NDMI011: Combinatorics and Graph Theory 1

Lecture \#9

2-connected graphs and the Ear lemma. Cayley's formula

Irena Penev

November 30, 2020

This lecture has two parts:

This lecture has two parts:
(1) the structure of 2-connected graphs (and the Ear lemma);

This lecture has two parts:
(1) the structure of 2-connected graphs (and the Ear lemma);
(2) the number of spanning trees of K_{n} (Cayley's formula).

Part I: The structure of 2-connected graphs and the Ear lemma

Part I: The structure of 2-connected graphs and the Ear lemma

Definition

A cut-vertex of a graph G is any vertex $v \in V(G)$ such that $G \backslash v$ has more components than G.

Part I: The structure of 2-connected graphs and the Ear lemma

Definition

A cut-vertex of a graph G is any vertex $v \in V(G)$ such that $G \backslash v$ has more components than G.

Definition

For a non-negative integer k, a graph G is k-connected if $|V(G)| \geq k+1$ and for all $S \subseteq V(G)$ such that $|S| \leq k-1$, we have that $G \backslash S$ is connected.

Part I: The structure of 2-connected graphs and the Ear lemma

Definition

A cut-vertex of a graph G is any vertex $v \in V(G)$ such that $G \backslash v$ has more components than G.

Definition

For a non-negative integer k, a graph G is k-connected if $|V(G)| \geq k+1$ and for all $S \subseteq V(G)$ such that $|S| \leq k-1$, we have that $G \backslash S$ is connected.

- So, a graph is 2-connected if it has at least three vertices, is connected, and has no cut-vertices.

The global version of Menger's theorem

Let G be a graph on at least two vertices, and let $k, \ell \geq 0$ be integers.
(a) G is k-connected if and only if for all distinct $s, t \in V(G)$, there are k pairwise internally disjoint $s-t$ paths in G.
(b) G is ℓ-edge-connected if and only if for all distinct $s, t \in E(G)$, there are ℓ pairwise edge-disjoint s - t paths in G.

Lemma 1.1
Let G be a graph on at least two vertices. Then G is 2-connected if and only if any two distinct vertices lie on a common cycle.

Lemma 1.1

Let G be a graph on at least two vertices. Then G is 2-connected if and only if any two distinct vertices lie on a common cycle.

Proof. By Menger's theorem (global version), a graph on at least two vertices is 2 -connected if and only if for any pair of distinct vertices, there are two internally disjoint paths between them. But obviously, two distinct vertices lie on a common cycle if and only if there are two internally-disjoint paths between them. The result now follows.

Definition

A path addition (sometimes called ear addition) to a graph H is the addition to H of a path between two distinct vertices of H in such a way that no internal vertex and no edge of the path belongs to H.

Definition

A path addition (sometimes called ear addition) to a graph H is the addition to H of a path between two distinct vertices of H in such a way that no internal vertex and no edge of the path belongs to H.

The Ear Lemma

A graph is 2-connected if and only if it is a cycle or can be obtained from a cycle by repeated ear addition.

The Ear Lemma

A graph is 2-connected if and only if it is a cycle or can be obtained from a cycle by repeated ear addition.

Proof of the " $\Longleftarrow "$ part.

The Ear Lemma

A graph is 2-connected if and only if it is a cycle or can be obtained from a cycle by repeated ear addition.

Proof of the " \Longleftarrow " part. Clearly, cycles are 2-connected (indeed, every cycle has at least three vertices, is connected, and has no cut-vertices).

The Ear Lemma

A graph is 2-connected if and only if it is a cycle or can be obtained from a cycle by repeated ear addition.

Proof of the " \Longleftarrow " part. Clearly, cycles are 2-connected (indeed, every cycle has at least three vertices, is connected, and has no cut-vertices). Further, if a graph G can be obtained from a 2-connected graph H by adding an ear, then G has at least three vertices (because H does), and it is easy to see that G is connected and has no cut-vertices; so, G is 2-connected.

The Ear Lemma

A graph is 2-connected if and only if it is a cycle or can be obtained from a cycle by repeated ear addition.

Proof of the " \Longleftarrow " part. Clearly, cycles are 2-connected (indeed, every cycle has at least three vertices, is connected, and has no cut-vertices). Further, if a graph G can be obtained from a 2-connected graph H by adding an ear, then G has at least three vertices (because H does), and it is easy to see that G is connected and has no cut-vertices; so, G is 2-connected. It now follows by an easy induction (e.g. on the number of ears added) that any graph obtained from a cycle by repeated ear addition is 2-connected.

The Ear Lemma

A graph is 2-connected if and only if it is a cycle or can be obtained from a cycle by repeated ear addition.

Proof of the " \Longrightarrow " part (outline).

The Ear Lemma

A graph is 2-connected if and only if it is a cycle or can be obtained from a cycle by repeated ear addition.

Proof of the " \Longrightarrow " part (outline). Fix a 2-connected graph G. By Lemma 1.1, G contains a cycle.

The Ear Lemma

A graph is 2-connected if and only if it is a cycle or can be obtained from a cycle by repeated ear addition.

Proof of the " \Longrightarrow " part (outline). Fix a 2-connected graph G. By Lemma 1.1, G contains a cycle. Now, let H be a maximal subgraph of G that either is a cycle or can be obtained from a cycle by repeated ear addition. We must show that $H=G$.

The Ear Lemma

A graph is 2-connected if and only if it is a cycle or can be obtained from a cycle by repeated ear addition.

Proof of the " \Longrightarrow " part (outline). Fix a 2-connected graph G. By Lemma 1.1, G contains a cycle. Now, let H be a maximal subgraph of G that either is a cycle or can be obtained from a cycle by repeated ear addition. We must show that $H=G$.
H is an induced subgraph of G, because otherwise, we can add another ear to H.

The Ear Lemma

A graph is 2-connected if and only if it is a cycle or can be obtained from a cycle by repeated ear addition.

Proof of the " \Longrightarrow " part (outline, continued).

The Ear Lemma

A graph is 2-connected if and only if it is a cycle or can be obtained from a cycle by repeated ear addition.

Proof of the " \Longrightarrow " part (outline, continued). Also, $V(H)=V(G)$, for otherwise, we could add another ear to H.

The Ear Lemma

A graph is 2-connected if and only if it is a cycle or can be obtained from a cycle by repeated ear addition.

Proof of the " \Longrightarrow " part (outline, continued). Also, $V(H)=V(G)$, for otherwise, we could add another ear to H.

We now have that $V(H)=V(G)$, and that H is an induced subgraph of G. So, $H=G$.

Part II: Cayley's formula

Definition

A forest is an acyclic graph (i.e. a graph that has no cycles), and a tree is a connected forest.

Definition

A leaf in a graph G is a vertex of degree one, i.e. a vertex that has exactly one neighbor.

Fact

Every tree on at least two vertices has at least two leaves.

Fact

If v is a leaf of a tree T, then $T \backslash v$ is a tree.

Definition

A spanning tree of a connected graph G is a tree T that is a subgraph of G, and satisfies $V(T)=V(G)$.

Definition

A spanning tree of a connected graph G is a tree T that is a subgraph of G, and satisfies $V(T)=V(G)$.

- We would like to count the number of (labeled) spanning trees of the complete graph K_{n}.
- In other words, we would like to count the number of trees on the vertex set $\{1, \ldots, n\}$.

Definition

A spanning tree of a connected graph G is a tree T that is a subgraph of G, and satisfies $V(T)=V(G)$.

- We would like to count the number of (labeled) spanning trees of the complete graph K_{n}.
- In other words, we would like to count the number of trees on the vertex set $\{1, \ldots, n\}$.
- For $n=2$, there is one such tree.

Definition

A spanning tree of a connected graph G is a tree T that is a subgraph of G, and satisfies $V(T)=V(G)$.

- We would like to count the number of (labeled) spanning trees of the complete graph K_{n}.
- In other words, we would like to count the number of trees on the vertex set $\{1, \ldots, n\}$.
- For $n=2$, there is one such tree.
- For $n=3$, there are three such trees.

Definition

A spanning tree of a connected graph G is a tree T that is a subgraph of G, and satisfies $V(T)=V(G)$.

- We would like to count the number of (labeled) spanning trees of the complete graph K_{n}.
- In other words, we would like to count the number of trees on the vertex set $\{1, \ldots, n\}$.
- For $n=2$, there is one such tree.
- For $n=3$, there are three such trees.
- For $n=4$, there are 16 such trees.

Cayley's formula

For all $n \geq 2$, the number of spanning trees of K_{n} is n^{n-2}.

Cayley's formula

For all $n \geq 2$, the number of spanning trees of K_{n} is n^{n-2}.

- Equivalently: there are precisely n^{n-2} trees on the vertex set $\{1, \ldots, n\}$, for $n \geq 2$.

Cayley's formula

For all $n \geq 2$, the number of spanning trees of K_{n} is n^{n-2}.

- Equivalently: there are precisely n^{n-2} trees on the vertex set $\{1, \ldots, n\}$, for $n \geq 2$.
- There are a number of proofs of Cayley's formula. We give the one that uses "Prüfer codes."

Cayley's formula

For all $n \geq 2$, the number of spanning trees of K_{n} is n^{n-2}.

- Equivalently: there are precisely n^{n-2} trees on the vertex set $\{1, \ldots, n\}$, for $n \geq 2$.
- There are a number of proofs of Cayley's formula. We give the one that uses "Prüfer codes."
- We will give (an outline of) the proof of the following lemma, which immediately implies Cayley's formula.

Cayley's formula

For all $n \geq 2$, the number of spanning trees of K_{n} is n^{n-2}.

- Equivalently: there are precisely n^{n-2} trees on the vertex set $\{1, \ldots, n\}$, for $n \geq 2$.
- There are a number of proofs of Cayley's formula. We give the one that uses "Prüfer codes."
- We will give (an outline of) the proof of the following lemma, which immediately implies Cayley's formula.

Lemma 2.4

Let $n \geq 2$ be an integer, and let $S \subseteq \mathbb{N}$ be such that $|S|=n$. Then the number of trees on the vertex set S is n^{n-2}.

- To simplify terminology, we will say that a tree is an integer tree if all its vertices are positive integers.
- However, this is not standard terminology. We simply use it as a convenient shorthand in this lecture.
- To simplify terminology, we will say that a tree is an integer tree if all its vertices are positive integers.
- However, this is not standard terminology. We simply use it as a convenient shorthand in this lecture.

Definition

We define the Prüfer code of integer trees on at least two vertices recursively, as follows:

- for any integer tree T on exactly two vertices, the Prüfer code of T, denoted by $P(T)$, is the empty sequence;
- for any integer tree T on at least three vertices, we define the Prüfer code of T to be $P(T):=a_{i}, P(T \backslash i)$, where i is the smallest leaf of T, and a_{i} is the unique neighbor of i in T. ${ }^{a}$

[^0]- For example, the Prüfer code of the tree in the top left corner is $7,4,4,7,5$, as shown below:

- It is also possible to "decode" Prüfer codes, i.e. to reconstruct trees that correspond to them.
- It is also possible to "decode" Prüfer codes, i.e. to reconstruct trees that correspond to them.
- For an integer $n \geq 2$, an n-element set $S \subseteq \mathbb{N}$, and an ($n-2$)-term sequence P, with terms in S, we proceed as follows.
(1) If $n \geq 3$, then we let i be the smallest element of S that is not in P, and we let a_{i} be the first term of P. We make i and a_{i} adjacent, we delete i from S, and we delete the first term of P.
(2) We repeat the process until S only has two elements left, and P is the empty sequence. At this point, we make the last two remaining elements of S adjacent.
- For example, the tree on the vertex set $S=\{1,2,3,4,5,6,7\}$ whose Prüfer code is $7,4,4,7,5$ is the tree on the bottom of the picture (e is the empty sequence).

Lemma 2.4

Let $n \geq 2$ be an integer, and let $S \subseteq \mathbb{N}$ be such that $|S|=n$. Then the number of trees on the vertex set S is n^{n-2}.

Proof (outline).

Lemma 2.4

Let $n \geq 2$ be an integer, and let $S \subseteq \mathbb{N}$ be such that $|S|=n$. Then the number of trees on the vertex set S is n^{n-2}.

Proof (outline). The mapping $T \mapsto P(T)$ is a bijection from the set of all integer trees on the vertex set S to the set of ($n-2$)-term sequences, all of whose terms are elements of S (details: Lecture Notes).

Lemma 2.4

Let $n \geq 2$ be an integer, and let $S \subseteq \mathbb{N}$ be such that $|S|=n$. Then the number of trees on the vertex set S is n^{n-2}.

Proof (outline). The mapping $T \mapsto P(T)$ is a bijection from the set of all integer trees on the vertex set S to the set of ($n-2$)-term sequences, all of whose terms are elements of S (details: Lecture Notes). There are precisely n^{n-2} sequences of length $n-2$, with terms in S, and it follows that there are precisely n^{n-2} trees on the vertex set S.

Lemma 2.4

Let $n \geq 2$ be an integer, and let $S \subseteq \mathbb{N}$ be such that $|S|=n$. Then the number of trees on the vertex set S is n^{n-2}.

Proof (outline). The mapping $T \mapsto P(T)$ is a bijection from the set of all integer trees on the vertex set S to the set of ($n-2$)-term sequences, all of whose terms are elements of S (details: Lecture Notes). There are precisely n^{n-2} sequences of length $n-2$, with terms in S, and it follows that there are precisely n^{n-2} trees on the vertex set S.

Cayley's formula

For all $n \geq 2$, the number of spanning trees of K_{n} is n^{n-2}.
Proof. This follows immediately from Lemma 2.4, for $S=\{1, \ldots, n\}$.

- There are a number of other proofs of Cayley's formula.
- There are a number of other proofs of Cayley's formula.
- One proof uses the "Laplacians" (matrices).
- There are a number of other proofs of Cayley's formula.
- One proof uses the "Laplacians" (matrices).
- In fact, one can use the "Laplacian" of an arbitrary graph (on vertex set $\{1, \ldots, n\}$) to compute the number of spanning trees of that graph.
- There are a number of other proofs of Cayley's formula.
- One proof uses the "Laplacians" (matrices).
- In fact, one can use the "Laplacian" of an arbitrary graph (on vertex set $\{1, \ldots, n\}$) to compute the number of spanning trees of that graph.
- We give the formula without proof.

Definition

Suppose that $n \geq 2$ is an integer, and that G is a graph on the vertex set $\{1, \ldots, n\}$. Then the Laplacian of G is the matrix $Q=\left[q_{i, j}\right]_{n \times n}$ given by

$$
q_{i, j}=\left\{\begin{array}{lll}
d_{G}(i) & \text { if } \quad i=j \\
-1 & \text { if } \quad i \neq j \text { and } i j \in E(G) \\
0 & \text { if } \quad i \neq j \text { and } i j \notin E(G)
\end{array}\right.
$$

Theorem 2.5

Let $n \geq 2$ be an integer, let G be any graph on the vertex set $\{1, \ldots, n\}$, and let Q be the Laplacian of G. Then the number of spanning trees of G is precisely $\operatorname{det}\left(Q_{1,1}\right)$. ${ }^{a}$
${ }^{a} Q_{1,1}$ is the matrix obtained from Q by deleting the first row and first column.

Example

Using Theorem 2.5, prove Cayley's formula.

Example

Using Theorem 2.5, prove Cayley's formula.
Solution. Fix an integer $n \geq 2$, and consider the complete graph on the vertex set $\{1, \ldots, n\}$. Then the Laplacian of this graph is the $n \times n$ matrix

$$
Q=\left[\begin{array}{rrrrr}
n-1 & -1 & -1 & \ldots & -1 \\
-1 & n-1 & -1 & \ldots & -1 \\
-1 & -1 & n-1 & \ldots & -1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-1 & -1 & -1 & \ldots & n-1
\end{array}\right]_{n \times n}
$$

Example

Using Theorem 2.5, prove Cayley's formula.
Solution. Fix an integer $n \geq 2$, and consider the complete graph on the vertex set $\{1, \ldots, n\}$. Then the Laplacian of this graph is the $n \times n$ matrix

$$
Q=\left[\begin{array}{rrrrr}
n-1 & -1 & -1 & \ldots & -1 \\
-1 & n-1 & -1 & \ldots & -1 \\
-1 & -1 & n-1 & \ldots & -1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-1 & -1 & -1 & \ldots & n-1
\end{array}\right]_{n \times n} .
$$

The matrix $Q_{1,1}$ has exactly the same form, only it is of size $(n-1) \times(n-1)$.

Example

Using Theorem 2.5, prove Cayley's formula.
Solution. Fix an integer $n \geq 2$, and consider the complete graph on the vertex set $\{1, \ldots, n\}$. Then the Laplacian of this graph is the $n \times n$ matrix

$$
Q=\left[\begin{array}{rrrrr}
n-1 & -1 & -1 & \ldots & -1 \\
-1 & n-1 & -1 & \ldots & -1 \\
-1 & -1 & n-1 & \ldots & -1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-1 & -1 & -1 & \ldots & n-1
\end{array}\right]_{n \times n} .
$$

The matrix $Q_{1,1}$ has exactly the same form, only it is of size $(n-1) \times(n-1)$. Since $\operatorname{det}\left(Q_{1,1}\right)=n^{n-2}$ (details: Lecture Notes), Theorem 2.5 guarantees that the number of spanning trees of K_{n} is n^{n-2}. This proves Cayley's formula.

[^0]: ${ }^{a}$ So, $P(T)$ is obtained by adding a_{i} to the front of $P(T \backslash i)$.

