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Part I: Sperner’s theorem

For a set X,

@ a chainin (Z(X), Q) is any set C of subsets of X such that
for all C;, G, € C, we have that either G C G or G C (.9

@ a maximal chain in (#(X), C) is a chain in (Z(X), C) such
that there is no chain C" in (22(X), C) with the property that
C S

@ an antichain in (Z(X),C) is any set A of subsets of X such
that for all distinct A1, A € A, we have that A; Z A and
Ay Z Ar P

?This definition works both for finite and for infinite X. Note also that @ is a
chain in (£(X), C). However, if X is finite and C is a non-empty chain in
(Z(X),C), then C can be ordered as C = {Cy,..., G} so that GG C --- C C;.

quuivaIentIy: A1\ A2 and Az \ A; are both non-empty.




Example 2.1

Let X = {1,2,3,4}. The following are chains in (Z(X),C):?
o [{2,4},{1,2,4}}
o {0,{1},{1,2},{1,2,3}, X}.c
o {0,{4},{2,4},{1,2,4}, X},
Further, the following are all antichains in (Z(X), C):¢
o {0};
° {X};
o {{1,2},{2,3},{1,3,4}};
o {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}.

“There are many other chains in (Z(X), C) as well.

Note that this chain is not maximal, since we can add (for example) the set
{2} to it and obtain a larger chain.

“This chain is maximal.
9This chain is maximal.

“There are many other antichains in (22(X), C) as well.



Observation

Let X be any set. Then a chain and an antichain in (Z(X), C)
can have at most one element in common.




Observation

Let X be any set. Then a chain and an antichain in (Z(X), C)
can have at most one element in common.

Proof. Let C be a chain and A an antichain in (£(X), C), and
suppose that |[C N A| > 2. Fix distinct X3, X, € CN.A. Since
X1, X5 € C, we have that either X3 C X5 or Xo C X;. But this is
impossible, because X; and X, are distinct elements of the
antichain A.




Sperner's theorem

Let n be a non-negative integer, and let X be an n-element set.
Then any antichain in (2(X), C) has at most (|, ) elements.
Furthermore, this bound is tight, that is, there exists an antichain
in (2(X), Q) that has precisely (Ln72J) elements.

Proof.



Sperner's theorem

Let n be a non-negative integer, and let X be an n-element set.
Then any antichain in (2(X), C) has at most (|, ) elements.
Furthermore, this bound is tight, that is, there exists an antichain
in (2(X), Q) that has precisely (Ln72J) elements.

Proof. First, we note that the set of all | n/2]-element subsets of
X is an antichain in (Z(X), ), and this antichain has precisely
(Ln'/12j) elements. It remains to show that any antichain in
(Z£(X), <) has at most (l_n,/12j) elements.
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Sperner’s theorem

Let n be a non-negative integer, and let X be an n-element set.
Then any antichain in (Z2(X), C) has at most (Ln72j) elements.
Furthermore, this bound is tight, that is, there exists an antichain
in (Z(X), Q) that has precisely (Ln72J) elements.

Proof (continued).

Claim 1. There are precisely n! maximal chains in
(2(X),9).

Proof of Claim 1. Clearly, any maximal chain in (Z(X), Q) is of
the form {0, {x1}, {x1,x2}, ..., {x1,x2, ..., xn}}, where x1,..., X,
is some ordering of the elements of X. There are precisely n! such

orderings, and so the number of maximal chains in (Z2(X), Q) is
n. A
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Sperner’s theorem

Let n be a non-negative integer, and let X be an n-element set.
Then any antichain in (Z2(X), C) has at most (L /2J) elements.
Furthermore, this bound is tight, that is, there exists an antichain
in (Z(X), Q) that has precisely (L /2J) elements.

Proof (continued).

Claim 2. For every set A C X, the number of maximal
chains of (£(X), C) containing A is precisely
|A['(n — |A])".

Proof of Claim 2. Set k = |A|. Any chain in (Z(X), Q) is of the
form {0, {x1}, {x1,x2}, ..., {x1,x2, ..., xn}}, where x1,...,x, is
some ordering of the elements of X; this chain contains A iff
A= {x1,...,xk} (and therefore, X \ A= {xk41,...,%n}). The
number of ways of ordering A is k!, and the number of ways of
ordering X \ Ais (n — k)!. So, the total number of chains of
(Z(X), C) containing A is precisely k!(n— k)!. B
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Then any antichain in (2(X), C) has at most (|, ) elements.
Furthermore, this bound is tight, that is, there exists an antichain
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Proof (continued). Fix an antichain A in (Z(X), C). We form the
matrix M whose rows are indexed by the elements of A, and whose
columns are indexed by the maximal chains of (Z?(X), C), and in
which the (A, C)-th entry is 1 if A€ C and is 0 otherwise.



Sperner's theorem

Let n be a non-negative integer, and let X be an n-element set.
Then any antichain in (2(X), C) has at most (|, ) elements.
Furthermore, this bound is tight, that is, there exists an antichain
in (#(X), <) that has precisely (|7, ) elements.

Proof (continued). Fix an antichain A in (Z(X), C). We form the
matrix M whose rows are indexed by the elements of A, and whose
columns are indexed by the maximal chains of (Z?(X), C), and in
which the (A, C)-th entry is 1 if A€ C and is 0 otherwise.

Our goal is to count the number of 1's in the matrix M in two
ways.



Sperner's theorem

Let n be a non-negative integer, and let X be an n-element set.
Then any antichain in (2(X), C) has at most (|7, ) elements.
Furthermore, this bound is tight, that is, there exists an antichain
in (#(X), <) that has precisely (|7, ) elements.

Proof (continued).



Sperner's theorem

Let n be a non-negative integer, and let X be an n-element set.
Then any antichain in (2(X), C) has at most (|7, ) elements.
Furthermore, this bound is tight, that is, there exists an antichain
in (#(X), <) that has precisely (|7, ) elements.

Proof (continued). First, by Claim 2, for any A € A, the number
of maximal chains of (Z?(X), C) containing A is precisely

|A|!(n — |A])!; so, the number of 1's in the row of M indexed by A
is precisely |A|!(n— |A])!.



Sperner's theorem

Let n be a non-negative integer, and let X be an n-element set.
Then any antichain in (2(X), C) has at most (|7, ) elements.
Furthermore, this bound is tight, that is, there exists an antichain
in (#(X), <) that has precisely (|7, ) elements.

Proof (continued). First, by Claim 2, for any A € A, the number
of maximal chains of (Z?(X), C) containing A is precisely

|A|!(n — |A])!; so, the number of 1's in the row of M indexed by A
is precisely |A|!(n— |A])!. Thus, the number of 1's in the matrix M

is precisely
D Al — A
AcA



Sperner's theorem

Let n be a non-negative integer, and let X be an n-element set.
Then any antichain in (2(X), C) has at most (|7, ) elements.
Furthermore, this bound is tight, that is, there exists an antichain
in (#(X), <) that has precisely (|7, ) elements.

Proof (continued). First, by Claim 2, for any A € A, the number
of maximal chains of (Z?(X), C) containing A is precisely

|A|!(n — |A])!; so, the number of 1's in the row of M indexed by A
is precisely |A|!(n— |A])!. Thus, the number of 1's in the matrix M

is precisely
D Al — A
AcA

On the other hand, by Claim 1, the number of columns of M is
precisely n!. Furthermore, no chain of (Z(X), C) contains more
than one element of the antichain A, and so no column of M
contains more than one 1. So, the total number of 1's in the
matrix M is at most n!.
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Then any antichain in (£2(X), C) has at most (Ln’/72J) elements.
Furthermore, this bound is tight, that is, there exists an antichain
in (Z(X), Q) that has precisely (Ln72J) elements.

Proof (continued). We now have that > |A|l(n— |A|)! < nl,
AcA



Sperner’s theorem

Let n be a non-negative integer, and let X be an n-element set.
Then any antichain in (£2(X), C) has at most (Ln’/72J) elements.
Furthermore, this bound is tight, that is, there exists an antichain
in (Z(X), Q) that has precisely (Ln72J) elements.

Proof (continued). We now have that > |A|l(n— |A|)! < n!, and
AcA

A_A)!

consequently, >
AcA



Sperner’s theorem

Let n be a non-negative integer, and let X be an n-element set.
Then any antichain in (£2(X), C) has at most (Ln’/72J) elements.
Furthermore, this bound is tight, that is, there exists an antichain
in (Z(X), Q) that has precisely (Ln72J) elements.

Proof (continued). We now have that > |A|l(n— |A|)! < n!, and
AcA

IAI!(nTIAI)!

consequently, < 1. On the other hand, for all
Y Ac A
c

A C X (and in particular, for all A € A), we have that

Al(n-lA)  _ 1 1

n! ___




Sperner’s theorem

Let n be a non-negative integer, and let X be an n-element set.
Then any antichain in (£2(X), C) has at most (Ln’/72J) elements.
Furthermore, this bound is tight, that is, there exists an antichain
in (Z(X), Q) that has precisely (Ln72J) elements.

Proof (continued). We now have that > |A|l(n— |A|)! < n!, and
AcA

A]! n—IAI)

consequently, < 1. On the other hand, for all

AcA
A C X (and in particular, for all A € A), we have that

) N S T
! TATA=TATY () = ()

It follows that

1 > % AMn—]AD! S ) 1 > |A 1
7 o (@7@)’

and consequently, |A| < (Lnr/72j)' This completes the argument.
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The Pigeonhole Principle
Let ni,...,ns (t > 1) be non-negative integers, and let X be a set

of size at least 1+ ny + -+ - + ne. If (Xq,...,X¢) is any partition of
X,? then there exists some i € {1,...,t} such that |X;| > n;.

“Here, we allow the sets Xi, ..., X; to possibly be empty.




Part Il: The Pigeonhole Principle

The Pigeonhole Principle

Let ni,...,ns (t > 1) be non-negative integers, and let X be a set
of size at least 1+ ny + -+ - + ne. If (Xq,...,X¢) is any partition of
X,? then there exists some i € {1,...,t} such that |X;| > n;.

“Here, we allow the sets Xi, ..., X; to possibly be empty.

Proof. Suppose otherwise, and fix a partition (Xi, ..., X:) such
that | X;| < n; for all i € {1,...,t}. But then

1+m+-+n < [X|

= Pl X

IN

nl+"'+nta

a contradiction.



The Pigeonhole Principle

Let ni,...,n: (t > 1) be non-negative integers, and let X be a set
of size at least 1+ ny + -+ + ng. If (Xq,...,X¢) is any partition of
X,? then there exists some i € {1,...,t} such that |X;| > n;.

“Here, we allow the sets Xi, ..., X; to possibly be empty.




The Pigeonhole Principle

Let ni,...,n: (t > 1) be non-negative integers, and let X be a set
of size at least 1+ ny + -+ + ng. If (Xq,...,X¢) is any partition of
X,? then there exists some i € {1,...,t} such that |X;| > n;.

“Here, we allow the sets Xi, ..., X; to possibly be empty.

Corollary 2.1

Let n and t be positive integers. Let X be an n-element set, and
let (X1,...,X:) be any partition of X.? Then there exists some
i€{l,...,t} such that |[Xi| > [Z].

“Here, we allow the sets Xi, ..., X;: to possibly be empty.

Proof. Lecture Notes.



The Pigeonhole Principle

Let ni,...,n: (t > 1) be non-negative integers, and let X be a set
of size at least 1+ ny + -+ + ng. If (Xq,...,X¢) is any partition of
X,? then there exists some i € {1,...,t} such that |X;| > n;.

“Here, we allow the sets Xi, ..., X; to possibly be empty.

Corollary 2.1

Let n and t be positive integers. Let X be an n-element set, and
let (X1,...,X:) be any partition of X.? Then there exists some
i€{l,...,t} such that |[Xi| > [Z].

“Here, we allow the sets Xi, ..., X;: to possibly be empty.

Proof. Lecture Notes.

@ Remark: Corollary 2.1 itself is sometimes referred to as the
Pigeonhole Principle.



Definition

A clique in a graph G is any set of pairwise adjacent vertices of G.
The clique number of G, denoted by w(G), is the maximum size of
a clique of G.




Definition
A clique in a graph G is any set of pairwise adjacent vertices of G.

The clique number of G, denoted by w(G), is the maximum size of
a clique of G.

Definition

A stable set (or independent set) in a graph G is any set of
pairwise non-adjacent vertices of G. The stability number (or
independence number) of G, denoted by «(G), is the maximum
size of a stable set in G.




Proposition 3.1

Let G be a graph on at least six vertices. Then either w(G) > 3 or
a(G) > 3.

Proof.
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Let G be a graph on at least six vertices. Then either w(G) > 3 or
a(G) > 3.

Proof. Let u be any vertex of G. Then |V(G) \ {u}| > 5, and so
(by the Pigeonhole Principle) either u has at least three neighbors
or it has at least three non-neighbors.
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Let G be a graph on at least six vertices. Then either w(G) > 3 or
a(G) > 3.

Proof. Let u be any vertex of G. Then |V(G) \ {u}| > 5, and so
(by the Pigeonhole Principle) either u has at least three neighbors
or it has at least three non-neighbors.

Suppose first that v has at least three neighbors.

If at least two of those neighbors, say u; and wp, are adjacent, then
{u,u1, up} is a clique of G of size three, and we deduce that
w(G) > 3.



Proposition 3.1

Let G be a graph on at least six vertices. Then either w(G) > 3 or
a(G) > 3.

Proof. Let u be any vertex of G. Then |V(G) \ {u}| > 5, and so
(by the Pigeonhole Principle) either u has at least three neighbors
or it has at least three non-neighbors.

Suppose first that v has at least three neighbors.

If at least two of those neighbors, say u; and wp, are adjacent, then
{u,u1, up} is a clique of G of size three, and we deduce that

w(G) > 3. On the other hand, if no two neighbors of u are
adjacent, then they together form a stable set of size at least
three, and we deduce that a(G) > 3.
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Let G be a graph on at least six vertices. Then either w(G) > 3 or
a(G) > 3.

Proof (continued). Suppose now that u has at least three
non-neighbors.
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Proposition 3.1

Let G be a graph on at least six vertices. Then either w(G) > 3 or
a(G) > 3.

Proof (continued). Suppose now that u has at least three
non-neighbors.

U, L,

If at least two of those non-neighbors, say u; and u», are
non-adjacent, then {u, u1, up} is a stable set of G of size three,
and we deduce that o(G) > 3.



Proposition 3.1

Let G be a graph on at least six vertices. Then either w(G) > 3 or
a(G) > 3.

Proof (continued). Suppose now that u has at least three
non-neighbors.

U, L,

If at least two of those non-neighbors, say u; and u», are
non-adjacent, then {u, u1, up} is a stable set of G of size three,
and we deduce that o(G) > 3.



Proposition 3.1

Let G be a graph on at least six vertices. Then either w(G) > 3 or
a(G) > 3.

Proof (continued). Suppose now that u has at least three
non-neighbors.

U, L,

If at least two of those non-neighbors, say u; and u», are
non-adjacent, then {u, u1, up} is a stable set of G of size three,
and we deduce that a(G) > 3. On the other hand, if the
non-neighbors of u are pairwise adjacent, then they together form
a clique of size at least three, and we deduce that w(G) > 3.



Let k and £ be positive integers, and let G be a graph on at least
(“T72) vertices. Then either w(G) > k or a(G) > /.

k—1

Proof.



Let k and £ be positive integers, and let G be a graph on at least
(kﬁzz) vertices. Then either w(G) > k or a(G) > 4.

Proof. We may assume inductively that for all positive integers
k', ¢ such that k' + ¢’ < k + ¢, all graphs G’ on at least ( ,:Cfl_z)
vertices satisfy either w(G') > k" or a(G') > ¢'.



Let k and £ be positive integers, and let G be a graph on at least
(“T72) vertices. Then either w(G) > k or a(G) > /.

k—1

Proof. We may assume inductively that for all positive integers
k', ¢ such that kK" + ¢’ < k + ¢, all graphs G’ on at least (k/;{l_z)
vertices satisfy either w(G') > k' or a(G') > 7.

If k=1or ¢ =1, then the result is immediate. So, we may assume

that k, ¢ > 2.



Let k and £ be positive integers, and let G be a graph on at least
(kﬁzz) vertices. Then either w(G) > k or a(G) > 4.

Proof. We may assume inductively that for all positive integers
k', ¢ such that kK" + ¢’ < k + ¢, all graphs G’ on at least (k/;{l_z)
vertices satisfy either w(G') > k' or a(G') > 7.

If k=1or ¢ =1, then the result is immediate. So, we may assume
that k, ¢ > 2.

Now, set n = (“°7?), n1 = (}73), and m = (}57); then

n = ny + ny, and consequently, n—1 =14 (np — 1)+ (np — 1).
Fix any vertex u € V(G), and set N; = V(G) \ Ng[u] and

N2 = NG(U).

N Ny



Let k and £ be positive integers, and let G be a graph on at least
(“T72) vertices. Then either w(G) > k or a(G) > /.

k—1

Proof (continued).

N, N,
Since (N, Np) is a partition of V(G) \ {u}, and since
V(G \{v}] = n-1 = 1+(m—-1)+(n-1),

the Pigeonhole Principle guarantees that either |Ny| > ny or
‘N2| Z no.



Let k and £ be positive integers, and let G be a graph on at least
(“1£7?) vertices. Then either w(G) > k or a(G) > ¢.

Proof (continued). Reminder: either |[N1| > ny or [Na| > na.

u

N, Ny



Let k and £ be positive integers, and let G be a graph on at least
(“1£7?) vertices. Then either w(G) > k or a(G) > ¢.

Proof (continued). Reminder: either |[N1| > ny or [Na| > na.

u

N, Ny

Suppose first that [N1| > ny, i.e. [Np| > (k+(£j)—2).



Let k and £ be positive integers, and let G be a graph on at least
(“*72) vertices. Then either w(G) > k or a(G) > /.

k—1

Proof (continued). Reminder: either |[N1| > ny or [Na| > na.

u

N, Ny

Suppose first that [Ny| > nq, ie. [Ny| > (k+(fj)_2). Then by the
induction hypothesis, either w(G[N1]) > k or a(G[M;]) > ¢ — 1.



Let k and £ be positive integers, and let G be a graph on at least
(“*72) vertices. Then either w(G) > k or a(G) > /.

k—1

Proof (continued). Reminder: either |[N1| > ny or [Na| > na.

u

N, Ny

Suppose first that [Ny| > nq, ie. [Ny| > (k+( P %). Then by the
induction hypothesis, either w(G[N1]) > k or a(G[N1]) > ¢ —1. In
the former case, we have that w(G) > w(G[Ny]) > k, and we are
done.



Let k and £ be positive integers, and let G be a graph on at least
(“*72) vertices. Then either w(G) > k or a(G) > /.

k—1

Proof (continued). Reminder: either |[N1| > ny or [Na| > na.

u

N, Ny

Suppose first that [Ny| > nq, ie. [Ny| > (k+(f P %). Then by the
induction hypothesis, either w(G[N1]) > k or a(G[N1]) > ¢ —1. In
the former case, we have that w(G) > w(G[Ny]) > k, and we are
done. So suppose that a(G[N;]) > ¢ — 1. Then let S be a stable
set of G[Ny] of size £ — 1.



Let k and £ be positive integers, and let G be a graph on at least
(“*72) vertices. Then either w(G) > k or a(G) > /.

k—1

Proof (continued). Reminder: either |[N1| > ny or [Na| > na.

u

N, Ny

Suppose first that [Ny| > nq, ie. [Ny| > (k+(f P %). Then by the
induction hypothesis, either w(G[N1]) > k or a(G[N1]) > ¢ —1. In
the former case, we have that w(G) > w(G[Ny]) > k, and we are
done. So suppose that a(G[N;]) > ¢ — 1. Then let S be a stable
set of G[Ny] of size £ — 1. Then {u} US is a stable set of size £ in
G, we deduce that «(G) > ¢, and again we are done.



Let k and £ be positive integers, and let G be a graph on at least
(“1£7?) vertices. Then either w(G) > k or a(G) > ¢.

Proof (continued). Reminder: either |[N1| > ny or [Na| > na.

u

N, Ny



Let k and £ be positive integers, and let G be a graph on at least
(“1£7?) vertices. Then either w(G) > k or a(G) > ¢.

Proof (continued). Reminder: either |[N1| > ny or [Na| > na.

u

N, Ny

Suppose now that [Na| > ny, i.e. [No| > <(/<—11):56—2)_



Let k and £ be positive integers, and let G be a graph on at least
(“*72) vertices. Then either w(G) > k or a(G) > /.

k—1

Proof (continued). Reminder: either |[N1| > ny or [Na| > na.

u

M N,

Suppose now that [Na| > ny, i.e. [No| > <(/<—11):56—2)_ Then by the
induction hypothesis, either w(G[N>]) > k — 1 or a(G[Nz]) > <.



Let k and £ be positive integers, and let G be a graph on at least
(“*72) vertices. Then either w(G) > k or a(G) > /.

k—1

Proof (continued). Reminder: either |[N1| > ny or [Na| > na.

u

N, Ny

Suppose now that [Na| > ny, i.e. [No| > <(/<—11):56—2)_ Then by the
induction hypothesis, either w(G[N2]) > k — 1 or a(G[N2]) > £. In
the latter case, we have that a(G) > a(G[N>]) > ¢, and we are
done.



Let k and £ be positive integers, and let G be a graph on at least
(“*72) vertices. Then either w(G) > k or a(G) > /.

k—1

Proof (continued). Reminder: either |[N1| > ny or [Na| > na.

u

N, Ny

Suppose now that |Na| > ny, i.e. |Np| > <(/<—11):56—2)_ Then by the
induction hypothesis, either w(G[N2]) > k — 1 or a(G[N2]) > £. In
the latter case, we have that a(G) > a(G[N>]) > ¢, and we are
done. So suppose that w(G[N]) > k — 1. Then let C be a clique
of G[Njy] of size k — 1.
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Proof (continued). Reminder: either |[N1| > ny or [Na| > na.

u

N, Ny

Suppose now that |Na| > ny, i.e. |Np| > <(/<—11):56—2)_ Then by the
induction hypothesis, either w(G[N2]) > k — 1 or a(G[N2]) > £. In
the latter case, we have that a(G) > a(G[N>]) > ¢, and we are
done. So suppose that w(G[N]) > k — 1. Then let C be a clique
of G[Ns] of size k — 1. But then {u} U C is a clique of size k in G,
we deduce that w(G) > k, and again we are done.
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@ The existence of R(k,¢) follows immediately from
Theorem 3.2.



Let k and ¢ be positive integers, and let G be a graph on at least

(1£1?) vertices. Then either w(G) > k or a(G) > ¢.

Definition

For positive integers k and ¢, we denote by R(k, /) the smallest
number n such that every graph G on at least n vertices satisfies
either w(G) > k or a(G) > ¢.

@ The existence of R(k,¢) follows immediately from
Theorem 3.2.

@ Numbers R(k,¢) (with k,¢ > 1) are called Ramsey numbers.
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For positive integers k and ¢, we denote by R(k, /) the smallest
number n such that every graph G on at least n vertices satisfies
either w(G) > k or a(G) > ¢.

@ It is easy to see that for all k,¢ > 1, we have that

R(1,0)=1 R(k1)=1
R(2,0)=10 R(k,2) =k

e Furthermore, we have R(3,3) = 6.
o Indeed, by Proposition 3.1, R(3,3) < 6.
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For positive integers k and ¢, we denote by R(k, /) the smallest
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@ It is easy to see that for all k,¢ > 1, we have that

R(1,0)=1 R(k1)=1
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o Indeed, by Proposition 3.1, R(3,3) < 6.
o On the other hand, w(Gs) =2 and a(Gs) = 2, and so

R(3,3) > 5.



Definition

For positive integers k and ¢, we denote by R(k, /) the smallest
number n such that every graph G on at least n vertices satisfies
either w(G) > k or a(G) > ¢.

@ It is easy to see that for all k,¢ > 1, we have that

R(1,0)=1 R(k1)=1
R(2,0)=10 R(k,2) =k

e Furthermore, we have R(3,3) = 6.

o Indeed, by Proposition 3.1, R(3,3) < 6.
o On the other hand, w(Gs) =2 and a(Gs) = 2, and so

R(3,3) > 5.

o Thus, R(3,3) = 6.
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@ The exact values of a few other Ramsey numbers are known,
but no general formula for R(k,¢) is known.



Theorem 3.2

Let k and £ be positive integers, and let G be a graph on at least

(k:ff) vertices. Then either w(G) > k or a(G) > /.

Definition
For positive integers k and ¢, we denote by R(k,{) the smallest

number n such that every graph G on at least n vertices satisfies
either w(G) > k or a(G) > ¢.

@ The exact values of a few other Ramsey numbers are known,
but no general formula for R(k,¢) is known.

@ Note however, that Theorem 3.2 gives an upper bound for
Ramsey numbers, namely, R(k,¢) < (k:ff) for all k,¢ > 1.
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For all integers k > 3, we have that R(k, k) > 2K/2.

Proof. Since w(GCs) =2 and o(Cs) = 2, we see that
R(3,3) > 5> 232 and R(4,4) > 5 > 22 Thus, the claim holds

for k =3 and k = 4.




For all integers k > 3, we have that R(k, k) > 2K/2.

Proof. Since w(GCs) =2 and o(Cs) = 2, we see that
R(3,3) > 5> 232 and R(4,4) > 5 > 22 Thus, the claim holds

for k =3 and k = 4.

From now on, we assume that k > 5.




For all integers k > 3, we have that R(k, k) > 2K/2.

Proof. Since w(GCs) =2 and o(Cs) = 2, we see that
R(3,3) > 5> 232 and R(4,4) > 5 > 22 Thus, the claim holds

for k =3 and k = 4.

From now on, we assume that k > 5.

Let G be a graph on n:= L2k/2j vertices, with adjacency as
follows: between any two distinct vertices, we (independently) put
an edge with probability % (and a non-edge with probability %)



For all integers k > 3, we have that R(k, k) > 2K/2.

Proof (continued).
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Proof (continued). For any set of k vertices of G, the probability
k
that this set is a clique is (%)(2)
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size k, and the probability that at least one of them is a clique is

at most (}) (%)(S) :



For all integers k > 3, we have that R(k, k) > 2K/2.

Proof (continued). For any set of k vertices of G, the probability
that this set is a clique is (%)(5) there are (}) subsets of V(G) of

size k, and the probability that at least one of them is a clique is

at most (7)(% (5) So, the probability that w(G) > k is at most
P k/\2

(HGHO.



For all integers k > 3, we have that R(k, k) > 2K/2.

Proof (continued). For any set of k vertices of G, the probability

that this set is a clique is (%)(5) there are (}) subsets of V(G) of
size k, and the probability that at least one of them is a clique is

at most (Z)(%)(g) So, the probability that w(G) > k is at most
(Z)(%)(g) Similarly, the probability that «(G) > k is at most

HIENOA



For all integers k > 3, we have that R(k, k) > 2K/2.

Proof (continued).




For all integers k > 3, we have that R(k, k) > 2K/2.

Proof (continued). Thus, the probability that G satisfies at least
one of w(G) > k and a(G) > k is at most

2()(HE < 2(2)4(2)E) by Theorem 2.1
from Lecture Notes 1

k/2
2 e2 k
< 2(,((k+1)/)2 because n = |2+/2]

k/2
= 2(%%

< 2(82)k

< 1 because kK > 5



For all integers k > 3, we have that R(k, k) > 2K/2.

Proof (continued). Thus, the probability that G satisfies neither
w(G) > k nor a(G) > k is strictly positive.
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Proof (continued). Thus, the probability that G satisfies neither
w(G) > k nor a(G) > k is strictly positive. So, there must be at
least one graph on n = L2k/2j vertices whose clique number and
stability number are both strictly less than k.



For all integers k > 3, we have that R(k, k) > 2K/2.

Proof (continued). Thus, the probability that G satisfies neither
w(G) > k nor a(G) > k is strictly positive. So, there must be at
least one graph on n = L2k/2j vertices whose clique number and
stability number are both strictly less than k.

This proves that R(k, k) > |2/2]; since R(k, k) is an integer, we
deduce that R(k, k) > 2k/2.



