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This lecture has three parts:

1 Sperner’s theorem;
2 the Pigeonhole Principle;
3 Ramsey numbers.
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Part I: Sperner’s theorem

Definition
For a set X ,

a chain in (P(X ),⊆) is any set C of subsets of X such that
for all C1,C2 ∈ C, we have that either C1 ⊆ C2 or C2 ⊆ C1.a

a maximal chain in (P(X ),⊆) is a chain in (P(X ),⊆) such
that there is no chain C′ in (P(X ),⊆) with the property that
C $ C′;
an antichain in (P(X ),⊆) is any set A of subsets of X such
that for all distinct A1,A2 ∈ A, we have that A1 6⊆ A2 and
A2 6⊆ A1.b

aThis definition works both for finite and for infinite X . Note also that ∅ is a
chain in (P(X),⊆). However, if X is finite and C is a non-empty chain in
(P(X),⊆), then C can be ordered as C = {C1, . . . , Ct} so that C1 ⊆ · · · ⊆ Ct .

bEquivalently: A1 \ A2 and A2 \ A1 are both non-empty.
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Example 2.1
Let X = {1, 2, 3, 4}. The following are chains in (P(X ),⊆):a

{{2, 4}, {1, 2, 4}};b

{∅, {1}, {1, 2}, {1, 2, 3},X}.c

{∅, {4}, {2, 4}, {1, 2, 4},X};d

Further, the following are all antichains in (P(X ),⊆):e

{∅};
{X};
{{1, 2}, {2, 3}, {1, 3, 4}};
{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.

aThere are many other chains in (P(X),⊆) as well.
bNote that this chain is not maximal, since we can add (for example) the set

{2} to it and obtain a larger chain.
cThis chain is maximal.
dThis chain is maximal.
eThere are many other antichains in (P(X),⊆) as well.



Observation
Let X be any set. Then a chain and an antichain in (P(X ),⊆)
can have at most one element in common.

Proof. Let C be a chain and A an antichain in (P(X ),⊆), and
suppose that |C ∩ A| ≥ 2. Fix distinct X1,X2 ∈ C ∩ A. Since
X1,X2 ∈ C, we have that either X1 ⊆ X2 or X2 ⊆ X1. But this is
impossible, because X1 and X2 are distinct elements of the
antichain A.



Observation
Let X be any set. Then a chain and an antichain in (P(X ),⊆)
can have at most one element in common.

Proof. Let C be a chain and A an antichain in (P(X ),⊆), and
suppose that |C ∩ A| ≥ 2. Fix distinct X1,X2 ∈ C ∩ A. Since
X1,X2 ∈ C, we have that either X1 ⊆ X2 or X2 ⊆ X1. But this is
impossible, because X1 and X2 are distinct elements of the
antichain A.



Sperner’s theorem
Let n be a non-negative integer, and let X be an n-element set.
Then any antichain in (P(X ),⊆) has at most

( n
bn/2c

)
elements.

Furthermore, this bound is tight, that is, there exists an antichain
in (P(X ),⊆) that has precisely

( n
bn/2c

)
elements.

Proof.

First, we note that the set of all bn/2c-element subsets of
X is an antichain in (P(X ),⊆), and this antichain has precisely( n
bn/2c

)
elements. It remains to show that any antichain in

(P(X ),⊆) has at most
( n
bn/2c

)
elements.
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Proof (continued).

Claim 1. There are precisely n! maximal chains in
(P(X ),⊆).

Proof of Claim 1. Clearly, any maximal chain in (P(X ),⊆) is of
the form {∅, {x1}, {x1, x2}, . . . , {x1, x2, . . . , xn}}, where x1, . . . , xn
is some ordering of the elements of X . There are precisely n! such
orderings, and so the number of maximal chains in (P(X ),⊆) is
n!. �
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Claim 2. For every set A ⊆ X, the number of maximal
chains of (P(X ),⊆) containing A is precisely
|A|!(n − |A|)!.

Proof of Claim 2. Set k = |A|. Any chain in (P(X ),⊆) is of the
form {∅, {x1}, {x1, x2}, . . . , {x1, x2, . . . , xn}}, where x1, . . . , xn is
some ordering of the elements of X ; this chain contains A iff
A = {x1, . . . , xk} (and therefore, X \ A = {xk+1, . . . , xn}). The
number of ways of ordering A is k!, and the number of ways of
ordering X \ A is (n − k)!. So, the total number of chains of
(P(X ),⊆) containing A is precisely k!(n − k)!. �
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Proof (continued).

Fix an antichain A in (P(X ),⊆). We form the
matrix M whose rows are indexed by the elements of A, and whose
columns are indexed by the maximal chains of (P(X ),⊆), and in
which the (A, C)-th entry is 1 if A ∈ C and is 0 otherwise.
Our goal is to count the number of 1’s in the matrix M in two
ways.
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First, by Claim 2, for any A ∈ A, the number
of maximal chains of (P(X ),⊆) containing A is precisely
|A|!(n − |A|)!; so, the number of 1’s in the row of M indexed by A
is precisely |A|!(n− |A|)!. Thus, the number of 1’s in the matrix M
is precisely ∑

A∈A
|A|!(n − |A|)!.

On the other hand, by Claim 1, the number of columns of M is
precisely n!. Furthermore, no chain of (P(X ),⊆) contains more
than one element of the antichain A, and so no column of M
contains more than one 1. So, the total number of 1’s in the
matrix M is at most n!.
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Proof (continued). We now have that
∑

A∈A
|A|!(n − |A|)! ≤ n!,

and

consequently,
∑

A∈A

|A|!(n−|A|)!
n! ≤ 1. On the other hand, for all

A ⊆ X (and in particular, for all A ∈ A), we have that
|A|!(n−|A|)!

n! = 1
n!

|A|!(n−|A|)!
= 1

( n
|A|)

≥ 1
( n
bn/2c)

.

It follows that

1 ≥
∑

A∈A

|A|!(n−|A|)!
n! ≥

∑
A∈A

1
( n
bn/2c)

≥ |A| 1
( n
bn/2c)

,

and consequently, |A| ≤
( n
bn/2c

)
. This completes the argument.
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Part II: The Pigeonhole Principle

The Pigeonhole Principle
Let n1, . . . , nt (t ≥ 1) be non-negative integers, and let X be a set
of size at least 1 + n1 + · · ·+ nt . If (X1, . . . ,Xt) is any partition of
X ,a then there exists some i ∈ {1, . . . , t} such that |Xi | > ni .

aHere, we allow the sets X1, . . . , Xt to possibly be empty.

Proof. Suppose otherwise, and fix a partition (X1, . . . ,Xt) such
that |Xi | ≤ ni for all i ∈ {1, . . . , t}. But then

1 + n1 + · · ·+ nt ≤ |X |

= |X1|+ · · ·+ |Xt |

≤ n1 + · · ·+ nt ,

a contradiction.
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Corollary 2.1
Let n and t be positive integers. Let X be an n-element set, and
let (X1, . . . ,Xt) be any partition of X .a Then there exists some
i ∈ {1, . . . , t} such that |Xi | ≥ dn

t e.
aHere, we allow the sets X1, . . . , Xt to possibly be empty.

Proof. Lecture Notes.

Remark: Corollary 2.1 itself is sometimes referred to as the
Pigeonhole Principle.
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Definition
A clique in a graph G is any set of pairwise adjacent vertices of G .
The clique number of G , denoted by ω(G), is the maximum size of
a clique of G .

Definition
A stable set (or independent set) in a graph G is any set of
pairwise non-adjacent vertices of G . The stability number (or
independence number) of G , denoted by α(G), is the maximum
size of a stable set in G .
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Proposition 3.1
Let G be a graph on at least six vertices. Then either ω(G) ≥ 3 or
α(G) ≥ 3.

Proof.

Let u be any vertex of G . Then |V (G) \ {u}| ≥ 5, and so
(by the Pigeonhole Principle) either u has at least three neighbors
or it has at least three non-neighbors.
Suppose first that u has at least three neighbors.

u

If at least two of those neighbors, say u1 and u2, are adjacent, then
{u, u1, u2} is a clique of G of size three, and we deduce that
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three, and we deduce that α(G) ≥ 3.
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Theorem 3.2
Let k and ` be positive integers, and let G be a graph on at least(k+`−2

k−1
)

vertices. Then either ω(G) ≥ k or α(G) ≥ `.

Proof.

We may assume inductively that for all positive integers
k ′, `′ such that k ′ + `′ < k + `, all graphs G ′ on at least

(k′+`′−2
k′−1

)
vertices satisfy either ω(G ′) ≥ k ′ or α(G ′) ≥ `′.
If k = 1 or ` = 1, then the result is immediate. So, we may assume
that k, ` ≥ 2.
Now, set n =

(k+`−2
k−1

)
, n1 =

(k+`−3
k−1

)
, and n2 =

(k+`−3
k−2

)
; then

n = n1 + n2, and consequently, n − 1 = 1 + (n1 − 1) + (n2 − 1).
Fix any vertex u ∈ V (G), and set N1 = V (G) \ NG [u] and
N2 = NG(u).

u

N1 N2
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Proof (continued).
u

N1 N2

Since (N1,N2) is a partition of V (G) \ {u}, and since

|V (G) \ {u}| ≥ n − 1 = 1 + (n1 − 1) + (n2 − 1),

the Pigeonhole Principle guarantees that either |N1| ≥ n1 or
|N2| ≥ n2.
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Proof (continued). Reminder: either |N1| ≥ n1 or |N2| ≥ n2.
u

N1 N2

Suppose first that |N1| ≥ n1, i.e. |N1| ≥
(k+(`−1)−2

k−1
)
. Then by the

induction hypothesis, either ω(G [N1]) ≥ k or α(G [N1]) ≥ `− 1. In
the former case, we have that ω(G) ≥ ω(G [N1]) ≥ k, and we are
done. So suppose that α(G [N1]) ≥ `− 1. Then let S be a stable
set of G [N1] of size `− 1. Then {u} ∪ S is a stable set of size ` in
G , we deduce that α(G) ≥ `, and again we are done.
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Definition
For positive integers k and `, we denote by R(k, `) the smallest
number n such that every graph G on at least n vertices satisfies
either ω(G) ≥ k or α(G) ≥ `.

The existence of R(k, `) follows immediately from
Theorem 3.2.
Numbers R(k, `) (with k, ` ≥ 1) are called Ramsey numbers.
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For positive integers k and `, we denote by R(k, `) the smallest
number n such that every graph G on at least n vertices satisfies
either ω(G) ≥ k or α(G) ≥ `.

It is easy to see that for all k, ` ≥ 1, we have that

R(1, `) = 1 R(k, 1) = 1
R(2, `) = ` R(k, 2) = k

Furthermore, we have R(3, 3) = 6.

Indeed, by Proposition 3.1, R(3, 3) ≤ 6.
On the other hand, ω(C5) = 2 and α(C5) = 2, and so
R(3, 3) > 5.

Thus, R(3, 3) = 6.
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either ω(G) ≥ k or α(G) ≥ `.

The exact values of a few other Ramsey numbers are known,
but no general formula for R(k, `) is known.
Note however, that Theorem 3.2 gives an upper bound for
Ramsey numbers, namely, R(k, `) ≤

(k+`−2
k−1

)
for all k, ` ≥ 1.
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Theorem 3.3
For all integers k ≥ 3, we have that R(k, k) > 2k/2.

Proof.

Since ω(C5) = 2 and α(C5) = 2, we see that
R(3, 3) > 5 > 23/2 and R(4, 4) > 5 > 24/2. Thus, the claim holds
for k = 3 and k = 4.

From now on, we assume that k ≥ 5.
Let G be a graph on n := b2k/2c vertices, with adjacency as
follows: between any two distinct vertices, we (independently) put
an edge with probability 1

2 (and a non-edge with probability 1
2).
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Theorem 3.3
For all integers k ≥ 3, we have that R(k, k) > 2k/2.

Proof (continued).

For any set of k vertices of G , the probability
that this set is a clique is (1

2)(k
2); there are

(n
k
)

subsets of V (G) of
size k, and the probability that at least one of them is a clique is
at most

(n
k
)
(1

2)(k
2). So, the probability that ω(G) ≥ k is at most(n

k
)
(1
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2). Similarly, the probability that α(G) ≥ k is at most(n
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)
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Thus, the probability that G satisfies at least
one of ω(G) ≥ k and α(G) ≥ k is at most
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Theorem 3.3
For all integers k ≥ 3, we have that R(k, k) > 2k/2.

Proof (continued). Thus, the probability that G satisfies neither
ω(G) ≥ k nor α(G) ≥ k is strictly positive.

So, there must be at
least one graph on n = b2k/2c vertices whose clique number and
stability number are both strictly less than k.
This proves that R(k, k) > b2k/2c; since R(k, k) is an integer, we
deduce that R(k, k) > 2k/2.
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