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This lecture has two parts:

1 the structure of 2-connected graphs (and the Ear lemma);
2 the number of spanning trees of Kn (Cayley’s formula).
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Part I: The structure of 2-connected graphs and the Ear lemma

Definition
A cut-vertex of a graph G is any vertex v ∈ V (G) such that G \ v
has more components than G .

cut-vertex

Definition
For a non-negative integer k, a graph G is k-connected if
|V (G)| ≥ k + 1 and for all S ⊆ V (G) such that |S| ≤ k − 1, we
have that G \ S is connected.

So, a graph is 2-connected if it has at least three vertices, is
connected, and has no cut-vertices.
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The global version of Menger’s theorem
Let G be a graph on at least two vertices, and let k, ` ≥ 0 be
integers.
(a) G is k-connected if and only if for all distinct s, t ∈ V (G),

there are k pairwise internally disjoint s-t paths in G .
(b) G is `-edge-connected if and only if for all distinct s, t ∈ E (G),

there are ` pairwise edge-disjoint s-t paths in G .



Lemma 1.1
Let G be a graph on at least two vertices. Then G is 2-connected
if and only if any two distinct vertices lie on a common cycle.

Proof. By Menger’s theorem (global version), a graph on at least
two vertices is 2-connected if and only if for any pair of distinct
vertices, there are two internally disjoint paths between them. But
obviously, two distinct vertices lie on a common cycle if and only if
there are two internally-disjoint paths between them. The result
now follows.



Lemma 1.1
Let G be a graph on at least two vertices. Then G is 2-connected
if and only if any two distinct vertices lie on a common cycle.

Proof. By Menger’s theorem (global version), a graph on at least
two vertices is 2-connected if and only if for any pair of distinct
vertices, there are two internally disjoint paths between them. But
obviously, two distinct vertices lie on a common cycle if and only if
there are two internally-disjoint paths between them. The result
now follows.



Definition
A path addition (sometimes called ear addition) to a graph H is
the addition to H of a path between two distinct vertices of H in
such a way that no internal vertex and no edge of the path belongs
to H.

The Ear Lemma
A graph is 2-connected if and only if it is a cycle or can be
obtained from a cycle by repeated ear addition.
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The Ear Lemma
A graph is 2-connected if and only if it is a cycle or can be
obtained from a cycle by repeated ear addition.

Proof of the “⇐=” part.

Clearly, cycles are 2-connected (indeed,
every cycle has at least three vertices, is connected, and has no
cut-vertices). Further, if a graph G can be obtained from a
2-connected graph H by adding an ear, then G has at least three
vertices (because H does), and it is easy to see that G is connected
and has no cut-vertices; so, G is 2-connected. It now follows by an
easy induction (e.g. on the number of ears added) that any graph
obtained from a cycle by repeated ear addition is 2-connected.
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The Ear Lemma
A graph is 2-connected if and only if it is a cycle or can be
obtained from a cycle by repeated ear addition.

Proof of the “=⇒” part (outline).

Fix a 2-connected graph G . By
Lemma 1.1, G contains a cycle. Now, let H be a maximal
subgraph of G that either is a cycle or can be obtained from a
cycle by repeated ear addition. We must show that H = G .
H is an induced subgraph of G , because otherwise, we can add
another ear to H.

H G
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v
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The Ear Lemma
A graph is 2-connected if and only if it is a cycle or can be
obtained from a cycle by repeated ear addition.

Proof of the “=⇒” part (outline, continued).

Also, V (H) = V (G),
for otherwise, we could add another ear to H.

H G
u v
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We now have that V (H) = V (G), and that H is an induced
subgraph of G . So, H = G .
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Part II: Cayley’s formula

Definition
A forest is an acyclic graph (i.e. a graph that has no cycles), and a
tree is a connected forest.

Definition
A leaf in a graph G is a vertex of degree one, i.e. a vertex that has
exactly one neighbor.



Fact
Every tree on at least two vertices has at least two leaves.

Fact
If v is a leaf of a tree T , then T \ v is a tree.



Definition
A spanning tree of a connected graph G is a tree T that is a
subgraph of G , and satisfies V (T ) = V (G).

We would like to count the number of (labeled) spanning
trees of the complete graph Kn.
In other words, we would like to count the number of trees on
the vertex set {1, . . . , n}.
For n = 2, there is one such tree.
For n = 3, there are three such trees.
For n = 4, there are 16 such trees.
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Cayley’s formula
For all n ≥ 2, the number of spanning trees of Kn is nn−2.

Equivalently: there are precisely nn−2 trees on the vertex set
{1, . . . , n}, for n ≥ 2.
There are a number of proofs of Cayley’s formula. We give
the one that uses “Prüfer codes.”
We will give (an outline of) the proof of the following lemma,
which immediately implies Cayley’s formula.

Lemma 2.4
Let n ≥ 2 be an integer, and let S ⊆ N be such that |S| = n. Then
the number of trees on the vertex set S is nn−2.
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To simplify terminology, we will say that a tree is an integer
tree if all its vertices are positive integers.

However, this is not standard terminology. We simply use it as
a convenient shorthand in this lecture.

Definition
We define the Prüfer code of integer trees on at least two vertices
recursively, as follows:

for any integer tree T on exactly two vertices, the Prüfer code
of T , denoted by P(T ), is the empty sequence;
for any integer tree T on at least three vertices, we define the
Prüfer code of T to be P(T ) := ai , P(T \ i), where i is the
smallest leaf of T , and ai is the unique neighbor of i in T .a

aSo, P(T ) is obtained by adding ai to the front of P(T \ i).
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For example, the Prüfer code of the tree in the top left corner
is 7, 4, 4, 7, 5, as shown below:

1 2

3

4

5

6

7

2

3

4

5

6

7 3

4

5

6

7

4

5

6

7

5

6

7

5

7

7 7, 4

7, 4, 4 7, 4, 4, 7 7, 4, 4, 7, 5



It is also possible to “decode” Prüfer codes, i.e. to reconstruct
trees that correspond to them.

For an integer n ≥ 2, an n-element set S ⊆ N, and an
(n − 2)-term sequence P, with terms in S, we proceed as
follows.

1 If n ≥ 3, then we let i be the smallest element of S that is not
in P, and we let ai be the first term of P. We make i and ai
adjacent, we delete i from S, and we delete the first term of P.

2 We repeat the process until S only has two elements left, and
P is the empty sequence. At this point, we make the last two
remaining elements of S adjacent.
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For example, the tree on the vertex set S = {1, 2, 3, 4, 5, 6, 7}
whose Prüfer code is 7, 4, 4, 7, 5 is the tree on the bottom of
the picture (e is the empty sequence).
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Lemma 2.4
Let n ≥ 2 be an integer, and let S ⊆ N be such that |S| = n. Then
the number of trees on the vertex set S is nn−2.

Proof (outline).

The mapping T 7→ P(T ) is a bijection from the
set of all integer trees on the vertex set S to the set of
(n − 2)-term sequences, all of whose terms are elements of S
(details: Lecture Notes). There are precisely nn−2 sequences of
length n − 2, with terms in S, and it follows that there are
precisely nn−2 trees on the vertex set S.

Cayley’s formula
For all n ≥ 2, the number of spanning trees of Kn is nn−2.

Proof. This follows immediately from Lemma 2.4, for
S = {1, . . . , n}.
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There are a number of other proofs of Cayley’s formula.

One proof uses the “Laplacians” (matrices).
In fact, one can use the “Laplacian” of an arbitrary graph (on
vertex set {1, . . . , n}) to compute the number of spanning
trees of that graph.
We give the formula without proof.
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Definition
Suppose that n ≥ 2 is an integer, and that G is a graph on the
vertex set {1, . . . , n}. Then the Laplacian of G is the matrix
Q = [qi ,j ]n×n given by

qi ,j =


dG(i) if i = j
−1 if i 6= j and ij ∈ E (G)
0 if i 6= j and ij /∈ E (G)

Theorem 2.5
Let n ≥ 2 be an integer, let G be any graph on the vertex set
{1, . . . , n}, and let Q be the Laplacian of G . Then the number of
spanning trees of G is precisely det(Q1,1).a

aQ1,1 is the matrix obtained from Q by deleting the first row and first
column.



Example
Using Theorem 2.5, prove Cayley’s formula.

Solution. Fix an integer n ≥ 2, and consider the complete graph
on the vertex set {1, . . . , n}. Then the Laplacian of this graph is
the n × n matrix

Q =


n − 1 −1 −1 . . . −1
−1 n − 1 −1 . . . −1
−1 −1 n − 1 . . . −1

...
...

... . . . ...
−1 −1 −1 . . . n − 1


n×n

.

The matrix Q1,1 has exactly the same form, only it is of size
(n− 1)× (n− 1). Since det(Q1,1) = nn−2 (details: Lecture Notes),
Theorem 2.5 guarantees that the number of spanning trees of Kn
is nn−2. This proves Cayley’s formula.
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n − 1 −1 −1 . . . −1
−1 n − 1 −1 . . . −1
−1 −1 n − 1 . . . −1

...
...

... . . . ...
−1 −1 −1 . . . n − 1


n×n

.

The matrix Q1,1 has exactly the same form, only it is of size
(n− 1)× (n− 1). Since det(Q1,1) = nn−2 (details: Lecture Notes),
Theorem 2.5 guarantees that the number of spanning trees of Kn
is nn−2. This proves Cayley’s formula.


