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Lecture #10

Sperner’s theorem. Ramsey numbers

Irena Penev

1 Sperner’s theorem

For a partially ordered set (X,≤),

• a chain in (X,≤) is any set C ⊆ X such that for all x1, x2 ∈ C, we have
that either x1 ≤ x2 or x2 ≤ x1.1

• a maximal chain in (X,≤) is a chain C in (X,≤) such that there is no
chain C′ in (X,≤) with the property that C $ C′;

• an antichain in (X,≤) is any set A ⊆ X such that for all distinct
x1, x2 ∈ A, we have that x1 6≤ x2 and x2 6≤ x1.

Note that a chain and an antichain in (X,≤) can have at most one element
in common.2

Here, we are interested in a special case of the above. As usual, for a
set X, we denote by P(X) the power set (i.e. the set of all subsets) of X.
Clearly, for any set X, ⊆P(X):= {(A,B) | A,B ∈P(X), A ⊆ B} is a partial
order on X. To simplify notation, in what follows, we write (P(X),⊆)
instead of (P(X),⊆P(X)). We apply the above definitions to (P(X),⊆),
as follows.

For a set X,

1This definition works both for finite and for infinite X. Note also that ∅ is a chain
in (X,≤). However, if X is finite and C is a non-empty chain in (X,≤), then C can be
ordered as C = {x1, . . . , xt} so that x1 ≤ · · · ≤ xt.

2Indeed, if distinct elements x1, x2 belong to a chain of (X,≤), then x1 ≤ x2 or x2 ≤ x1.
On the other hand, if they belong to an antichain of (X,≤), then x1 6≤ x2 and x2 6≤ x1.
So, distinct elements x1 and x2 cannot simultaneously belong to a chain and an antichain
of (X,≤).
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• a chain in (P(X),⊆) is any set C of subsets of X such that for all
C1, C2 ∈ C, we have that either C1 ⊆ C2 or C2 ⊆ C1.

3

• a maximal chain in (P(X),⊆) is a chain in (P(X),⊆) such that there
is no chain C′ in (P(X),⊆) with the property that C $ C′;

• an antichain in (P(X),⊆) is any set A of subsets of X such that for
all distinct A1, A2 ∈ A, we have that A1 6⊆ A2 and A2 6⊆ A1.

4

As before, note that a chain and an antichain in (P(X),⊆) can have at most
one element in common.

Example 1.1. Let X = {1, 2, 3, 4}. The following are chains in (P(X),⊆):5

• {{2, 4}, {1, 2, 4}};6

• {∅, {1}, {1, 2}, {1, 2, 3}, X}.7

• {∅, {4}, {2, 4}, {1, 2, 4}, X};8

Further, the following are all antichains in (P(X),⊆):9

• {∅};

• {X};

• {{1, 2}, {2, 3}, {1, 3, 4}};

• {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.

Sperner’s theorem. Let n be a non-negative integer, and let X be an
n-element set. Then any antichain in (P(X),⊆) has at most

(
n
bn/2c

)
ele-

ments. Furthermore, this bound is tight, that is, there exists an antichain in
(P(X),⊆) that has precisely

(
n
bn/2c

)
elements.

Proof. First, we note that the set of all bn/2c-element subsets of X is an
antichain in (P(X),⊆), and this antichain has precisely

(
n
bn/2c

)
elements.

It remains to show that any antichain in (P(X),⊆) has at most
(

n
bn/2c

)
elements.

3This definition works both for finite and for infinite X. Note also that ∅ is a chain in
(P(X),⊆). However, if X is finite and C is a non-empty chain in (P(X),⊆), then C can
be ordered as C = {C1, . . . , Ct} so that C1 ⊆ · · · ⊆ Ct.

4Equivalently: A1 \A2 and A2 \A1 are both non-empty.
5There are many other chains in (P(X),⊆) as well.
6Note that this chain is not maximal, since we can add (for example) the set {2} to it

and obtain a larger chain.
7This chain is maximal.
8This chain is maximal.
9There are many other antichains in (P(X),⊆) as well.
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Claim 1. There are precisely n! maximal chains in (P(X),⊆).

Proof of Claim 1. Clearly, any maximal chain in (P(X),⊆) is of the form
{∅, {x1}, {x1, x2}, . . . , {x1, x2, . . . , xn}}, where x1, . . . , xn is some ordering of
the elements of X. There are precisely n! such orderings, and so the number
of maximal chains in (P(X),⊆) is n!. �

Claim 2. For every set A ⊆ X, the number of maximal chains
of (P(X),⊆) containing A is precisely |A|!(n− |A|)!.

Proof of Claim 2. Set k = |A|. As in the proof of Claim 1, we have that any
chain in (P(X),⊆) is of the form {∅, {x1}, {x1, x2}, . . . , {x1, x2, . . . , xn}},
where x1, . . . , xn is some ordering of the elements of X; this chain contains
A if and only if A = {x1, . . . , xk} (and therefore, X \ A = {xk+1, . . . , xn}).
The number of ways of ordering A is k!, and the number of ways of ordering
X \A is (n− k)!. So, the total number of chains of (P(X),⊆) containing A
is precisely k!(n− k)!. �

Now, fix an antichain A in (P(X),⊆). We form the matrix M whose
rows are indexed by the elements of A, and whose columns are indexed by
the maximal chains of (P(X),⊆), and in which the (A, C)-th entry is 1 if
A ∈ C and is 0 otherwise.10 Our goal is to count the number of 1’s in the
matrix M in two ways.

First, by Claim 2, for any A ∈ A, the number of maximal chains of
(P(X),⊆) containing A is precisely |A|!(n− |A|)!; so, the number of 1’s in
the row of M indexed by A is precisely |A|!(n− |A|)!. Thus, the number of
1’s in the matrix M is precisely∑

A∈A
|A|!(n− |A|)!.

On the other hand, by Claim 1, the number of columns of M is precisely n!.
Furthermore, no chain of (P(X),⊆) contains more than one element of the
antichain A, and so no column of M contains more than one 1. So, the total
number of 1’s in the matrix M is at most n!. We now have that∑

A∈A
|A|!(n− |A|)! ≤ n!,

and consequently, ∑
A∈A

|A|!(n−|A|)!
n! ≤ 1.

On the other hand, for all A ⊆ X (and in particular, for all A ∈ A), we have
that

|A|!(n−|A|)!
n! = 1

n!
|A|!(n−|A|)!

= 1

( n
|A|)

(∗)
≥ 1

( n
bn/2c)

,

where (*) follows from the fact that
(
n
k

)
≤
(

n
bn/2c

)
for all k ∈ {0, . . . , n}.11

10Here, A ∈ A, C is a maximal chain in (P(X),⊆), and the (A, C)-th entry of M is the
entry in the row indexed by A and column indexed by C.

11See subsection 2.2 of Lecture Notes 1.
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We now have that

1 ≥
∑
A∈A

|A|!(n−|A|)!
n! ≥

∑
A∈A

1

( n
bn/2c)

≥ |A| 1

( n
bn/2c)

,

which yields |A| ≤
(

n
bn/2c

)
. This completes the argument.

2 The Pigeonhole principle

The Pigeonhole Principle. Let n1, . . . , nt (t ≥ 1) be non-negative integers,
and let X be a set of size at least 1 + n1 + · · ·+ nt. If (X1, . . . , Xt) is any
partition of X,12 then there exists some i ∈ {1, . . . , t} such that |Xi| > ni.

13

Proof. Suppose otherwise, and fix a partition (X1, . . . , Xt) such that |Xi| ≤
ni for all i ∈ {1, . . . , t}. But then

1 + n1 + · · ·+ nt ≤ |X| = |X1|+ · · ·+ |Xt| ≤ n1 + · · ·+ nt,

a contradiction.

As an immediate corollary, we obtain the following.

Corollary 2.1. Let n and t be positive integers. Let X be an n-element
set, and let (X1, . . . , Xt) be any partition of X.14 Then there exists some
i ∈ {1, . . . , t} such that |Xi| ≥ dnt e.

Proof. By the Pigeonhole Principle, we need only show that n ≥ 1+t(dnt e−1).
If t |n,15 then dnt e = n

t , and we have that

1 + t(dnt e − 1) ≤ 1 + t(nt − 1) = n− t+ 1 ≤ n,

which is what we needed. Suppose now that t 6 |n, so that dnt e − 1 = bnt b.
Then let m = bnt c and ` = n−mt; since t 6 |n, we have that ` ≥ 1. But now

1 + t(dnt e − 1) = 1 + t(bnt c) = 1 + tm ≤ `+ tm ≤ n,

and we are done.

We remark that Corollary 2.1 is also often referred to as the Pigeonhole
Principle.

12Here, we allow the sets X1, . . . , Xt to possibly be empty.
13If one thinks of elements of X as “pigeons” and sets X1, . . . , Xt as “pigeonholes,” then

the Pigeonhole Principle states that some pigeonhole Xi receives more than ni pigeons.
14Here, we allow the sets X1, . . . , Xt to possibly be empty.
15“t |n” means that n is divisible by t.
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3 Ramsey numbers

A clique in a graph G is any set of pairwise adjacent vertices of G. The clique
number of G, denoted by ω(G), is the maximum size of a clique of G.

A stable set (or independent set) in a graph G is any set of pairwise
non-adjacent vertices of G. The stability number (or independence number)
of G, denoted by α(G), is the maximum size of a stable set in G.

Proposition 3.1. Let G be a graph on at least six vertices. Then either
ω(G) ≥ 3 or α(G) ≥ 3.

Proof. Let u be any vertex of G. Then |V (G) \ {u}| ≥ 5, and so (by the
Pigeonhole Principle) either u has at least three neighbors or it has at least
three non-neighbors.

Suppose first that u has at least three neighbors. If at least two of those
neighbors, say u1 and u2, are adjacent, then {u, u1, u2} is a clique of G of
size three, and we deduce that ω(G) ≥ 3. On the other hand, if no two
neighbors of u are adjacent, then they together form a stable set of size at
least three, and we deduce that α(G) ≥ 3.

Suppose now that u has at least three non-neighbors. If at least two of
those non-neighbors, say u1 and u2, are non-adjacent, then {u, u1, u2} is a
stable set of G of size three, and we deduce that α(G) ≥ 3. On the other
hand, if the non-neighbors of u are pairwise adjacent, then they together
form a clique of size at least three, and we deduce that ω(G) ≥ 3.

For a graph G and a vertex u, NG(u) is the set of all neighbors of u in
G, and NG[u] = {u} ∪NG(u).

Theorem 3.2. Let k and ` be positive integers, and let G be a graph on at
least

(
k+`−2
k−1

)
vertices.16 Then either ω(G) ≥ k or α(G) ≥ `.

Proof. We may assume inductively that for all positive integers k′, `′ such
that k′ + `′ < k + `, all graphs G′ on at least

(
k′+`′−2
k′−1

)
vertices satisfy either

ω(G′) ≥ k′ or α(G′) ≥ `′.
If k = 1 or ` = 1, then the result is immediate.17 So, we may assume

that k, ` ≥ 2. Now, set n =
(
k+`−2
k−1

)
, n1 =

(
k+`−3
k−1

)
, and n2 =

(
k+`−3
k−2

)
; then

n = n1 + n2, and consequently, n − 1 = 1 + (n1 − 1) + (n2 − 1). Fix any
vertex u ∈ V (G), and set N1 = V (G) \NG[u] and N2 = NG(u).

u

N1 N2

16Note that
(
k+`−2
k−1

)
=

(
k+`−2
`−1

)
.

17Indeed, it is clear that ω(G) ≥ 1 and α(G) ≥ 1. So, if k = 1, then ω(G) ≥ k; and if
` = 1, then α(G) ≥ `.
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Since (N1, N2) is a partition of V (G) \ {u}, and since |V (G) \ {u}| ≥ n− 1 =
1 + (n1 − 1) + (n2 − 1), the Pigeonhole Principle guarantees that either
|N1| ≥ n1 or |N2| ≥ n2.

Suppose first that |N1| ≥ n1, i.e. |N1| ≥
(k+(`−1)−2

k−1
)
. Then by the

induction hypothesis, either ω(G[N1]) ≥ k or α(G[N1]) ≥ ` − 1. In the
former case, we have that ω(G) ≥ ω(G[N1]) ≥ k, and we are done. So
suppose that α(G[N1]) ≥ `− 1. Then let S be a stable set of G[N1] of size
`− 1. Then {u} ∪ S is a stable set of size ` in G, we deduce that α(G) ≥ `,
and again we are done.

Suppose now that |N2| ≥ n2, i.e. |N2| ≥
((k−1)+`−2

k−2
)
. Then by the

induction hypothesis, either ω(G[N2]) ≥ k− 1 or α(G[N2]) ≥ `. In the latter
case, we have that α(G) ≥ α(G[N2]) ≥ `, and we are done. So suppose that
ω(G[N2]) ≥ k − 1. Then let C be a clique of G[N2] of size k − 1. But then
{u} ∪ C is a clique of size k in G, we deduce that ω(G) ≥ k, and again we
are done.

For positive integers k and `, we denote by R(k, `) the smallest number
n such that every graph G on at least n vertices satisfies either ω(G) ≥ k or
α(G) ≥ `. The existence of R(k, `) follows immediately from Theorem 3.2.
Numbers R(k, `) (with k, ` ≥ 1) are called Ramsey numbers.

It is easy to see that for all k, ` ≥ 1, we have that18

R(1, `) = 1 R(k, 1) = 1

R(2, `) = ` R(k, 2) = k

Furthermore, we have R(3, 3) = 6. Indeed, by Proposition 3.1, R(3, 3) ≤ 6.
On the other hand, ω(C5) = 2 and α(C5) = 2, and so R(3, 3) > 5. Thus,
R(3, 3) = 6. The exact values of a few other Ramsey numbers are known,19

but no general formula for R(k, `) is known. Note however, that Theorem 3.2
gives an upper bound for Ramsey numbers, namely, R(k, `) ≤

(
k+`−2
k−1

)
for

all k, ` ≥ 1.
We complete this section by giving a lower bound for the Ramsey number

R(k, k).

Theorem 3.3. For all integers k ≥ 3, we have that R(k, k) > 2k/2.

Proof. Since ω(C5) = 2 and α(C5) = 2, we see that R(3, 3) > 5 > 23/2 and
R(4, 4) > 5 > 24/2. Thus, the claim holds for k = 3 and k = 4. From now
on, we assume that k ≥ 5.

Let G be a graph on n := b2k/2c vertices, with adjacency as follows:
between any two distinct vertices, we (independently) put an edge with
probability 1

2 (and a non-edge with probability 1
2).

18Check this!
19For example, it is known that R(4, 4) = 18. On the other hand, the exact value of

R(5, 5) is still unknown.
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For any set of k vertices of G, the probability that this set is a clique is

(12)(
k
2); there are

(
n
k

)
subsets of V (G) of size k, and the probability that at

least one of them is a clique is at most
(
n
k

)
(12)(

k
2). So, the probability that

ω(G) ≥ k is at most
(
n
k

)
(12)(

k
2). Similarly, the probability that α(G) ≥ k

is at most
(
n
k

)
(12)(

k
2). Thus, the probability that G satisfies at least one of

ω(G) ≥ k and α(G) ≥ k is at most

2
(
n
k

)
(12)(

k
2) ≤ 2( enk )k(12)(

k
2) by Theorem 2.1

from Lecture Notes 1

≤ 2( e2
k/2

k
)k

2k(k−1)/2 because n = b2k/2c

= 2( e2k/2

k2(k−1)/2 )k

< 2( e
√
2

k )k

< 1 because k ≥ 5

Thus, the probability that G satisfies neither ω(G) ≥ k nor α(G) ≥ k is
strictly positive. So, there must be at least one graph on n = b2k/2c vertices
whose clique number and stability number are both strictly less than k. This
proves that R(k, k) > b2k/2c; since R(k, k) is an integer, we deduce that
R(k, k) > 2k/2.
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