furthermore, for each integer $n \geq p$, the number of n-bad colorings is finite, and it follows from the construction of T that the T is locally finite. So, by Kőnig's infinity lemma, there is a ray $r_{,}, c_{p}, c_{p+1}, c_{p+2}, \ldots$ in T.

Ramsey's theorem (hypergraph version)

For all $p, t, k_{1}, \ldots, k_{t} \in \mathbb{N}$, the number $R^{p}\left(k_{1}, \ldots, k_{t}\right)$ exists.
Proof (continued). Set $c=\bigcup_{n=p}^{\infty} c_{n}$; then $c:\binom{\mathbb{N}}{p} \rightarrow[t]$, and so by the infinite version of Ramsey's theorem, there is an infinite set A such that $c \upharpoonright\binom{A}{p}$ is constant.

Ramsey's theorem (hypergraph version)

For all $p, t, k_{1}, \ldots, k_{t} \in \mathbb{N}$, the number $R^{p}\left(k_{1}, \ldots, k_{t}\right)$ exists.
Proof (continued). Set $c=\bigcup_{n=p}^{\infty} c_{n}$; then $c:\binom{\mathbb{N}}{p} \rightarrow[t]$, and so by the infinite version of Ramsey's theorem, there is an infinite set A such that $c \upharpoonright\binom{A}{p}$ is constant.
We now choose any subset $A_{k} \in\binom{A}{k}$, and we observe that $c \upharpoonright\binom{A_{k}}{p}$ is constant.

Ramsey's theorem (hypergraph version)

For all $p, t, k_{1}, \ldots, k_{t} \in \mathbb{N}$, the number $R^{p}\left(k_{1}, \ldots, k_{t}\right)$ exists.
Proof (continued). Set $c=\bigcup_{n=p}^{\infty} c_{n}$; then $c:\binom{\mathbb{N}}{p} \rightarrow[t]$, and so by the infinite version of Ramsey's theorem, there is an infinite set A such that $c \upharpoonright\binom{A}{p}$ is constant.
We now choose any subset $A_{k} \in\binom{A}{k}$, and we observe that $c \upharpoonright\binom{A_{k}}{p}$ is constant. Now, A_{k} is a finite subset of \mathbb{N}, and consequently, there exists some $n \in \mathbb{N}$ such that $A_{k} \subseteq[n]$; we may assume that $n \geq p$.

Ramsey's theorem (hypergraph version)

For all $p, t, k_{1}, \ldots, k_{t} \in \mathbb{N}$, the number $R^{p}\left(k_{1}, \ldots, k_{t}\right)$ exists.
Proof (continued). Set $c=\bigcup_{n=p}^{\infty} c_{n}$; then $c:\binom{\mathbb{N}}{p} \rightarrow[t]$, and so by the infinite version of Ramsey's theorem, there is an infinite set A such that $c \upharpoonright\binom{A}{p}$ is constant.
We now choose any subset $A_{k} \in\binom{A}{k}$, and we observe that $c \upharpoonright\binom{A_{k}}{p}$ is constant. Now, A_{k} is a finite subset of \mathbb{N}, and consequently, there exists some $n \in \mathbb{N}$ such that $A_{k} \subseteq[n]$; we may assume that $n \geq p$. Now $A_{k} \in\binom{[n]}{k}$, and $c_{n} \upharpoonright\binom{A_{k}}{p}=c \upharpoonright\binom{A_{k}}{p}$ is constant, contrary to the fact that c_{n} is bad.

[^0]: ${ }^{a}$ So, c is an assignment of colors to the edges of the "complete" p-uniform hypergraph on vertex set X.

[^1]: ${ }^{a}$ So, c is an assignment of colors to the edges of the "complete" p-uniform hypergraph on vertex set X.

[^2]: ${ }^{a}$ So, c is an assignment of colors to the edges of the "complete" p-uniform hypergraph on vertex set X.

