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This lecture has two parts:

@ the structure of 2-connected graphs (and the Ear lemma);

@ the number of spanning trees of K, (Cayley's formula).
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Definition

A cut-vertex of a graph G is any vertex v € V/(G) such that G\ v
has more components than G.
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Definition

A cut-vertex of a graph G is any vertex v € V/(G) such that G\ v
has more components than G.
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Definition

For a non-negative integer k, a graph G is k-connected if
[V(G)| > k+1 and for all S C V/(G) such that |S| < k —1, we
have that G \ S is connected.

@ So, a graph is 2-connected if it has at least three vertices, is
connected, and has no cut-vertices.



The global version of Menger's theorem

Let G be a graph on at least two vertices, and let k,¢ > 0 be
integers.

(a) G is k-connected if and only if for all distinct s,t € V(G),
there are k pairwise internally disjoint s-t paths in G.

(b) G is l-edge-connected if and only if for all distinct s, t € E(G),
there are £ pairwise edge-disjoint s-t paths in G.
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Let G be a graph on at least two vertices. Then G is 2-connected
if and only if any two distinct vertices lie on a common cycle.

Proof. By Menger's theorem (global version), a graph on at least
two vertices is 2-connected if and only if for any pair of distinct
vertices, there are two internally disjoint paths between them. But
obviously, two distinct vertices lie on a common cycle if and only if
there are two internally-disjoint paths between them. The result
now follows.
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The Ear Lemma

A graph is 2-connected if and only if it is a cycle or can be
obtained from a cycle by repeated ear addition.

Proof of the “=" part. Clearly, cycles are 2-connected (indeed,
every cycle has at least three vertices, is connected, and has no
cut-vertices). Further, if a graph G can be obtained from a
2-connected graph H by adding an ear, then G has at least three
vertices (because H does), and it is easy to see that G is connected
and has no cut-vertices; so, G is 2-connected. It now follows by an
easy induction (e.g. on the number of ears added) that any graph
obtained from a cycle by repeated ear addition is 2-connected.
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A graph is 2-connected if and only if it is a cycle or can be
obtained from a cycle by repeated ear addition.

Proof of the “=" part (outline). Fix a 2-connected graph G. By
Lemma 1.1, G contains a cycle. Now, let H be a maximal
subgraph of G that either is a cycle or can be obtained from a
cycle by repeated ear addition. We must show that H = G.

H is an induced subgraph of G, because otherwise, we can add
another ear to H.

|
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Proof of the “=" part (outline, continued). Also, V(H) = V(G),
for otherwise, we could add another ear to H.
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The Ear Lemma

A graph is 2-connected if and only if it is a cycle or can be
obtained from a cycle by repeated ear addition.

Proof of the “=" part (outline, continued). Also, V(H) = V(G),
for otherwise, we could add another ear to H.

Pi—1

Pte
P

H G

We now have that V/(H)

= V(G), and that H is an induced
subgraph of G. So, H= G.



Part Il: Cayley's formula

A forest is an acyclic graph (i.e. a graph that has no cycles), and a
tree is a connected forest.

A leafin a graph G is a vertex of degree one, i.e. a vertex that has
exactly one neighbor.

AT




Every tree on at least two vertices has at least two leaves.

If v is a leaf of a tree T, then T \ v is a tree.
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Definition

A spanning tree of a connected graph G is a tree T that is a
subgraph of G, and satisfies V(T) = V(G).

@ We would like to count the number of (labeled) spanning
trees of the complete graph K.

@ In other words, we would like to count the number of trees on
the vertex set {1,...,n}.

@ For n =2, there is one such tree.
@ For n = 3, there are three such trees.

@ For n =4, there are 16 such trees.
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Cayley's formula

For all n > 2, the number of spanning trees of K, is n"~2.
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Cayley's formula

For all n > 2, the number of spanning trees of K, is n"~2.

o Equivalently: there are precisely n"~2 trees on the vertex set
{1,...,n}, for n > 2.

@ There are a number of proofs of Cayley's formula. We give
the one that uses “Priifer codes.”

e We will give (an outline of) the proof of the following lemma,
which immediately implies Cayley's formula.

Let n > 2 be an integer, and let S C N be such that |S| = n. Then

the number of trees on the vertex set S is n" 2.




@ To simplify terminology, we will say that a tree is an integer
tree if all its vertices are positive integers.
e However, this is not standard terminology. We simply use it as
a convenient shorthand in this lecture.



@ To simplify terminology, we will say that a tree is an integer
tree if all its vertices are positive integers.

e However, this is not standard terminology. We simply use it as
a convenient shorthand in this lecture.

We define the Priifer code of integer trees on at least two vertices
recursively, as follows:
e for any integer tree T on exactly two vertices, the Prifer code
of T, denoted by P(T), is the empty sequence;
o for any integer tree T on at least three vertices, we define the
Prifer code of T to be P(T) := a;, P(T \ i), where i is the
smallest leaf of T, and a; is the unique neighbor of j in T.2

?So, P(T) is obtained by adding a; to the front of P(T \ /).




@ For example, the Priifer code of the tree in the top left corner
is 7,4,4,7,5, as shown below:

12 2
7 3 7 3 7 3
6 4 6 4 6 &/4
7 7,4
7 7 7
6 & 4 6 k \

7,4,4 7,4,4,7 7,4,4,7,5



@ It is also possible to “decode” Priifer codes, i.e. to reconstruct
trees that correspond to them.



@ It is also possible to “decode” Priifer codes, i.e. to reconstruct
trees that correspond to them.

@ For an integer n > 2, an n-element set S C N, and an
(n — 2)-term sequence P, with terms in S, we proceed as
follows.
@ If n> 3, then we let i be the smallest element of S that is not
in P, and we let a; be the first term of P. We make / and a;
adjacent, we delete / from S, and we delete the first term of P.
@ We repeat the process until S only has two elements left, and
P is the empty sequence. At this point, we make the last two
remaining elements of S adjacent.



@ For example, the tree on the vertex set S = {1,2,3,4,5,6,7}
whose Priifer code is 7,4,4,7,5 is the tree on the bottom of
the picture (e is the empty sequence).

12 12 12
7.0 .3 v/ T 7/ l,:a
6 4 6 4 6 4

% 5 5

P=174,4,75 P=4,4,75 P=475
S =1{1,2,3,4,5,6,7} S =1{2,3,1,5.6,7} S =1{3,4,5,6,7}

12 12 12
7/ 3 7% 3 7 3
6 4 6. 4 a\ 4

% 5 5

P=175 P=5 P=c
S =1{4,5,6,7} S ={5,6,7} S ={57}
12
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(n — 2)-term sequences, all of whose terms are elements of S
(details: Lecture Notes).
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Let n > 2 be an integer, and let S C N be such that |S| = n. Then

the number of trees on the vertex set S is n" 2.

Proof (outline). The mapping T — P(T) is a bijection from the
set of all integer trees on the vertex set S to the set of

(n — 2)-term sequences, all of whose terms are elements of S
(details: Lecture Notes). There are precisely n"~2 sequences of
length n — 2, with terms in S, and it follows that there are
precisely n"~2 trees on the vertex set S.

Cayley's formula

For all n > 2, the number of spanning trees of K, is n"~2.

Proof. This follows immediately from Lemma 2.4, for

S={1,...,n}.
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@ In fact, one can use the “Laplacian” of an arbitrary graph (on
vertex set {1,...,n}) to compute the number of spanning
trees of that graph.



@ There are a number of other proofs of Cayley's formula.
@ One proof uses the “Laplacians” (matrices).

@ In fact, one can use the “Laplacian” of an arbitrary graph (on
vertex set {1,...,n}) to compute the number of spanning
trees of that graph.

@ We give the formula without proof.



Definition
Suppose that n > 2 is an integer, and that G is a graph on the
vertex set {1,...,n}. Then the Laplacian of G is the matrix

Q = [qijlnxn given by

de(i) if i=j
gij = { —1 if i#jandijeE(G)
0 if i+jandij¢E(G)

Theorem 2.5

Let n > 2 be an integer, let G be any graph on the vertex set
{1,...,n}, and let Q be the Laplacian of G. Then the number of
spanning trees of G is precisely det(Q,1).?

?@1,1 is the matrix obtained from Q@ by deleting the first row and first
column.
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Using Theorem 2.5, prove Cayley's formula.

Solution. Fix an integer n > 2, and consider the complete graph
on the vertex set {1,...,n}. Then the Laplacian of this graph is
the n X n matrix

n—1 -1 -1 ... -1

-1 n-1 -1 ... -1

Q = -1 -1 n—-1 ... -1
-1 -1 -1 ... n-1

nxn

The matrix Q1,1 has exactly the same form, only it is of size
(n—1) x (n—1). Since det(@11) = n"~2 (details: Lecture Notes),
Theorem 2.5 guarantees that the number of spanning trees of K,
is n"~2. This proves Cayley's formula.



