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Lecture #10
Sperner’s theorem. Ramsey numbers

Irena Penev

1 Sperner’s theorem

For a partially ordered set (X, <),

e a chainin (X, <) is any set C C X such that for all z1, x5 € C, we have
that either z; < x9 or zy < x7.}1

e a mazimal chain in (X, <) is a chain C in (X, <) such that there is no
chain €’ in (X, <) with the property that C & C';

e an antichain in (X, <) is any set A C X such that for all distinct
x1, T2 € A, we have that 1 £ 2o and xo £ x7.

Note that a chain and an antichain in (X, <) can have at most one element
in common.?

Here, we are interested in a special case of the above. As usual, for a
set X, we denote by Z(X) the power set (i.e. the set of all subsets) of X.
Clearly, for any set X, C »x):={(A4,B) | A,B € #(X), A C B} is a partial
order on X. To simplify notation, in what follows, we write (£ (X), Q)
instead of (#(X),C»(x)). We apply the above definitions to (#(X), C),
as follows.

For a set X,

!This definition works both for finite and for infinite X. Note also that 0 is a chain
in (X, <). However, if X is finite and C is a non-empty chain in (X, <), then C can be
ordered as C = {x1,...,x¢} so that z1 < -+ < z4.

2Indeed, if distinct elements 1, z2 belong to a chain of (X, <), then 21 < 22 or z2 < 1.
On the other hand, if they belong to an antichain of (X, <), then z1 £ z2 and z2 £ 1.
So, distinct elements 1 and x2 cannot simultaneously belong to a chain and an antichain
of (X, <).



e a chain in (Z(X),C) is any set C of subsets of X such that for all
C1,Cy € C, we have that either C; C Cy or Cy C C.3

e a mazximal chain in (2 (X),C) is a chain in (L(X), C) such that there
is no chain €’ in (#(X), C) with the property that C G C';

e an antichain in (2 (X),C) is any set A of subsets of X such that for
all distinct A1, Ay € A, we have that A; € Ay and Ay € A4

As before, note that a chain and an antichain in (£?(X), C) can have at most
one element in common.

Example 1.1. Let X = {1,2,3,4}. The following are chains in (£ (X), )5
o {{2,4},{1,2,4}}°
o {0,{1},{1,2},{1,2,3}, X}.7
o {0,{4},{2,4},{1,2,4}, X}
Further, the following are all antichains in (P (X),C)?
o {0}
o {X};
o {{1,2},{2,3},{1,3,4}};
o {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}.

Sperner’s theorem. Let n be a non-negative integer, and let X be an
n-element set. Then any antichain in (P (X), <) has at most (LnT/sz) ele-
ments. Furthermore, this bound s tight, that is, there exists an antichain in
(Z(X),C) that has precisely (Ln72J) elements.

Proof. First, we note that the set of all [n/2|-element subsets of X is an
antichain in (#(X), C), and this antichain has precisely (Ln72 j) elements.

It remains to show that any antichain in (£2(X),C) has at most (LJ? j)
elements.

3This definition works both for finite and for infinite X. Note also that §) is a chain in
(Z2(X),C). However, if X is finite and C is a non-empty chain in (£(X), C), then C can
be ordered as C = {C4,...,C:} so that C1 C --- C C4.

1Equivalently: A; \ A2 and Az \ A: are both non-empty.

®There are many other chains in (£(X), C) as well.

5Note that this chain is not maximal, since we can add (for example) the set {2} to it
and obtain a larger chain.

"This chain is maximal.

8This chain is maximal.

9There are many other antichains in (£(X), C) as well.



Claim 1. There are precisely n! maximal chains in (£(X), Q).

Proof of Claim 1. Clearly, any maximal chain in (Z(X), Q) is of the form
{0, {1}, {x1,z2},..., {21, 22,...,2,}}, where z1, ..., 2, is some ordering of
the elements of X. There are precisely n! such orderings, and so the number
of maximal chains in (Z(X),C) isn!l. B

Claim 2. For every set A C X, the number of maximal chains
of (Z(X),<C) containing A is precisely |A|!(n — |A])L.

Proof of Claim 2. Set k = |A|. As in the proof of Claim 1, we have that any
chain in (Z(X), Q) is of the form {0, {z1},{z1,z2},... . {z1,22,..., 20 }},
where x1, ..., %, is some ordering of the elements of X; this chain contains
A if and only if A = {zy,..., 2} (and therefore, X \ A = {xg11,...,2n}).
The number of ways of ordering A is k!, and the number of ways of ordering
X\ Ais (n—k)!. So, the total number of chains of (#(X), C) containing A
is precisely kl(n — k)!. B

Now, fix an antichain A in (£ (X),C). We form the matrix M whose
rows are indexed by the elements of A, and whose columns are indexed by
the maximal chains of (#(X), C), and in which the (4, C)-th entry is 1 if
A € C and is 0 otherwise.'® Our goal is to count the number of 1’s in the
matrix M in two ways.

First, by Claim 2, for any A € A, the number of maximal chains of
(Z(X),C) containing A is precisely |A|l(n — |A])!; so, the number of 1’s in
the row of M indexed by A is precisely |A|l(n — |A])!. Thus, the number of
1’s in the matrix M is precisely

> A (n — |A]).
AeA
On the other hand, by Claim 1, the number of columns of M is precisely n!.
Furthermore, no chain of (#(X), C) contains more than one element of the
antichain A, and so no column of M contains more than one 1. So, the total
number of 1’s in the matrix M is at most n!. We now have that
S Al - 4D <
AcA
and consequently,
D IAII(nT\AI)! < 1
AcA " B
On the other hand, for all A C X (and in particular, for all A € A), we have
that

Alln—jAD! T U
" TATG—TATT (2) = ()’
where (*) follows from the fact that (}) < (LnT/LZJ) for all k € {0,...,n}.1

0Here, A € A, C is a maximal chain in (Z(X), C), and the (4, C)-th entry of M is the
entry in the row indexed by A and column indexed by C.
See subsection 2.2 of Lecture Notes 1.



‘We now have that

1> 3 |A|!(T;J\A\)! > v L > | Al

A€A = () B (1j2p)”
which yields |A| < (LT:}? J)' This completes the argument. O
2 The Pigeonhole principle
The Pigeonhole Principle. Let ny,...,n; (t > 1) be non-negative integers,
and let X be a set of size at least 1 +ny + -+ ny. If (X1,...,Xy) is any
partition of X ,'? then there exists some i € {1,...,t} such that |X;| > n;.!3

Proof. Suppose otherwise, and fix a partition (X7, ..., X;) such that | X;| <
n; for all i € {1,...,t}. But then

T+ +-+n < |X| = | Xi|++[X| < ni4+-+n,
a contradiction. O
As an immediate corollary, we obtain the following.

Corollary 2.1. Let n and t be positive integers. Let X be an n-element
set, and let (X1,...,X;) be any partition of X.'* Then there exists some
i€ {l,...,t} such that | X;| > [%].

Proof. By the Pigeonhole Principle, we need only show that n > 1+¢([%]—1).
If t|n,'® then [2] =%, and we have that

L+([3]-1) < 1+4(3—-1) = n—t+1 < n,

which is what we needed. Suppose now that ¢ fn, so that [7] —1= [}[.

Then let m = [ %] and £ = n — mt; since ¢t fn, we have that £ > 1. But now

L+e([F]—-1) = 14+t(%]) = 14+tm < L+tm < n,
and we are done. O

We remark that Corollary 2.1 is also often referred to as the Pigeonhole
Principle.

12Here, we allow the sets X1, ..., X; to possibly be empty.

131f one thinks of elements of X as “pigeons” and sets X1,..., X; as “pigeonholes,” then
the Pigeonhole Principle states that some pigeonhole X; receives more than n; pigeons.

14Here, we allow the sets X1, ..., X; to possibly be empty.

15¢¢| n” means that n is divisible by ¢.



3 Ramsey numbers

A clique in a graph G is any set of pairwise adjacent vertices of G. The clique
number of G, denoted by w(G), is the maximum size of a clique of G.

A stable set (or independent set) in a graph G is any set of pairwise
non-adjacent vertices of G. The stability number (or independence number)
of G, denoted by a(G), is the maximum size of a stable set in G.

Proposition 3.1. Let G be a graph on at least siz vertices. Then either
w(G) >3 or a(G) > 3.

Proof. Let u be any vertex of G. Then |V (G) \ {u}| > 5, and so (by the
Pigeonhole Principle) either u has at least three neighbors or it has at least
three non-neighbors.

Suppose first that u has at least three neighbors. If at least two of those
neighbors, say u; and ug, are adjacent, then {u,u;,us} is a clique of G of
size three, and we deduce that w(G) > 3. On the other hand, if no two
neighbors of u are adjacent, then they together form a stable set of size at
least three, and we deduce that a(G) > 3.

Suppose now that u has at least three non-neighbors. If at least two of
those non-neighbors, say u; and ug, are non-adjacent, then {u,uj,us} is a
stable set of G of size three, and we deduce that «(G) > 3. On the other
hand, if the non-neighbors of u are pairwise adjacent, then they together
form a clique of size at least three, and we deduce that w(G) > 3. O

For a graph G and a vertex u, Ng(u) is the set of all neighbors of u in
G, and Ngu] = {u} U Ng(u).

Theorem 3.2. Let k and ¢ be positive integers, and let G be a graph on at
least (k;:fzz) vertices.'® Then either w(G) >k or a(G) > {.

Proof. We may assume inductively that for all positive integers k’, ¢’ such
that k' + ¢ < k + ¢, all graphs G’ on at least (k/];tz_ll_Q) vertices satisfy either
w(G) >k or a(G") > 1.

If k =1 or £ =1, then the result is immediate.!” So, we may assume
that k,¢ > 2. Now, set n = (k;rfzz), ny = (k;rff’), and ng = (kzgs); then
n = nj + ng, and consequently, n —1 =1+ (n; — 1) + (ng — 1). Fix any
vertex u € V(G), and set N1 = V(G) \ Ng[u] and No = Ng(u).

Uu

N Ny

5Note that (szzz) = (kjff)
"ndeed, it is clear that w(G) > 1 and a(G) > 1. So, if k = 1, then w(G) > k; and if

¢ =1, then a(GQ) > ¢.




Since (N1, N2) is a partition of V/(G) \ {u}, and since |V(G)\{u}| >n—1=
1+ (ny — 1) + (n2 — 1), the Pigeonhole Principle guarantees that either
|N1| > nyp or |N2| > nyg.

Suppose first that |Ni| > nq, ie. |[N| > (k+(£:i)_2). Then by the
induction hypothesis, either w(G[N1]) > k or a(G[N1]) > £ — 1. In the
former case, we have that w(G) > w(G[Ny1]) > k, and we are done. So
suppose that a(G[N1]) > ¢ — 1. Then let S be a stable set of G[N7] of size
¢ —1. Then {u} U S is a stable set of size ¢ in G, we deduce that a(G) > ¢,
and again we are done.

Suppose now that |[Na| > ng, ie. |No| > ((k_;)jf_z). Then by the
induction hypothesis, either w(G[N2]) > k — 1 or a(G[N2]) > ¢. In the latter
case, we have that a(G) > a(G[N2]) > ¢, and we are done. So suppose that
w(G[N2]) > k — 1. Then let C be a clique of G[N3] of size k — 1. But then
{u} U C is a clique of size k in G, we deduce that w(G) > k, and again we
are done. O

For positive integers k and ¢, we denote by R(k,¥) the smallest number
n such that every graph G on at least n vertices satisfies either w(G) > k or
a(G) > (. The existence of R(k, ) follows immediately from Theorem 3.2.
Numbers R(k, ) (with k,¢ > 1) are called Ramsey numbers.

It is easy to see that for all k,¢ > 1, we have that!'®

R(1,6)=1 Rk 1)=1

R(2,0)=¢ R(k2) =k

Furthermore, we have R(3,3) = 6. Indeed, by Proposition 3.1, R(3,3) < 6.
On the other hand, w(Cs) = 2 and «(C5) = 2, and so R(3,3) > 5. Thus,
R(3,3) = 6. The exact values of a few other Ramsey numbers are known,'?
but no general formula for R(k, ¢) is known. Note however, that Theorem 3.2
gives an upper bound for Ramsey numbers, namely, R(k,¢) < (kzﬁz) for
all k,£ > 1.

We complete this section by giving a lower bound for the Ramsey number
R(k, k).

Theorem 3.3. For all integers k > 3, we have that R(k, k) > 2¥/2.

Proof. Since w(Cs) = 2 and «(Cs) = 2, we see that R(3,3) > 5 > 2%/2 and
R(4,4) > 5 > 2%2. Thus, the claim holds for k = 3 and k = 4. From now
on, we assume that k > 5.

Let G be a graph on n := |2¥/2| vertices, with adjacency as follows:
between any two distinct vertices, we (independently) put an edge with
probability % (and a non-edge with probability %)

18Check this!
YFor example, it is known that R(4,4) = 18. On the other hand, the exact value of
R(5,5) is still unknown.



For any set of k vertices of GG, the probability that this set is a clique is
(%)(g), there are (}) subsets of V(G) of size k, and the probability that at
least one of them is a clique is at most (Z)(%)@) So, the probability that
w(G) > k is at most (2)(%)(5) Similarly, the probability that a(G) > k
is at most (Z)(%)(g) Thus, the probability that G satisfies at least one of
w(G) > k and a(G) > k is at most

k

2 (HE) < 2(2)k (1)) by Theorem 2.1
from Lecture Notes 1

< % because n = |2F/2]
= gt

< 2(ek2)k

< 1 because k > 5

Thus, the probability that G satisfies neither w(G) > k nor a(G) > k is
strictly positive. So, there must be at least one graph on n = |2¥/2| vertices
whose clique number and stability number are both strictly less than k. This
proves that R(k,k) > |2%/2]; since R(k,k) is an integer, we deduce that
R(k, k) > 2F/2, O



