NDMI011: Combinatorics and Graph Theory 1

Lecture \#10

Sperner's theorem. Ramsey numbers

Irena Penev

December 7, 2020

This lecture has three parts:

This lecture has three parts:
(1) Sperner's theorem;

This lecture has three parts:
(1) Sperner's theorem;
(2) the Pigeonhole Principle;

This lecture has three parts:
(1) Sperner's theorem;
(2) the Pigeonhole Principle;
(3) Ramsey numbers.

Part I: Sperner's theorem

Part I: Sperner's theorem

Definition

For a set X,

- a chain in $(\mathscr{P}(X), \subseteq)$ is any set \mathcal{C} of subsets of X such that for all $C_{1}, C_{2} \in \mathcal{C}$, we have that either $C_{1} \subseteq C_{2}$ or $C_{2} \subseteq C_{1}$. ${ }^{a}$
- a maximal chain in $(\mathscr{P}(X), \subseteq)$ is a chain in $(\mathscr{P}(X), \subseteq)$ such that there is no chain \mathcal{C}^{\prime} in $(\mathscr{P}(X), \subseteq)$ with the property that $\mathcal{C} \varsubsetneqq \mathcal{C}^{\prime}$;
- an antichain in $(\mathscr{P}(X), \subseteq)$ is any set \mathcal{A} of subsets of X such that for all distinct $A_{1}, A_{2} \in \mathcal{A}$, we have that $A_{1} \nsubseteq A_{2}$ and $A_{2} \nsubseteq A_{1} .{ }^{b}$

[^0]
Example 2.1

Let $X=\{1,2,3,4\}$. The following are chains in $(\mathscr{P}(X), \subseteq):^{a}$

- $\{\{2,4\},\{1,2,4\}\}$; b
- $\{\emptyset,\{1\},\{1,2\},\{1,2,3\}, X\}$. ${ }^{c}$
- $\{\emptyset,\{4\},\{2,4\},\{1,2,4\}, X\}$; ${ }^{d}$

Further, the following are all antichains in $(\mathscr{P}(X), \subseteq)$: ${ }^{e}$

- $\{\emptyset\}$;
- $\{X\}$;
- $\{\{1,2\},\{2,3\},\{1,3,4\}\}$;
- $\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$.
${ }^{2}$ There are many other chains in $(\mathscr{P}(X), \subseteq)$ as well.
${ }^{b}$ Note that this chain is not maximal, since we can add (for example) the set $\{2\}$ to it and obtain a larger chain.
${ }^{c}$ This chain is maximal.
${ }^{d}$ This chain is maximal.
${ }^{e}$ There are many other antichains in ($\left.\mathscr{P}(X), \subseteq\right)$ as well.

Observation

Let X be any set. Then a chain and an antichain in $(\mathscr{P}(X), \subseteq)$ can have at most one element in common.

Observation

Let X be any set. Then a chain and an antichain in $(\mathscr{P}(X), \subseteq)$ can have at most one element in common.

Proof. Let \mathcal{C} be a chain and \mathcal{A} an antichain in $(\mathscr{P}(X), \subseteq)$, and suppose that $|\mathcal{C} \cap \mathcal{A}| \geq 2$. Fix distinct $X_{1}, X_{2} \in \mathcal{C} \cap \mathcal{A}$. Since $X_{1}, X_{2} \in \mathcal{C}$, we have that either $X_{1} \subseteq X_{2}$ or $X_{2} \subseteq X_{1}$. But this is impossible, because X_{1} and X_{2} are distinct elements of the antichain \mathcal{A}.

Sperner's theorem

Let n be a non-negative integer, and let X be an n-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n / 2\rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n / 2\rfloor}$ elements.

Proof.

Sperner's theorem

Let n be a non-negative integer, and let X be an n-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n / 2\rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n / 2\rfloor}$ elements.

Proof. First, we note that the set of all $\lfloor n / 2\rfloor$-element subsets of X is an antichain in $(\mathscr{P}(X), \subseteq)$, and this antichain has precisely $\binom{n}{(n / 2\rfloor}$ elements. It remains to show that any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n / 2\rfloor}$ elements.

Sperner's theorem

Let n be a non-negative integer, and let X be an n-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n / 2\rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n / 2\rfloor}$ elements.

Proof (continued).

Sperner's theorem

Let n be a non-negative integer, and let X be an n-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n / 2\rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n / 2\rfloor}$ elements.

Proof (continued).
Claim 1. There are precisely n ! maximal chains in $(\mathscr{P}(X), \subseteq)$.

Proof of Claim 1. Clearly, any maximal chain in $(\mathscr{P}(X), \subseteq)$ is of the form $\left\{\emptyset,\left\{x_{1}\right\},\left\{x_{1}, x_{2}\right\}, \ldots,\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right\}$, where x_{1}, \ldots, x_{n} is some ordering of the elements of X. There are precisely n ! such orderings, and so the number of maximal chains in $(\mathscr{P}(X), \subseteq)$ is $n!$.

Sperner's theorem

Let n be a non-negative integer, and let X be an n-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n / 2\rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n / 2\rfloor}$ elements.

Proof (continued).

Sperner's theorem

Let n be a non-negative integer, and let X be an n-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n / 2\rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n / 2\rfloor}$ elements.

Proof (continued).
Claim 2. For every set $A \subseteq X$, the number of maximal chains of $(\mathscr{P}(X), \subseteq)$ containing A is precisely

$$
|A|!(n-|A|)!.
$$

Proof of Claim 2. Set $k=|A|$. Any chain in $(\mathscr{P}(X), \subseteq)$ is of the form $\left\{\emptyset,\left\{x_{1}\right\},\left\{x_{1}, x_{2}\right\}, \ldots,\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right\}$, where x_{1}, \ldots, x_{n} is some ordering of the elements of X; this chain contains A iff $A=\left\{x_{1}, \ldots, x_{k}\right\}$ (and therefore, $X \backslash A=\left\{x_{k+1}, \ldots, x_{n}\right\}$). The number of ways of ordering A is $k!$, and the number of ways of ordering $X \backslash A$ is $(n-k)$!. So, the total number of chains of $(\mathscr{P}(X), \subseteq)$ containing A is precisely $k!(n-k)!$. \square

Sperner's theorem

Let n be a non-negative integer, and let X be an n-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n / 2\rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n / 2\rfloor}$ elements.

Proof (continued).

Sperner's theorem

Let n be a non-negative integer, and let X be an n-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n / 2\rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n / 2\rfloor}$ elements.

Proof (continued). Fix an antichain \mathcal{A} in $(\mathscr{P}(X), \subseteq)$. We form the matrix M whose rows are indexed by the elements of \mathcal{A}, and whose columns are indexed by the maximal chains of $(\mathscr{P}(X), \subseteq)$, and in which the (A, \mathcal{C})-th entry is 1 if $A \in \mathcal{C}$ and is 0 otherwise.

Sperner's theorem

Let n be a non-negative integer, and let X be an n-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{n / 2\rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n / 2\rfloor}$ elements.

Proof (continued). Fix an antichain \mathcal{A} in $(\mathscr{P}(X), \subseteq)$. We form the matrix M whose rows are indexed by the elements of \mathcal{A}, and whose columns are indexed by the maximal chains of $(\mathscr{P}(X), \subseteq)$, and in which the (A, \mathcal{C})-th entry is 1 if $A \in \mathcal{C}$ and is 0 otherwise. Our goal is to count the number of 1 's in the matrix M in two ways.

Sperner's theorem

Let n be a non-negative integer, and let X be an n-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n / 2\rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n / 2\rfloor}$ elements.

Proof (continued).

Sperner's theorem

Let n be a non-negative integer, and let X be an n-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n / 2\rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n / 2\rfloor}$ elements.

Proof (continued). First, by Claim 2, for any $A \in \mathcal{A}$, the number of maximal chains of $(\mathscr{P}(X), \subseteq)$ containing A is precisely $|A|!(n-|A|)!$; so, the number of 1 's in the row of M indexed by A is precisely $|A|!(n-|A|)$!.

Sperner's theorem

Let n be a non-negative integer, and let X be an n-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n / 2\rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n / 2\rfloor}$ elements.

Proof (continued). First, by Claim 2, for any $A \in \mathcal{A}$, the number of maximal chains of $(\mathscr{P}(X), \subseteq)$ containing A is precisely $|A|!(n-|A|)!$; so, the number of 1 's in the row of M indexed by A is precisely $|A|!(n-|A|)$!. Thus, the number of 1 's in the matrix M is precisely

$$
\sum_{A \in \mathcal{A}}|A|!(n-|A|)!.
$$

Sperner's theorem

Let n be a non-negative integer, and let X be an n-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n / 2\rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n / 2\rfloor}$ elements.

Proof (continued). First, by Claim 2, for any $A \in \mathcal{A}$, the number of maximal chains of $(\mathscr{P}(X), \subseteq)$ containing A is precisely $|A|!(n-|A|)!$; so, the number of 1 's in the row of M indexed by A is precisely $|A|!(n-|A|)$!. Thus, the number of 1 's in the matrix M is precisely

$$
\sum_{A \in \mathcal{A}}|A|!(n-|A|)!.
$$

On the other hand, by Claim 1, the number of columns of M is precisely $n!$. Furthermore, no chain of $(\mathscr{P}(X), \subseteq)$ contains more than one element of the antichain \mathcal{A}, and so no column of M contains more than one 1 . So, the total number of 1 's in the matrix M is at most $n!$.

Sperner's theorem

Let n be a non-negative integer, and let X be an n-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n / 2\rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n / 2\rfloor}$ elements.

Proof (continued). We now have that $\sum_{A \in \mathcal{A}}|A|!(n-|A|)!\leq n!$,

Sperner's theorem

Let n be a non-negative integer, and let X be an n-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n / 2\rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n / 2\rfloor}$ elements.

Proof (continued). We now have that $\sum_{A \in \mathcal{A}}|A|!(n-|A|)!\leq n!$, and consequently, $\sum_{A \in \mathcal{A}} \frac{|A|!(n-|A|)!}{n!} \leq 1$.

Sperner's theorem

Let n be a non-negative integer, and let X be an n-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n / 2\rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n / 2\rfloor}$ elements.

Proof (continued). We now have that $\sum_{A \in \mathcal{A}}|A|!(n-|A|)!\leq n!$, and consequently, $\sum_{A \in \mathcal{A}} \frac{|A|!(n-|A|)!}{n!} \leq 1$. On the other hand, for all $A \subseteq X$ (and in particular, for all $A \in \mathcal{A}$), we have that

$$
\frac{|A|!(n-|A|)!}{n!}=\frac{1}{|A|!(n!|A|)!}=\frac{1}{\binom{n \mid}{|A|}} \geq \frac{1}{\left(\left\lfloor n^{n} 2\right\rfloor\right)} .
$$

Sperner's theorem

Let n be a non-negative integer, and let X be an n-element set. Then any antichain in $(\mathscr{P}(X), \subseteq)$ has at most $\binom{n}{\lfloor n / 2\rfloor}$ elements. Furthermore, this bound is tight, that is, there exists an antichain in $(\mathscr{P}(X), \subseteq)$ that has precisely $\binom{n}{\lfloor n / 2\rfloor}$ elements.

Proof (continued). We now have that $\sum_{A \in \mathcal{A}}|A|!(n-|A|)!\leq n!$, and consequently, $\sum_{A \in \mathcal{A}} \frac{|A|!(n-|A|)!}{n!} \leq 1$. On the other hand, for all $A \subseteq X$ (and in particular, for all $A \in \mathcal{A}$), we have that

$$
\frac{|A|!(n-|A|)!}{n!}=\frac{1}{\frac{n!}{|A|!(n-|A|)!}}=\frac{1}{\binom{n}{|A|}} \geq \frac{1}{\binom{n}{\lfloor n / 2\rfloor}} .
$$

It follows that

$$
\left.1 \geq \sum_{A \in \mathcal{A}} \frac{|A|!(n-|A|)!}{n!} \geq \sum_{A \in \mathcal{A}} \frac{1}{\left({ }^{n} / 2\right\rfloor}\right) \geq|\mathcal{A}| \frac{1}{\left.\left({ }^{n} / 2\right\rfloor\right)},
$$

and consequently, $|\mathcal{A}| \leq\binom{ n}{\lfloor n / 2\rfloor}$. This completes the argument.

Part II: The Pigeonhole Principle

Part II: The Pigeonhole Principle

The Pigeonhole Principle
Let $n_{1}, \ldots, n_{t}(t \geq 1)$ be non-negative integers, and let X be a set of size at least $1+n_{1}+\cdots+n_{t}$. If $\left(X_{1}, \ldots, X_{t}\right)$ is any partition of $X,{ }^{a}$ then there exists some $i \in\{1, \ldots, t\}$ such that $\left|X_{i}\right|>n_{i}$.
${ }^{a}$ Here, we allow the sets X_{1}, \ldots, X_{t} to possibly be empty.

Part II: The Pigeonhole Principle

The Pigeonhole Principle

Let $n_{1}, \ldots, n_{t}(t \geq 1)$ be non-negative integers, and let X be a set of size at least $1+n_{1}+\cdots+n_{t}$. If $\left(X_{1}, \ldots, X_{t}\right)$ is any partition of $X,{ }^{a}$ then there exists some $i \in\{1, \ldots, t\}$ such that $\left|X_{i}\right|>n_{i}$.
${ }^{2}$ Here, we allow the sets X_{1}, \ldots, X_{t} to possibly be empty.
Proof. Suppose otherwise, and fix a partition $\left(X_{1}, \ldots, X_{t}\right)$ such that $\left|X_{i}\right| \leq n_{i}$ for all $i \in\{1, \ldots, t\}$. But then

$$
\begin{aligned}
1+n_{1}+\cdots+n_{t} & \leq|X| \\
& =\left|X_{1}\right|+\cdots+\left|X_{t}\right| \\
& \leq n_{1}+\cdots+n_{t}
\end{aligned}
$$

a contradiction.

The Pigeonhole Principle

Let $n_{1}, \ldots, n_{t}(t \geq 1)$ be non-negative integers, and let X be a set of size at least $1+n_{1}+\cdots+n_{t}$. If $\left(X_{1}, \ldots, X_{t}\right)$ is any partition of $X,{ }^{a}$ then there exists some $i \in\{1, \ldots, t\}$ such that $\left|X_{i}\right|>n_{i}$.
${ }^{2}$ Here, we allow the sets X_{1}, \ldots, X_{t} to possibly be empty.

The Pigeonhole Principle

Let $n_{1}, \ldots, n_{t}(t \geq 1)$ be non-negative integers, and let X be a set of size at least $1+n_{1}+\cdots+n_{t}$. If $\left(X_{1}, \ldots, X_{t}\right)$ is any partition of $X,{ }^{a}$ then there exists some $i \in\{1, \ldots, t\}$ such that $\left|X_{i}\right|>n_{i}$.
${ }^{2}$ Here, we allow the sets X_{1}, \ldots, X_{t} to possibly be empty.

Corollary 2.1

Let n and t be positive integers. Let X be an n-element set, and let $\left(X_{1}, \ldots, X_{t}\right)$ be any partition of $X .^{a}$ Then there exists some $i \in\{1, \ldots, t\}$ such that $\left|X_{i}\right| \geq\left\lceil\frac{n}{t}\right\rceil$.
${ }^{a}$ Here, we allow the sets X_{1}, \ldots, X_{t} to possibly be empty.
Proof. Lecture Notes.

The Pigeonhole Principle

Let $n_{1}, \ldots, n_{t}(t \geq 1)$ be non-negative integers, and let X be a set of size at least $1+n_{1}+\cdots+n_{t}$. If $\left(X_{1}, \ldots, X_{t}\right)$ is any partition of $X,{ }^{a}$ then there exists some $i \in\{1, \ldots, t\}$ such that $\left|X_{i}\right|>n_{i}$.
${ }^{3}$ Here, we allow the sets X_{1}, \ldots, X_{t} to possibly be empty.

Corollary 2.1

Let n and t be positive integers. Let X be an n-element set, and let $\left(X_{1}, \ldots, X_{t}\right)$ be any partition of $X .^{a}$ Then there exists some $i \in\{1, \ldots, t\}$ such that $\left|X_{i}\right| \geq\left\lceil\frac{n}{t}\right\rceil$.
${ }^{a}$ Here, we allow the sets X_{1}, \ldots, X_{t} to possibly be empty.
Proof. Lecture Notes.

- Remark: Corollary 2.1 itself is sometimes referred to as the Pigeonhole Principle.

Definition

A clique in a graph G is any set of pairwise adjacent vertices of G. The clique number of G, denoted by $\omega(G)$, is the maximum size of a clique of G.

Definition

A clique in a graph G is any set of pairwise adjacent vertices of G. The clique number of G, denoted by $\omega(G)$, is the maximum size of a clique of G.

Definition

A stable set (or independent set) in a graph G is any set of pairwise non-adjacent vertices of G. The stability number (or independence number) of G, denoted by $\alpha(G)$, is the maximum size of a stable set in G.

Proposition 3.1

Let G be a graph on at least six vertices. Then either $\omega(G) \geq 3$ or $\alpha(G) \geq 3$.

Proof.

Proposition 3.1

Let G be a graph on at least six vertices. Then either $\omega(G) \geq 3$ or $\alpha(G) \geq 3$.

Proof. Let u be any vertex of G. Then $|V(G) \backslash\{u\}| \geq 5$, and so (by the Pigeonhole Principle) either u has at least three neighbors or it has at least three non-neighbors.

Proposition 3.1

Let G be a graph on at least six vertices. Then either $\omega(G) \geq 3$ or $\alpha(G) \geq 3$.

Proof. Let u be any vertex of G. Then $|V(G) \backslash\{u\}| \geq 5$, and so (by the Pigeonhole Principle) either u has at least three neighbors or it has at least three non-neighbors.
Suppose first that u has at least three neighbors.

Proposition 3.1

Let G be a graph on at least six vertices. Then either $\omega(G) \geq 3$ or $\alpha(G) \geq 3$.

Proof. Let u be any vertex of G. Then $|V(G) \backslash\{u\}| \geq 5$, and so (by the Pigeonhole Principle) either u has at least three neighbors or it has at least three non-neighbors.
Suppose first that u has at least three neighbors.

If at least two of those neighbors, say u_{1} and u_{2}, are adjacent, then $\left\{u, u_{1}, u_{2}\right\}$ is a clique of G of size three, and we deduce that $\omega(G) \geq 3$.

Proposition 3.1

Let G be a graph on at least six vertices. Then either $\omega(G) \geq 3$ or $\alpha(G) \geq 3$.

Proof. Let u be any vertex of G. Then $|V(G) \backslash\{u\}| \geq 5$, and so (by the Pigeonhole Principle) either u has at least three neighbors or it has at least three non-neighbors.
Suppose first that u has at least three neighbors.

If at least two of those neighbors, say u_{1} and u_{2}, are adjacent, then $\left\{u, u_{1}, u_{2}\right\}$ is a clique of G of size three, and we deduce that $\omega(G) \geq 3$. On the other hand, if no two neighbors of u are adjacent, then they together form a stable set of size at least three, and we deduce that $\alpha(G) \geq 3$.

Proposition 3.1

Let G be a graph on at least six vertices. Then either $\omega(G) \geq 3$ or $\alpha(G) \geq 3$.

Proof (continued). Suppose now that u has at least three non-neighbors.

Proposition 3.1

Let G be a graph on at least six vertices. Then either $\omega(G) \geq 3$ or $\alpha(G) \geq 3$.

Proof (continued). Suppose now that u has at least three non-neighbors.

If at least two of those non-neighbors, say u_{1} and u_{2}, are non-adjacent, then $\left\{u, u_{1}, u_{2}\right\}$ is a stable set of G of size three, and we deduce that $\alpha(G) \geq 3$.

Proposition 3.1

Let G be a graph on at least six vertices. Then either $\omega(G) \geq 3$ or $\alpha(G) \geq 3$.

Proof (continued). Suppose now that u has at least three non-neighbors.

If at least two of those non-neighbors, say u_{1} and u_{2}, are non-adjacent, then $\left\{u, u_{1}, u_{2}\right\}$ is a stable set of G of size three, and we deduce that $\alpha(G) \geq 3$.

Proposition 3.1

Let G be a graph on at least six vertices. Then either $\omega(G) \geq 3$ or $\alpha(G) \geq 3$.

Proof (continued). Suppose now that u has at least three non-neighbors.
u.

If at least two of those non-neighbors, say u_{1} and u_{2}, are non-adjacent, then $\left\{u, u_{1}, u_{2}\right\}$ is a stable set of G of size three, and we deduce that $\alpha(G) \geq 3$. On the other hand, if the non-neighbors of u are pairwise adjacent, then they together form a clique of size at least three, and we deduce that $\omega(G) \geq 3$.

Theorem 3.2

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Proof.

Theorem 3.2

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Proof. We may assume inductively that for all positive integers $k^{\prime}, \ell^{\prime}$ such that $k^{\prime}+\ell^{\prime}<k+\ell$, all graphs G^{\prime} on at least $\binom{k^{\prime}+\ell^{\prime}-2}{k^{\prime}-1}$ vertices satisfy either $\omega\left(G^{\prime}\right) \geq k^{\prime}$ or $\alpha\left(G^{\prime}\right) \geq \ell^{\prime}$.

Theorem 3.2

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Proof. We may assume inductively that for all positive integers $k^{\prime}, \ell^{\prime}$ such that $k^{\prime}+\ell^{\prime}<k+\ell$, all graphs G^{\prime} on at least $\binom{k^{\prime}+\ell^{\prime}-2}{k^{\prime}-1}$ vertices satisfy either $\omega\left(G^{\prime}\right) \geq k^{\prime}$ or $\alpha\left(G^{\prime}\right) \geq \ell^{\prime}$.
If $k=1$ or $\ell=1$, then the result is immediate. So, we may assume that $k, \ell \geq 2$.

Theorem 3.2

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Proof. We may assume inductively that for all positive integers $k^{\prime}, \ell^{\prime}$ such that $k^{\prime}+\ell^{\prime}<k+\ell$, all graphs G^{\prime} on at least $\binom{k^{\prime}+\ell^{\prime}-2}{k^{\prime}-1}$ vertices satisfy either $\omega\left(G^{\prime}\right) \geq k^{\prime}$ or $\alpha\left(G^{\prime}\right) \geq \ell^{\prime}$.
If $k=1$ or $\ell=1$, then the result is immediate. So, we may assume that $k, \ell \geq 2$.
Now, set $n=\binom{k+\ell-2}{k-1}, n_{1}=\binom{k+\ell-3}{k-1}$, and $n_{2}=\binom{k+\ell-3}{k-2}$; then $n=n_{1}+n_{2}$, and consequently, $n-1=1+\left(n_{1}-1\right)+\left(n_{2}-1\right)$.
Fix any vertex $u \in V(G)$, and set $N_{1}=V(G) \backslash N_{G}[u]$ and $N_{2}=N_{G}(u)$.

Theorem 3.2

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Proof (continued).

Since $\left(N_{1}, N_{2}\right)$ is a partition of $V(G) \backslash\{u\}$, and since

$$
|V(G) \backslash\{u\}| \geq n-1=1+\left(n_{1}-1\right)+\left(n_{2}-1\right),
$$

the Pigeonhole Principle guarantees that either $\left|N_{1}\right| \geq n_{1}$ or $\left|N_{2}\right| \geq n_{2}$.

Theorem 3.2

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Proof (continued). Reminder: either $\left|N_{1}\right| \geq n_{1}$ or $\left|N_{2}\right| \geq n_{2}$.

Theorem 3.2

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Proof (continued). Reminder: either $\left|N_{1}\right| \geq n_{1}$ or $\left|N_{2}\right| \geq n_{2}$.

Suppose first that $\left|N_{1}\right| \geq n_{1}$, i.e. $\left|N_{1}\right| \geq\binom{ k+(\ell-1)-2}{k-1}$.

Theorem 3.2

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Proof (continued). Reminder: either $\left|N_{1}\right| \geq n_{1}$ or $\left|N_{2}\right| \geq n_{2}$.

Suppose first that $\left|N_{1}\right| \geq n_{1}$, i.e. $\left|N_{1}\right| \geq\binom{ k+(\ell-1)-2}{k-1}$. Then by the induction hypothesis, either $\omega\left(G\left[N_{1}\right]\right) \geq k$ or $\alpha\left(G\left[N_{1}\right]\right) \geq \ell-1$.

Theorem 3.2

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Proof (continued). Reminder: either $\left|N_{1}\right| \geq n_{1}$ or $\left|N_{2}\right| \geq n_{2}$.

Suppose first that $\left|N_{1}\right| \geq n_{1}$, i.e. $\left|N_{1}\right| \geq\binom{ k+(\ell-1)-2}{k-1}$. Then by the induction hypothesis, either $\omega\left(G\left[N_{1}\right]\right) \geq k$ or $\alpha\left(G\left[N_{1}\right]\right) \geq \ell-1$. In the former case, we have that $\omega(G) \geq \omega\left(G\left[N_{1}\right]\right) \geq k$, and we are done.

Theorem 3.2

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Proof (continued). Reminder: either $\left|N_{1}\right| \geq n_{1}$ or $\left|N_{2}\right| \geq n_{2}$.

Suppose first that $\left|N_{1}\right| \geq n_{1}$, i.e. $\left|N_{1}\right| \geq\binom{ k+(\ell-1)-2}{k-1}$. Then by the induction hypothesis, either $\omega\left(G\left[N_{1}\right]\right) \geq k$ or $\alpha\left(G\left[N_{1}\right]\right) \geq \ell-1$. In the former case, we have that $\omega(G) \geq \omega\left(G\left[N_{1}\right]\right) \geq k$, and we are done. So suppose that $\alpha\left(G\left[N_{1}\right]\right) \geq \ell-1$. Then let S be a stable set of $G\left[N_{1}\right]$ of size $\ell-1$.

Theorem 3.2

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Proof (continued). Reminder: either $\left|N_{1}\right| \geq n_{1}$ or $\left|N_{2}\right| \geq n_{2}$.

Suppose first that $\left|N_{1}\right| \geq n_{1}$, i.e. $\left|N_{1}\right| \geq\binom{ k+(\ell-1)-2}{k-1}$. Then by the induction hypothesis, either $\omega\left(G\left[N_{1}\right]\right) \geq k$ or $\alpha\left(G\left[N_{1}\right]\right) \geq \ell-1$. In the former case, we have that $\omega(G) \geq \omega\left(G\left[N_{1}\right]\right) \geq k$, and we are done. So suppose that $\alpha\left(G\left[N_{1}\right]\right) \geq \ell-1$. Then let S be a stable set of $G\left[N_{1}\right]$ of size $\ell-1$. Then $\{u\} \cup S$ is a stable set of size ℓ in G, we deduce that $\alpha(G) \geq \ell$, and again we are done.

Theorem 3.2

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Proof (continued). Reminder: either $\left|N_{1}\right| \geq n_{1}$ or $\left|N_{2}\right| \geq n_{2}$.

Theorem 3.2

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Proof (continued). Reminder: either $\left|N_{1}\right| \geq n_{1}$ or $\left|N_{2}\right| \geq n_{2}$.

Suppose now that $\left|N_{2}\right| \geq n_{2}$, i.e. $\left|N_{2}\right| \geq\binom{(k-1)+\ell-2}{k-2}$.

Theorem 3.2

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Proof (continued). Reminder: either $\left|N_{1}\right| \geq n_{1}$ or $\left|N_{2}\right| \geq n_{2}$.

Suppose now that $\left|N_{2}\right| \geq n_{2}$, i.e. $\left|N_{2}\right| \geq\binom{(k-1)+\ell-2}{k-2}$. Then by the induction hypothesis, either $\omega\left(G\left[N_{2}\right]\right) \geq k-1$ or $\alpha\left(G\left[N_{2}\right]\right) \geq \ell$.

Theorem 3.2

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Proof (continued). Reminder: either $\left|N_{1}\right| \geq n_{1}$ or $\left|N_{2}\right| \geq n_{2}$.

Suppose now that $\left|N_{2}\right| \geq n_{2}$, i.e. $\left|N_{2}\right| \geq\binom{(k-1)+\ell-2}{k-2}$. Then by the induction hypothesis, either $\omega\left(G\left[N_{2}\right]\right) \geq k-1$ or $\alpha\left(G\left[N_{2}\right]\right) \geq \ell$. In the latter case, we have that $\alpha(G) \geq \alpha\left(G\left[N_{2}\right]\right) \geq \ell$, and we are done.

Theorem 3.2

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Proof (continued). Reminder: either $\left|N_{1}\right| \geq n_{1}$ or $\left|N_{2}\right| \geq n_{2}$.

Suppose now that $\left|N_{2}\right| \geq n_{2}$, i.e. $\left|N_{2}\right| \geq\binom{(k-1)+\ell-2}{k-2}$. Then by the induction hypothesis, either $\omega\left(G\left[N_{2}\right]\right) \geq k-1$ or $\alpha\left(G\left[N_{2}\right]\right) \geq \ell$. In the latter case, we have that $\alpha(G) \geq \alpha\left(G\left[N_{2}\right]\right) \geq \ell$, and we are done. So suppose that $\omega\left(G\left[N_{2}\right]\right) \geq k-1$. Then let C be a clique of $G\left[N_{2}\right]$ of size $k-1$.

Theorem 3.2

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Proof (continued). Reminder: either $\left|N_{1}\right| \geq n_{1}$ or $\left|N_{2}\right| \geq n_{2}$.

Suppose now that $\left|N_{2}\right| \geq n_{2}$, i.e. $\left|N_{2}\right| \geq\binom{(k-1)+\ell-2}{k-2}$. Then by the induction hypothesis, either $\omega\left(G\left[N_{2}\right]\right) \geq k-1$ or $\alpha\left(G\left[N_{2}\right]\right) \geq \ell$. In the latter case, we have that $\alpha(G) \geq \alpha\left(G\left[N_{2}\right]\right) \geq \ell$, and we are done. So suppose that $\omega\left(G\left[N_{2}\right]\right) \geq k-1$. Then let C be a clique of $G\left[N_{2}\right]$ of size $k-1$. But then $\{u\} \cup C$ is a clique of size k in G, we deduce that $\omega(G) \geq k$, and again we are done.

Theorem 3.2
Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Theorem 3.2

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Definition

For positive integers k and ℓ, we denote by $R(k, \ell)$ the smallest number n such that every graph G on at least n vertices satisfies either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Theorem 3.2

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Definition

For positive integers k and ℓ, we denote by $R(k, \ell)$ the smallest number n such that every graph G on at least n vertices satisfies either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

- The existence of $R(k, \ell)$ follows immediately from Theorem 3.2.

Theorem 3.2

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Definition

For positive integers k and ℓ, we denote by $R(k, \ell)$ the smallest number n such that every graph G on at least n vertices satisfies either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

- The existence of $R(k, \ell)$ follows immediately from Theorem 3.2.
- Numbers $R(k, \ell)$ (with $k, \ell \geq 1$) are called Ramsey numbers.

Definition

For positive integers k and ℓ, we denote by $R(k, \ell)$ the smallest number n such that every graph G on at least n vertices satisfies either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Definition

For positive integers k and ℓ, we denote by $R(k, \ell)$ the smallest number n such that every graph G on at least n vertices satisfies either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

- It is easy to see that for all $k, \ell \geq 1$, we have that

$$
\begin{array}{ll}
R(1, \ell)=1 & R(k, 1)=1 \\
R(2, \ell)=\ell & R(k, 2)=k
\end{array}
$$

Definition

For positive integers k and ℓ, we denote by $R(k, \ell)$ the smallest number n such that every graph G on at least n vertices satisfies either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

- It is easy to see that for all $k, \ell \geq 1$, we have that

$$
\begin{array}{ll}
R(1, \ell)=1 & R(k, 1)=1 \\
R(2, \ell)=\ell & R(k, 2)=k
\end{array}
$$

- Furthermore, we have $R(3,3)=6$.

Definition

For positive integers k and ℓ, we denote by $R(k, \ell)$ the smallest number n such that every graph G on at least n vertices satisfies either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

- It is easy to see that for all $k, \ell \geq 1$, we have that

$$
\begin{array}{ll}
R(1, \ell)=1 & R(k, 1)=1 \\
R(2, \ell)=\ell & R(k, 2)=k
\end{array}
$$

- Furthermore, we have $R(3,3)=6$.
- Indeed, by Proposition 3.1, $R(3,3) \leq 6$.

Definition

For positive integers k and ℓ, we denote by $R(k, \ell)$ the smallest number n such that every graph G on at least n vertices satisfies either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

- It is easy to see that for all $k, \ell \geq 1$, we have that

$$
\begin{array}{ll}
R(1, \ell)=1 & R(k, 1)=1 \\
R(2, \ell)=\ell & R(k, 2)=k
\end{array}
$$

- Furthermore, we have $R(3,3)=6$.
- Indeed, by Proposition 3.1, $R(3,3) \leq 6$.
- On the other hand, $\omega\left(C_{5}\right)=2$ and $\alpha\left(C_{5}\right)=2$, and so $R(3,3)>5$.

Definition

For positive integers k and ℓ, we denote by $R(k, \ell)$ the smallest number n such that every graph G on at least n vertices satisfies either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

- It is easy to see that for all $k, \ell \geq 1$, we have that

$$
\begin{array}{ll}
R(1, \ell)=1 & R(k, 1)=1 \\
R(2, \ell)=\ell & R(k, 2)=k
\end{array}
$$

- Furthermore, we have $R(3,3)=6$.
- Indeed, by Proposition 3.1, $R(3,3) \leq 6$.
- On the other hand, $\omega\left(C_{5}\right)=2$ and $\alpha\left(C_{5}\right)=2$, and so $R(3,3)>5$.

- Thus, $R(3,3)=6$.

Theorem 3.2

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Definition

For positive integers k and ℓ, we denote by $R(k, \ell)$ the smallest number n such that every graph G on at least n vertices satisfies either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Theorem 3.2

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Definition

For positive integers k and ℓ, we denote by $R(k, \ell)$ the smallest number n such that every graph G on at least n vertices satisfies either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

- The exact values of a few other Ramsey numbers are known, but no general formula for $R(k, \ell)$ is known.

Theorem 3.2

Let k and ℓ be positive integers, and let G be a graph on at least $\binom{k+\ell-2}{k-1}$ vertices. Then either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

Definition

For positive integers k and ℓ, we denote by $R(k, \ell)$ the smallest number n such that every graph G on at least n vertices satisfies either $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.

- The exact values of a few other Ramsey numbers are known, but no general formula for $R(k, \ell)$ is known.
- Note however, that Theorem 3.2 gives an upper bound for Ramsey numbers, namely, $R(k, \ell) \leq\binom{ k+\ell-2}{k-1}$ for all $k, \ell \geq 1$.

Theorem 3.3

For all integers $k \geq 3$, we have that $R(k, k)>2^{k / 2}$.
Proof.

Theorem 3.3

For all integers $k \geq 3$, we have that $R(k, k)>2^{k / 2}$.
Proof. Since $\omega\left(C_{5}\right)=2$ and $\alpha\left(C_{5}\right)=2$, we see that $R(3,3)>5>2^{3 / 2}$ and $R(4,4)>5>2^{4 / 2}$. Thus, the claim holds for $k=3$ and $k=4$.

Theorem 3.3

For all integers $k \geq 3$, we have that $R(k, k)>2^{k / 2}$.
Proof. Since $\omega\left(C_{5}\right)=2$ and $\alpha\left(C_{5}\right)=2$, we see that $R(3,3)>5>2^{3 / 2}$ and $R(4,4)>5>2^{4 / 2}$. Thus, the claim holds for $k=3$ and $k=4$.

From now on, we assume that $k \geq 5$.

Theorem 3.3

For all integers $k \geq 3$, we have that $R(k, k)>2^{k / 2}$.
Proof. Since $\omega\left(C_{5}\right)=2$ and $\alpha\left(C_{5}\right)=2$, we see that $R(3,3)>5>2^{3 / 2}$ and $R(4,4)>5>2^{4 / 2}$. Thus, the claim holds for $k=3$ and $k=4$.

From now on, we assume that $k \geq 5$.
Let G be a graph on $n:=\left\lfloor 2^{k / 2}\right\rfloor$ vertices, with adjacency as follows: between any two distinct vertices, we (independently) put an edge with probability $\frac{1}{2}$ (and a non-edge with probability $\frac{1}{2}$).

Theorem 3.3
For all integers $k \geq 3$, we have that $R(k, k)>2^{k / 2}$.
Proof (continued).

Theorem 3.3
For all integers $k \geq 3$, we have that $R(k, k)>2^{k / 2}$.
Proof (continued). For any set of k vertices of G, the probability that this set is a clique is $\left(\frac{1}{2}\right)\binom{k}{2}$;

Theorem 3.3

For all integers $k \geq 3$, we have that $R(k, k)>2^{k / 2}$.
Proof (continued). For any set of k vertices of G, the probability that this set is a clique is $\left(\frac{1}{2}\right)\binom{k}{2}$; there are $\binom{n}{k}$ subsets of $V(G)$ of size k, and the probability that at least one of them is a clique is at most $\binom{n}{k}\left(\frac{1}{2}\right)^{\binom{k}{2} \text {. }}$

Theorem 3.3

For all integers $k \geq 3$, we have that $R(k, k)>2^{k / 2}$.
Proof (continued). For any set of k vertices of G, the probability that this set is a clique is $\left(\frac{1}{2}\right)\binom{k}{2}$; there are $\binom{n}{k}$ subsets of $V(G)$ of size k, and the probability that at least one of them is a clique is at most $\binom{n}{k}\left(\frac{1}{2}\right)\binom{k}{2}$. So, the probability that $\omega(G) \geq k$ is at most $\binom{n}{k}\left(\frac{1}{2}\right)\binom{k}{2}$ 。

Theorem 3.3

For all integers $k \geq 3$, we have that $R(k, k)>2^{k / 2}$.
Proof (continued). For any set of k vertices of G, the probability that this set is a clique is $\left(\frac{1}{2}\right)\binom{k}{2}$; there are $\binom{n}{k}$ subsets of $V(G)$ of size k, and the probability that at least one of them is a clique is at most $\binom{n}{k}\left(\frac{1}{2}\right)\binom{k}{2}$. So, the probability that $\omega(G) \geq k$ is at most
 $\binom{n}{k}\left(\frac{1}{2}\right)\binom{k}{2}$.

Theorem 3.3

For all integers $k \geq 3$, we have that $R(k, k)>2^{k / 2}$.
Proof (continued).

Theorem 3.3

For all integers $k \geq 3$, we have that $R(k, k)>2^{k / 2}$.
Proof (continued). Thus, the probability that G satisfies at least one of $\omega(G) \geq k$ and $\alpha(G) \geq k$ is at most

$$
2\binom{n}{k}\left(\frac{1}{2}\right)^{\binom{k}{2}} \leq 2\left(\frac{e n}{k}\right)^{k}\left(\frac{1}{2}\right)^{\binom{k}{2}} \quad \text { by Theorem } 2.1
$$

from Lecture Notes 1

$$
\begin{array}{ll}
\leq \frac{2\left(\frac{e e^{k / 2}}{k}\right)^{k}}{2^{k(k-1) / 2}} & \text { because } n=\lfloor 2 \\
=2\left(\frac{e 2^{k / 2}}{k 2^{(k-1) / 2}}\right)^{k} & \\
<2\left(\frac{e \sqrt{2}}{k}\right)^{k} & \\
<1 & \text { because } k \geq 5
\end{array}
$$

Theorem 3.3

For all integers $k \geq 3$, we have that $R(k, k)>2^{k / 2}$.
Proof (continued). Thus, the probability that G satisfies neither $\omega(G) \geq k$ nor $\alpha(G) \geq k$ is strictly positive.

Theorem 3.3

For all integers $k \geq 3$, we have that $R(k, k)>2^{k / 2}$.
Proof (continued). Thus, the probability that G satisfies neither $\omega(G) \geq k$ nor $\alpha(G) \geq k$ is strictly positive. So, there must be at least one graph on $n=\left\lfloor 2^{k / 2}\right\rfloor$ vertices whose clique number and stability number are both strictly less than k.

Theorem 3.3

For all integers $k \geq 3$, we have that $R(k, k)>2^{k / 2}$.
Proof (continued). Thus, the probability that G satisfies neither $\omega(G) \geq k$ nor $\alpha(G) \geq k$ is strictly positive. So, there must be at least one graph on $n=\left\lfloor 2^{k / 2}\right\rfloor$ vertices whose clique number and stability number are both strictly less than k.
This proves that $R(k, k)>\left\lfloor 2^{k / 2}\right\rfloor$; since $R(k, k)$ is an integer, we deduce that $R(k, k)>2^{k / 2}$.

[^0]: ${ }^{a}$ This definition works both for finite and for infinite X. Note also that \emptyset is a chain in $(\mathscr{P}(X), \subseteq)$. However, if X is finite and \mathcal{C} is a non-empty chain in $(\mathscr{P}(X), \subseteq)$, then \mathcal{C} can be ordered as $\mathcal{C}=\left\{C_{1}, \ldots, C_{t}\right\}$ so that $C_{1} \subseteq \cdots \subseteq C_{t}$.
 ${ }^{b}$ Equivalently: $A_{1} \backslash A_{2}$ and $A_{2} \backslash A_{1}$ are both non-empty.

