NDMI011: Combinatorics and Graph Theory 1

Lecture #10

Sperner's theorem. Ramsey numbers

Irena Penev

December 7, 2020

Sperner's theorem;

- Sperner's theorem;
- the Pigeonhole Principle;

- Sperner's theorem;
- 2 the Pigeonhole Principle;
- 8 Ramsey numbers.

Part I: Sperner's theorem

Part I: Sperner's theorem

Definition

For a set X,

- a *chain* in $(\mathscr{P}(X), \subseteq)$ is any set \mathcal{C} of subsets of X such that for all $C_1, C_2 \in \mathcal{C}$, we have that either $C_1 \subseteq C_2$ or $C_2 \subseteq C_1$.^{*a*}
- a maximal chain in (𝒫(𝑋), ⊆) is a chain in (𝒫(𝑋), ⊆) such that there is no chain 𝔅' in (𝒫(𝑋), ⊆) with the property that 𝔅 ⊊ 𝔅';
- an antichain in $(\mathscr{P}(X), \subseteq)$ is any set \mathcal{A} of subsets of X such that for all distinct $A_1, A_2 \in \mathcal{A}$, we have that $A_1 \not\subseteq A_2$ and $A_2 \not\subseteq A_1$.^b

^aThis definition works both for finite and for infinite X. Note also that \emptyset is a chain in $(\mathscr{P}(X), \subseteq)$. However, if X is finite and C is a non-empty chain in $(\mathscr{P}(X), \subseteq)$, then C can be ordered as $\mathcal{C} = \{C_1, \ldots, C_t\}$ so that $C_1 \subseteq \cdots \subseteq C_t$. ^bEquivalently: $A_1 \setminus A_2$ and $A_2 \setminus A_1$ are both non-empty.

Example 2.1

Let $X = \{1, 2, 3, 4\}$. The following are chains in $(\mathscr{P}(X), \subseteq)$:^{*a*}

- $\{\{2,4\},\{1,2,4\}\};^{b}$
- $\{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 3\}, X\}.^{c}$
- $\{\emptyset, \{4\}, \{2, 4\}, \{1, 2, 4\}, X\};^d$

Further, the following are all antichains in $(\mathscr{P}(X), \subseteq)$:^e

- {Ø};
- {*X*};
- {{1,2}, {2,3}, {1,3,4}};
- $\bullet \ \big\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\big\}.$

^aThere are many other chains in $(\mathscr{P}(X), \subseteq)$ as well.

^bNote that this chain is **not** maximal, since we can add (for example) the set {2} to it and obtain a larger chain.

^cThis chain is maximal.

^dThis chain is maximal.

^eThere are many other antichains in $(\mathscr{P}(X), \subseteq)$ as well.

Observation

Let X be any set. Then a chain and an antichain in $(\mathscr{P}(X), \subseteq)$ can have at most one element in common.

Observation

Let X be any set. Then a chain and an antichain in $(\mathscr{P}(X), \subseteq)$ can have at most one element in common.

Proof. Let C be a chain and A an antichain in $(\mathscr{P}(X), \subseteq)$, and suppose that $|C \cap A| \ge 2$. Fix distinct $X_1, X_2 \in C \cap A$. Since $X_1, X_2 \in C$, we have that either $X_1 \subseteq X_2$ or $X_2 \subseteq X_1$. But this is impossible, because X_1 and X_2 are distinct elements of the antichain A.

Let *n* be a non-negative integer, and let *X* be an *n*-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n/2 \rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n/2 \rfloor}$ elements.

Proof.

Let *n* be a non-negative integer, and let *X* be an *n*-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n/2 \rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n/2 \rfloor}$ elements.

Proof. First, we note that the set of all $\lfloor n/2 \rfloor$ -element subsets of X is an antichain in $(\mathscr{P}(X), \subseteq)$, and this antichain has precisely $\binom{n}{\lfloor n/2 \rfloor}$ elements. It remains to show that any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n/2 \rfloor}$ elements.

Let *n* be a non-negative integer, and let *X* be an *n*-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n/2 \rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n/2 \rfloor}$ elements.

Proof (continued).

Let *n* be a non-negative integer, and let *X* be an *n*-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n/2 \rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n/2 \rfloor}$ elements.

Proof (continued).

Claim 1. There are precisely n! maximal chains in $(\mathscr{P}(X), \subseteq)$.

Proof of Claim 1. Clearly, any maximal chain in ($\mathscr{P}(X)$, ⊆) is of the form $\{\emptyset, \{x_1\}, \{x_1, x_2\}, \ldots, \{x_1, x_2, \ldots, x_n\}\}$, where x_1, \ldots, x_n is some ordering of the elements of X. There are precisely n! such orderings, and so the number of maximal chains in ($\mathscr{P}(X)$, ⊆) is n!. ■

Let *n* be a non-negative integer, and let *X* be an *n*-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n/2 \rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n/2 \rfloor}$ elements.

Proof (continued).

Let *n* be a non-negative integer, and let *X* be an *n*-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n/2 \rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n/2 \rfloor}$ elements.

Proof (continued).

Claim 2. For every set $A \subseteq X$, the number of maximal chains of $(\mathscr{P}(X), \subseteq)$ containing A is precisely |A|!(n - |A|)!.

Proof of Claim 2. Set k = |A|. Any chain in ($\mathscr{P}(X)$, ⊆) is of the form $\{\emptyset, \{x_1\}, \{x_1, x_2\}, \ldots, \{x_1, x_2, \ldots, x_n\}\}$, where x_1, \ldots, x_n is some ordering of the elements of X; this chain contains A iff $A = \{x_1, \ldots, x_k\}$ (and therefore, $X \setminus A = \{x_{k+1}, \ldots, x_n\}$). The number of ways of ordering A is k!, and the number of ways of ordering $X \setminus A$ is (n - k)!. So, the total number of chains of $(\mathscr{P}(X), \subseteq)$ containing A is precisely k!(n - k)!. ■

Let *n* be a non-negative integer, and let *X* be an *n*-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n/2 \rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n/2 \rfloor}$ elements.

Proof (continued).

Let *n* be a non-negative integer, and let *X* be an *n*-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n/2 \rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n/2 \rfloor}$ elements.

Proof (continued). Fix an antichain \mathcal{A} in $(\mathscr{P}(X), \subseteq)$. We form the matrix M whose rows are indexed by the elements of \mathcal{A} , and whose columns are indexed by the maximal chains of $(\mathscr{P}(X), \subseteq)$, and in which the $(\mathcal{A}, \mathcal{C})$ -th entry is 1 if $\mathcal{A} \in \mathcal{C}$ and is 0 otherwise.

Let *n* be a non-negative integer, and let *X* be an *n*-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n/2 \rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n/2 \rfloor}$ elements.

Proof (continued). Fix an antichain \mathcal{A} in $(\mathscr{P}(X), \subseteq)$. We form the matrix M whose rows are indexed by the elements of \mathcal{A} , and whose columns are indexed by the maximal chains of $(\mathscr{P}(X), \subseteq)$, and in which the $(\mathcal{A}, \mathcal{C})$ -th entry is 1 if $\mathcal{A} \in \mathcal{C}$ and is 0 otherwise. Our goal is to count the number of 1's in the matrix M in two ways.

Let *n* be a non-negative integer, and let *X* be an *n*-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n/2 \rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n/2 \rfloor}$ elements.

Proof (continued).

Let *n* be a non-negative integer, and let *X* be an *n*-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n/2 \rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n/2 \rfloor}$ elements.

Proof (continued). First, by Claim 2, for any $A \in A$, the number of maximal chains of $(\mathscr{P}(X), \subseteq)$ containing A is precisely |A|!(n - |A|)!; so, the number of 1's in the row of M indexed by A is precisely |A|!(n - |A|)!.

Let *n* be a non-negative integer, and let *X* be an *n*-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n/2 \rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n/2 \rfloor}$ elements.

Proof (continued). First, by Claim 2, for any $A \in A$, the number of maximal chains of $(\mathscr{P}(X), \subseteq)$ containing A is precisely |A|!(n - |A|)!; so, the number of 1's in the row of M indexed by A is precisely |A|!(n - |A|)!. Thus, the number of 1's in the matrix M is precisely

$$\sum_{A\in\mathcal{A}}|A|!(n-|A|)!.$$

Let *n* be a non-negative integer, and let *X* be an *n*-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n/2 \rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n/2 \rfloor}$ elements.

Proof (continued). First, by Claim 2, for any $A \in A$, the number of maximal chains of $(\mathscr{P}(X), \subseteq)$ containing A is precisely |A|!(n - |A|)!; so, the number of 1's in the row of M indexed by A is precisely |A|!(n - |A|)!. Thus, the number of 1's in the matrix M is precisely

$$\sum_{A\in\mathcal{A}}|A|!(n-|A|)!.$$

On the other hand, by Claim 1, the number of columns of M is precisely n!. Furthermore, no chain of $(\mathscr{P}(X), \subseteq)$ contains more than one element of the antichain \mathcal{A} , and so no column of M contains more than one 1. So, the total number of 1's in the matrix M is at most n!.

Let *n* be a non-negative integer, and let *X* be an *n*-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n/2 \rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n/2 \rfloor}$ elements.

Proof (continued). We now have that $\sum_{A \in \mathcal{A}} |A|!(n - |A|)! \le n!$,

Let *n* be a non-negative integer, and let *X* be an *n*-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n/2 \rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n/2 \rfloor}$ elements.

Proof (continued). We now have that $\sum_{A \in \mathcal{A}} |A|!(n - |A|)! \leq n!$, and consequently, $\sum_{A \in \mathcal{A}} \frac{|A|!(n - |A|)!}{n!} \leq 1$.

Let *n* be a non-negative integer, and let *X* be an *n*-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n/2 \rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n/2 \rfloor}$ elements.

Proof (continued). We now have that $\sum_{A \in \mathcal{A}} |A|!(n - |A|)! \leq n!$, and consequently, $\sum_{A \in \mathcal{A}} \frac{|A|!(n - |A|)!}{n!} \leq 1$. On the other hand, for all $A \subseteq X$ (and in particular, for all $A \in \mathcal{A}$), we have that

$$\frac{|A|!(n-|A|)!}{n!} = \frac{1}{\frac{n!}{|A|!(n-|A|)!}} = \frac{1}{\binom{n}{|A|}} \geq \frac{1}{\binom{n}{\lfloor n/2 \rfloor}}.$$

Let *n* be a non-negative integer, and let *X* be an *n*-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n/2 \rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n/2 \rfloor}$ elements.

Proof (continued). We now have that $\sum_{A \in \mathcal{A}} |A|!(n - |A|)! \leq n!$, and consequently, $\sum_{A \in \mathcal{A}} \frac{|A|!(n - |A|)!}{n!} \leq 1$. On the other hand, for all $A \subseteq X$ (and in particular, for all $A \in \mathcal{A}$), we have that

$$\frac{|A|!(n-|A|)!}{n!} = \frac{1}{\frac{n!}{|A|!(n-|A|)!}} = \frac{1}{\binom{n}{|A|}} \geq \frac{1}{\binom{n}{\lfloor n/2 \rfloor}}.$$

It follows that

$$1 \hspace{0.1in} \geq \hspace{0.1in} \sum_{A \in \mathcal{A}} \frac{|A|!(n-|A|)!}{n!} \hspace{0.1in} \geq \hspace{0.1in} \sum_{A \in \mathcal{A}} \frac{1}{\binom{n}{\lfloor n/2 \rfloor}} \hspace{0.1in} \geq \hspace{0.1in} |\mathcal{A}| \frac{1}{\binom{n}{\lfloor n/2 \rfloor}},$$

and consequently, $|\mathcal{A}| \leq \binom{n}{\lfloor n/2 \rfloor}$. This completes the argument.

Part II: The Pigeonhole Principle

Part II: The Pigeonhole Principle

The Pigeonhole Principle

Let n_1, \ldots, n_t $(t \ge 1)$ be non-negative integers, and let X be a set of size at least $1 + n_1 + \cdots + n_t$. If (X_1, \ldots, X_t) is any partition of X,^a then there exists some $i \in \{1, \ldots, t\}$ such that $|X_i| > n_i$.

^aHere, we allow the sets X_1, \ldots, X_t to possibly be empty.

Part II: The Pigeonhole Principle

The Pigeonhole Principle

Let n_1, \ldots, n_t $(t \ge 1)$ be non-negative integers, and let X be a set of size at least $1 + n_1 + \cdots + n_t$. If (X_1, \ldots, X_t) is any partition of X,^a then there exists some $i \in \{1, \ldots, t\}$ such that $|X_i| > n_i$.

^aHere, we allow the sets X_1, \ldots, X_t to possibly be empty.

Proof. Suppose otherwise, and fix a partition (X_1, \ldots, X_t) such that $|X_i| \le n_i$ for all $i \in \{1, \ldots, t\}$. But then

$$1+n_1+\cdots+n_t \leq |X|$$

$$= |X_1| + \cdots + |X_t|$$

$$\leq n_1 + \cdots + n_t,$$

a contradiction.

The Pigeonhole Principle

Let n_1, \ldots, n_t $(t \ge 1)$ be non-negative integers, and let X be a set of size at least $1 + n_1 + \cdots + n_t$. If (X_1, \ldots, X_t) is any partition of X,^a then there exists some $i \in \{1, \ldots, t\}$ such that $|X_i| > n_i$.

^aHere, we allow the sets X_1, \ldots, X_t to possibly be empty.

The Pigeonhole Principle

Let n_1, \ldots, n_t $(t \ge 1)$ be non-negative integers, and let X be a set of size at least $1 + n_1 + \cdots + n_t$. If (X_1, \ldots, X_t) is any partition of X,^a then there exists some $i \in \{1, \ldots, t\}$ such that $|X_i| > n_i$.

^aHere, we allow the sets X_1, \ldots, X_t to possibly be empty.

Corollary 2.1

Let *n* and *t* be positive integers. Let *X* be an *n*-element set, and let (X_1, \ldots, X_t) be any partition of *X*.^{*a*} Then there exists some $i \in \{1, \ldots, t\}$ such that $|X_i| \ge \lceil \frac{n}{t} \rceil$.

^aHere, we allow the sets X_1, \ldots, X_t to possibly be empty.

Proof. Lecture Notes.

The Pigeonhole Principle

Let n_1, \ldots, n_t $(t \ge 1)$ be non-negative integers, and let X be a set of size at least $1 + n_1 + \cdots + n_t$. If (X_1, \ldots, X_t) is any partition of X,^a then there exists some $i \in \{1, \ldots, t\}$ such that $|X_i| > n_i$.

^aHere, we allow the sets X_1, \ldots, X_t to possibly be empty.

Corollary 2.1

Let *n* and *t* be positive integers. Let *X* be an *n*-element set, and let (X_1, \ldots, X_t) be any partition of *X*.^{*a*} Then there exists some $i \in \{1, \ldots, t\}$ such that $|X_i| \ge \lfloor \frac{n}{t} \rfloor$.

^aHere, we allow the sets X_1, \ldots, X_t to possibly be empty.

Proof. Lecture Notes.

• Remark: Corollary 2.1 itself is sometimes referred to as the Pigeonhole Principle.

Definition

A *clique* in a graph G is any set of pairwise adjacent vertices of G. The *clique number* of G, denoted by $\omega(G)$, is the maximum size of a clique of G.

Definition

A *clique* in a graph G is any set of pairwise adjacent vertices of G. The *clique number* of G, denoted by $\omega(G)$, is the maximum size of a clique of G.

Definition

A stable set (or independent set) in a graph G is any set of pairwise non-adjacent vertices of G. The stability number (or independence number) of G, denoted by $\alpha(G)$, is the maximum size of a stable set in G.

Proposition 3.1

Let G be a graph on at least six vertices. Then either $\omega(G) \ge 3$ or $\alpha(G) \ge 3$.

Proof.
Let G be a graph on at least six vertices. Then either $\omega(G) \ge 3$ or $\alpha(G) \ge 3$.

Proof. Let *u* be any vertex of *G*. Then $|V(G) \setminus \{u\}| \ge 5$, and so (by the Pigeonhole Principle) either *u* has at least three neighbors or it has at least three non-neighbors.

Let G be a graph on at least six vertices. Then either $\omega(G) \ge 3$ or $\alpha(G) \ge 3$.

Proof. Let u be any vertex of G. Then $|V(G) \setminus \{u\}| \ge 5$, and so (by the Pigeonhole Principle) either u has at least three neighbors or it has at least three non-neighbors.

Suppose first that u has at least three neighbors.

Let G be a graph on at least six vertices. Then either $\omega(G) \ge 3$ or $\alpha(G) \ge 3$.

Proof. Let *u* be any vertex of *G*. Then $|V(G) \setminus \{u\}| \ge 5$, and so (by the Pigeonhole Principle) either *u* has at least three neighbors or it has at least three non-neighbors.

Suppose first that u has at least three neighbors.

If at least two of those neighbors, say u_1 and u_2 , are adjacent, then $\{u, u_1, u_2\}$ is a clique of G of size three, and we deduce that $\omega(G) \geq 3$.

Let G be a graph on at least six vertices. Then either $\omega(G) \ge 3$ or $\alpha(G) \ge 3$.

Proof. Let *u* be any vertex of *G*. Then $|V(G) \setminus \{u\}| \ge 5$, and so (by the Pigeonhole Principle) either *u* has at least three neighbors or it has at least three non-neighbors.

Suppose first that u has at least three neighbors.

If at least two of those neighbors, say u_1 and u_2 , are adjacent, then $\{u, u_1, u_2\}$ is a clique of G of size three, and we deduce that $\omega(G) \geq 3$. On the other hand, if no two neighbors of u are adjacent, then they together form a stable set of size at least three, and we deduce that $\alpha(G) \geq 3$.

Let G be a graph on at least six vertices. Then either $\omega(G) \ge 3$ or $\alpha(G) \ge 3$.

Proof (continued). Suppose now that u has at least three non-neighbors.

Let G be a graph on at least six vertices. Then either $\omega(G) \ge 3$ or $\alpha(G) \ge 3$.

Proof (continued). Suppose now that u has at least three non-neighbors.

If at least two of those non-neighbors, say u_1 and u_2 , are non-adjacent, then $\{u, u_1, u_2\}$ is a stable set of G of size three, and we deduce that $\alpha(G) \geq 3$.

Let G be a graph on at least six vertices. Then either $\omega(G) \ge 3$ or $\alpha(G) \ge 3$.

Proof (continued). Suppose now that u has at least three non-neighbors.

If at least two of those non-neighbors, say u_1 and u_2 , are non-adjacent, then $\{u, u_1, u_2\}$ is a stable set of G of size three, and we deduce that $\alpha(G) \geq 3$.

Let G be a graph on at least six vertices. Then either $\omega(G) \ge 3$ or $\alpha(G) \ge 3$.

Proof (continued). Suppose now that *u* has at least three non-neighbors.

If at least two of those non-neighbors, say u_1 and u_2 , are non-adjacent, then $\{u, u_1, u_2\}$ is a stable set of G of size three, and we deduce that $\alpha(G) \ge 3$. On the other hand, if the non-neighbors of u are pairwise adjacent, then they together form a clique of size at least three, and we deduce that $\omega(G) \ge 3$.

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Proof.

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Proof. We may assume inductively that for all positive integers k', ℓ' such that $k' + \ell' < k + \ell$, all graphs G' on at least $\binom{k'+\ell'-2}{k'-1}$ vertices satisfy either $\omega(G') \ge k'$ or $\alpha(G') \ge \ell'$.

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Proof. We may assume inductively that for all positive integers k', ℓ' such that $k' + \ell' < k + \ell$, all graphs G' on at least $\binom{k'+\ell'-2}{k'-1}$ vertices satisfy either $\omega(G') \ge k'$ or $\alpha(G') \ge \ell'$. If k = 1 or $\ell = 1$, then the result is immediate. So, we may assume

that $k, \ell \geq 2$.

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Proof. We may assume inductively that for all positive integers k', ℓ' such that $k' + \ell' < k + \ell$, all graphs G' on at least $\binom{k'+\ell'-2}{k'-1}$ vertices satisfy either $\omega(G') \ge k'$ or $\alpha(G') \ge \ell'$. If k = 1 or $\ell = 1$, then the result is immediate. So, we may assume that $k, \ell \ge 2$. Now, set $n = \binom{k+\ell-2}{k-1}$, $n_1 = \binom{k+\ell-3}{k-1}$, and $n_2 = \binom{k+\ell-3}{k-2}$; then $n = n_1 + n_2$, and consequently, $n - 1 = 1 + (n_1 - 1) + (n_2 - 1)$. Fix any vertex $u \in V(G)$, and set $N_1 = V(G) \setminus N_G[u]$ and $N_2 = N_G(u)$.

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Proof (continued).

Since (N_1, N_2) is a partition of $V(G) \setminus \{u\}$, and since

 $|V(G) \setminus \{u\}| \ge n-1 = 1+(n_1-1)+(n_2-1),$

the Pigeonhole Principle guarantees that either $|N_1| \ge n_1$ or $|N_2| \ge n_2$.

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Proof (continued). Reminder: either $|N_1| \ge n_1$ or $|N_2| \ge n_2$.

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Proof (continued). Reminder: either $|N_1| \ge n_1$ or $|N_2| \ge n_2$.

Suppose first that $|N_1| \ge n_1$, i.e. $|N_1| \ge \binom{k+(\ell-1)-2}{k-1}$.

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Proof (continued). Reminder: either $|N_1| \ge n_1$ or $|N_2| \ge n_2$.

Suppose first that $|N_1| \ge n_1$, i.e. $|N_1| \ge \binom{k+(\ell-1)-2}{k-1}$. Then by the induction hypothesis, either $\omega(G[N_1]) \ge k$ or $\alpha(G[N_1]) \ge \ell - 1$.

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Proof (continued). Reminder: either $|N_1| \ge n_1$ or $|N_2| \ge n_2$.

Suppose first that $|N_1| \ge n_1$, i.e. $|N_1| \ge \binom{k+(\ell-1)-2}{k-1}$. Then by the induction hypothesis, either $\omega(G[N_1]) \ge k$ or $\alpha(G[N_1]) \ge \ell - 1$. In the former case, we have that $\omega(G) \ge \omega(G[N_1]) \ge k$, and we are done.

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Proof (continued). Reminder: either $|N_1| \ge n_1$ or $|N_2| \ge n_2$.

Suppose first that $|N_1| \ge n_1$, i.e. $|N_1| \ge \binom{k+(\ell-1)-2}{k-1}$. Then by the induction hypothesis, either $\omega(G[N_1]) \ge k$ or $\alpha(G[N_1]) \ge \ell - 1$. In the former case, we have that $\omega(G) \ge \omega(G[N_1]) \ge k$, and we are done. So suppose that $\alpha(G[N_1]) \ge \ell - 1$. Then let *S* be a stable set of $G[N_1]$ of size $\ell - 1$.

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Proof (continued). Reminder: either $|N_1| \ge n_1$ or $|N_2| \ge n_2$.

Suppose first that $|N_1| \ge n_1$, i.e. $|N_1| \ge \binom{k+(\ell-1)-2}{k-1}$. Then by the induction hypothesis, either $\omega(G[N_1]) \ge k$ or $\alpha(G[N_1]) \ge \ell - 1$. In the former case, we have that $\omega(G) \ge \omega(G[N_1]) \ge k$, and we are done. So suppose that $\alpha(G[N_1]) \ge \ell - 1$. Then let *S* be a stable set of $G[N_1]$ of size $\ell - 1$. Then $\{u\} \cup S$ is a stable set of size ℓ in *G*, we deduce that $\alpha(G) \ge \ell$, and again we are done.

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Proof (continued). Reminder: either $|N_1| \ge n_1$ or $|N_2| \ge n_2$.

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Proof (continued). Reminder: either $|N_1| \ge n_1$ or $|N_2| \ge n_2$.

Suppose now that $|N_2| \ge n_2$, i.e. $|N_2| \ge \binom{(k-1)+\ell-2}{k-2}$.

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Proof (continued). Reminder: either $|N_1| \ge n_1$ or $|N_2| \ge n_2$.

Suppose now that $|N_2| \ge n_2$, i.e. $|N_2| \ge \binom{(k-1)+\ell-2}{k-2}$. Then by the induction hypothesis, either $\omega(G[N_2]) \ge k-1$ or $\alpha(G[N_2]) \ge \ell$.

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Proof (continued). Reminder: either $|N_1| \ge n_1$ or $|N_2| \ge n_2$.

Suppose now that $|N_2| \ge n_2$, i.e. $|N_2| \ge \binom{(k-1)+\ell-2}{k-2}$. Then by the induction hypothesis, either $\omega(G[N_2]) \ge k-1$ or $\alpha(G[N_2]) \ge \ell$. In the latter case, we have that $\alpha(G) \ge \alpha(G[N_2]) \ge \ell$, and we are done.

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Proof (continued). Reminder: either $|N_1| \ge n_1$ or $|N_2| \ge n_2$.

Suppose now that $|N_2| \ge n_2$, i.e. $|N_2| \ge \binom{(k-1)+\ell-2}{k-2}$. Then by the induction hypothesis, either $\omega(G[N_2]) \ge k-1$ or $\alpha(G[N_2]) \ge \ell$. In the latter case, we have that $\alpha(G) \ge \alpha(G[N_2]) \ge \ell$, and we are done. So suppose that $\omega(G[N_2]) \ge k-1$. Then let *C* be a clique of $G[N_2]$ of size k-1.

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Proof (continued). Reminder: either $|N_1| \ge n_1$ or $|N_2| \ge n_2$.

Suppose now that $|N_2| \ge n_2$, i.e. $|N_2| \ge \binom{(k-1)+\ell-2}{k-2}$. Then by the induction hypothesis, either $\omega(G[N_2]) \ge k-1$ or $\alpha(G[N_2]) \ge \ell$. In the latter case, we have that $\alpha(G) \ge \alpha(G[N_2]) \ge \ell$, and we are done. So suppose that $\omega(G[N_2]) \ge k-1$. Then let *C* be a clique of $G[N_2]$ of size k-1. But then $\{u\} \cup C$ is a clique of size k in *G*, we deduce that $\omega(G) \ge k$, and again we are done.

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Definition

For positive integers k and ℓ , we denote by $R(k, \ell)$ the smallest number n such that every graph G on at least n vertices satisfies either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Definition

For positive integers k and ℓ , we denote by $R(k, \ell)$ the smallest number n such that every graph G on at least n vertices satisfies either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

 The existence of R(k, ℓ) follows immediately from Theorem 3.2.

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Definition

For positive integers k and ℓ , we denote by $R(k, \ell)$ the smallest number n such that every graph G on at least n vertices satisfies either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

- The existence of R(k, ℓ) follows immediately from Theorem 3.2.
- Numbers $R(k, \ell)$ (with $k, \ell \ge 1$) are called *Ramsey numbers*.

For positive integers k and ℓ , we denote by $R(k, \ell)$ the smallest number n such that every graph G on at least n vertices satisfies either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

For positive integers k and ℓ , we denote by $R(k, \ell)$ the smallest number n such that every graph G on at least n vertices satisfies either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

• It is easy to see that for all $k, \ell \geq 1$, we have that

$$R(1, \ell) = 1$$
 $R(k, 1) = 1$
 $R(2, \ell) = \ell$ $R(k, 2) = k$

For positive integers k and ℓ , we denote by $R(k, \ell)$ the smallest number n such that every graph G on at least n vertices satisfies either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

• It is easy to see that for all $k, \ell \geq 1$, we have that

$$R(1, \ell) = 1$$
 $R(k, 1) = 1$
 $R(2, \ell) = \ell$ $R(k, 2) = k$

• Furthermore, we have R(3,3) = 6.

For positive integers k and ℓ , we denote by $R(k, \ell)$ the smallest number n such that every graph G on at least n vertices satisfies either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

• It is easy to see that for all $k, \ell \geq 1$, we have that

$$R(1, \ell) = 1$$
 $R(k, 1) = 1$
 $R(2, \ell) = \ell$ $R(k, 2) = k$

- Furthermore, we have R(3,3) = 6.
 - Indeed, by Proposition 3.1, $R(3,3) \leq 6$.

For positive integers k and ℓ , we denote by $R(k, \ell)$ the smallest number n such that every graph G on at least n vertices satisfies either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

• It is easy to see that for all $k, \ell \geq 1$, we have that

$$R(1, \ell) = 1$$
 $R(k, 1) = 1$
 $R(2, \ell) = \ell$ $R(k, 2) = k$

• Furthermore, we have R(3,3) = 6.

- Indeed, by Proposition 3.1, $R(3,3) \leq 6$.
- On the other hand, $\omega(C_5) = 2$ and $\alpha(C_5) = 2$, and so R(3,3) > 5.

For positive integers k and ℓ , we denote by $R(k, \ell)$ the smallest number n such that every graph G on at least n vertices satisfies either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

• It is easy to see that for all $k, \ell \geq 1$, we have that

$$R(1, \ell) = 1 \qquad R(k, 1) = 1 R(2, \ell) = \ell \qquad R(k, 2) = k$$

• Furthermore, we have R(3,3) = 6.

- Indeed, by Proposition 3.1, $R(3,3) \leq 6$.
- On the other hand, $\omega(C_5) = 2$ and $\alpha(C_5) = 2$, and so R(3,3) > 5.

• Thus, R(3,3) = 6.

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Definition

For positive integers k and ℓ , we denote by $R(k, \ell)$ the smallest number n such that every graph G on at least n vertices satisfies either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.
Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Definition

For positive integers k and ℓ , we denote by $R(k, \ell)$ the smallest number n such that every graph G on at least n vertices satisfies either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

• The exact values of a few other Ramsey numbers are known, but no general formula for $R(k, \ell)$ is known.

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

Definition

For positive integers k and ℓ , we denote by $R(k, \ell)$ the smallest number n such that every graph G on at least n vertices satisfies either $\omega(G) \ge k$ or $\alpha(G) \ge \ell$.

- The exact values of a few other Ramsey numbers are known, but no general formula for R(k, ℓ) is known.
- Note however, that Theorem 3.2 gives an upper bound for Ramsey numbers, namely, $R(k, \ell) \leq \binom{k+\ell-2}{k-1}$ for all $k, \ell \geq 1$.

For all integers $k \ge 3$, we have that $R(k, k) > 2^{k/2}$.

Proof.

For all integers $k \ge 3$, we have that $R(k, k) > 2^{k/2}$.

Proof. Since $\omega(C_5) = 2$ and $\alpha(C_5) = 2$, we see that $R(3,3) > 5 > 2^{3/2}$ and $R(4,4) > 5 > 2^{4/2}$. Thus, the claim holds for k = 3 and k = 4.

For all integers $k \ge 3$, we have that $R(k, k) > 2^{k/2}$.

Proof. Since $\omega(C_5) = 2$ and $\alpha(C_5) = 2$, we see that $R(3,3) > 5 > 2^{3/2}$ and $R(4,4) > 5 > 2^{4/2}$. Thus, the claim holds for k = 3 and k = 4.

From now on, we assume that $k \ge 5$.

For all integers $k \ge 3$, we have that $R(k, k) > 2^{k/2}$.

Proof. Since $\omega(C_5) = 2$ and $\alpha(C_5) = 2$, we see that $R(3,3) > 5 > 2^{3/2}$ and $R(4,4) > 5 > 2^{4/2}$. Thus, the claim holds for k = 3 and k = 4.

From now on, we assume that $k \ge 5$.

Let *G* be a graph on $n := \lfloor 2^{k/2} \rfloor$ vertices, with adjacency as follows: between any two distinct vertices, we (independently) put an edge with probability $\frac{1}{2}$ (and a non-edge with probability $\frac{1}{2}$).

For all integers $k \ge 3$, we have that $R(k, k) > 2^{k/2}$.

Proof (continued).

For all integers $k \ge 3$, we have that $R(k, k) > 2^{k/2}$.

Proof (continued). For any set of k vertices of G, the probability that this set is a clique is $(\frac{1}{2})^{\binom{k}{2}}$;

For all integers $k \ge 3$, we have that $R(k, k) > 2^{k/2}$.

Proof (continued). For any set of k vertices of G, the probability that this set is a clique is $(\frac{1}{2})^{\binom{k}{2}}$; there are $\binom{n}{k}$ subsets of V(G) of size k, and the probability that at least one of them is a clique is at most $\binom{n}{k}(\frac{1}{2})^{\binom{k}{2}}$.

For all integers $k \ge 3$, we have that $R(k, k) > 2^{k/2}$.

Proof (continued). For any set of k vertices of G, the probability that this set is a clique is $(\frac{1}{2})^{\binom{k}{2}}$; there are $\binom{n}{k}$ subsets of V(G) of size k, and the probability that at least one of them is a clique is at most $\binom{n}{k}(\frac{1}{2})^{\binom{k}{2}}$. So, the probability that $\omega(G) \ge k$ is at most $\binom{n}{k}(\frac{1}{2})^{\binom{k}{2}}$.

For all integers $k \ge 3$, we have that $R(k, k) > 2^{k/2}$.

Proof (continued). For any set of *k* vertices of *G*, the probability that this set is a clique is $(\frac{1}{2})^{\binom{k}{2}}$; there are $\binom{n}{k}$ subsets of V(G) of size *k*, and the probability that at least one of them is a clique is at most $\binom{n}{k}(\frac{1}{2})^{\binom{k}{2}}$. So, the probability that $\omega(G) \ge k$ is at most $\binom{n}{k}(\frac{1}{2})^{\binom{k}{2}}$. Similarly, the probability that $\alpha(G) \ge k$ is at most $\binom{n}{k}(\frac{1}{2})^{\binom{k}{2}}$.

For all integers $k \ge 3$, we have that $R(k, k) > 2^{k/2}$.

Proof (continued).

For all integers $k \ge 3$, we have that $R(k, k) > 2^{k/2}$.

Proof (continued). Thus, the probability that G satisfies at least one of $\omega(G) \ge k$ and $\alpha(G) \ge k$ is at most

$$2\binom{n}{k} \binom{1}{2} \binom{k}{2} \leq 2\binom{en}{k} \binom{1}{2} \binom{k}{2} \text{ by Theorem 2.1}$$
from Lecture Notes 1

$$\leq \frac{2(\frac{e2^{k/2}}{k})^{k}}{2^{k(k-1)/2}} \qquad \text{because } n = \lfloor 2^{k/2} \rfloor$$
$$= 2(\frac{e2^{k/2}}{k2^{(k-1)/2}})^{k}$$
$$< 2(\frac{e\sqrt{2}}{k})^{k}$$
$$< 1 \qquad \text{because } k \ge 5$$

For all integers $k \ge 3$, we have that $R(k, k) > 2^{k/2}$.

Proof (continued). Thus, the probability that G satisfies neither $\omega(G) \ge k$ nor $\alpha(G) \ge k$ is strictly positive.

For all integers $k \ge 3$, we have that $R(k, k) > 2^{k/2}$.

Proof (continued). Thus, the probability that *G* satisfies neither $\omega(G) \ge k$ nor $\alpha(G) \ge k$ is strictly positive. So, there must be at least one graph on $n = \lfloor 2^{k/2} \rfloor$ vertices whose clique number and stability number are both strictly less than *k*.

For all integers $k \ge 3$, we have that $R(k, k) > 2^{k/2}$.

Proof (continued). Thus, the probability that *G* satisfies neither $\omega(G) \ge k$ nor $\alpha(G) \ge k$ is strictly positive. So, there must be at least one graph on $n = \lfloor 2^{k/2} \rfloor$ vertices whose clique number and stability number are both strictly less than *k*. This proves that $R(k,k) > \lfloor 2^{k/2} \rfloor$; since R(k,k) is an integer, we deduce that $R(k,k) > 2^{k/2}$.