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In what follows, all graphs are finite, simple (i.e. have no loops
and no parallel edges), and non-null.

Definition
For a graph G and (not necessarily disjoint) sets A,B ⊆ V (G), an
A-B path in G , or a path from A to B in G , is either a one-vertex
path whose sole vertex is in A ∩ B, or a path on at least two
vertices whose one endpoint is in A and whose other endpoint is in
B.
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Definition
Given a graph G and (not necessarily disjoint) sets A,B ⊆ V (G),
we say that a set X ⊆ V (G) separates A from B in G if every path
from A to B in G contains at least one vertex of X . Note that this
implies that A ∩ B ⊆ X .
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Definition
Given a graph G and a non-negative integer k, we say that G is
k-vertex-connected, or simply k-connected, if |V (G)| ≥ k + 1 and
for all X ⊆ V (G) such that |X | ≤ k − 1, we have that G \ X is
connected.

Every (non-null) graph is 0-connected.
Every connected graph on at least two vertices is 1-connected.
(However, K1 is not 1-connected.)

Definition
The connectivity of a graph G , denoted κ(G), is the largest integer
k such that G is k-connected.

If k = κ(G), then either G = Kk+1 or there exists a set of k
vertices whose deletion from G yields a disconnected graph.
If there exists a set of at most k vertices whose deletion from
G yields a disconnected graph, then κ(G) ≤ k.
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Definition
Given a graph G and disjoint sets A,B ⊆ V (G), we say that a set
F ⊆ E (G) separates A from B in G if every path from A to B
contains at least one edge of F .
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Definition
Given a graph G and a non-negative integer `, we say that G is
`-edge-connected if |V (G)| ≥ 2 and for all F ⊆ E (G) such that
|F | ≤ `− 1, we have that G \ F is connected.
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Given a graph G and a non-negative integer `, we say that G is
`-edge-connected if |V (G)| ≥ 2 and for all F ⊆ E (G) such that
|F | ≤ `− 1, we have that G \ F is connected.



Definition
The edge-connectivity of a graph G on at least two vertices,
denoted by λ(G), is the largest integer ` such that G is
`-edge-connected.

If ` = λ(G), then there exists a set of ` edges whose deletion
from G yields a disconnected graph.
If there exists a set of at most ` edges whose deletion from G
yields a disconnected graph, then λ(G) ≤ `.
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Proposition 1.1
Let G be a graph on at least two vertices. Then
(a) for all edges e ∈ E (G), κ(G)− 1 ≤ κ(G \ e) ≤ κ(G);
(b) for all sets F ⊆ E (G), κ(G \ F ) ≤ κ(G).

Proposition 1.2
Let G be a graph on at least two vertices. Then
(a) for all edges e ∈ E (G), λ(G)− 1 ≤ λ(G \ e) ≤ λ(G);
(b) for all sets F ⊆ E (G), λ(G \ F ) ≤ λ(G).



However, unlike edge deletion, vertex deletion sometimes
increases connectivity.

For instance, for the graph G represented below, we have that
κ(G) = λ(G) = 1, but κ(G \ x) = λ(G \ x) = 5.
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Theorem 1.3
Let G be a graph on at least two vertices. Then
κ(G) ≤ λ(G) ≤ δ(G).

Proof.

We first prove that λ(G) ≤ δ(G). Fix a vertex v ∈ V (G)
such that dG(v) = δ(G), and let F be the set of all edges of G
that are incident with v . Clearly, G \ F is disconnected, and it
follows that λ(G) ≤ δ(G).
It remains to show that κ(G) ≤ λ(G). Fix a set F ⊆ E (G) such
that |F | = λ(G) and G \ F is disconnected.

Claim. If C is the vertex set of a component of G \ F ,
then no edge of F has both its endpoints in C.

Proof of the Claim. Suppose some edge e ∈ F be an edge that has
both its endpoints in C . Then G \ (F \ {e}) is still disconnected,
contrary to the fact that |F \ {e}| = |F | − 1 = λ(G)− 1. This
proves the Claim.
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Theorem 1.3
Let G be a graph on at least two vertices. Then
κ(G) ≤ λ(G) ≤ δ(G).

Proof (continued). Reminder: F ⊆ E (G), |F | = λ(G), G \ F is
disconnected. WTS κ(G) ≤ λ(G).

Suppose first that there exists a vertex v ∈ V (G) that is not
incident with any edge in F . Let C be the vertex set of the
component of G \ F that contains v . By the Claim, no edge in F
has both endpoints in C . Now, let X be the set of all vertices in C
that are incident with an edge in F . Then |X | ≤ |F | = λ(G) and
G \ X is disconnected. So, κ(G) ≤ λ(G).
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Theorem 1.3
Let G be a graph on at least two vertices. Then
κ(G) ≤ λ(G) ≤ δ(G).

Proof (continued). Reminder: F ⊆ E (G), |F | = λ(G), G \ F is
disconnected. WTS κ(G) ≤ λ(G).
It remains to consider the case when every vertex of G is incident
with an edge of F .



Theorem 1.3
Let G be a graph on at least two vertices. Then
κ(G) ≤ λ(G) ≤ δ(G).

Proof (continued). Reminder: F ⊆ E (G), |F | = λ(G), G \ F is
disconnected, and every vertex in C is incident with an edge of F .
WTS κ(G) ≤ λ(G).
Fix any v ∈ V (G); we claim that dG(v) ≤ λ(G). Let C be the
vertex set of the component of G \ F that contains v . Then for all
distinct u,w ∈ NC (v), we have (by the Claim) that uw /∈ F , and
so (since every vertex of G is incident with an edge in F ) u and w
are incident with distinct edges of F . This implies that
dG(v) ≤ |F | = λ(G).

Since we chose v arbitrarily, this implies that
∆(G) ≤ λ(G); we already saw that λ(G) ≤ δ(G), and we now
deduce that λ(G) = ∆(G).
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Theorem 1.3
Let G be a graph on at least two vertices. Then
κ(G) ≤ λ(G) ≤ δ(G).

Proof (continued). Reminder: F ⊆ E (G), |F | = λ(G), G \ F is
disconnected, λ(G) = ∆(G). WTS κ(G) ≤ λ(G).

Now, if G is a complete graph, then |V (G)| = ∆(G) + 1, and we
see that κ(G) = ∆(G) = λ(G). So assume that G is not complete,
and fix some x ∈ V (G) that has a non-neighbor in G . Then
G \ NG(x) is disconnected, and we have that
|NG(x)| = dG(x) ≤ ∆(G) = λ(G). So, κ(G) ≤ λ(G).
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Definition
A vertex-cutset of a graph G is any set X $ V (G) such that G \X
has more components than G . Similarly, an edge-cutset of G is
any set F ⊆ E (G) such that G \ F has more components than G .

If G is connected, then a vertex-cutset of G is any set
X $ V (G) such that G \ X is disconnected.
By definition, no graph G has a vertex-cutset of size strictly
smaller than κ(G).
Similarly, no graph G has an edge-cutset of size strictly
smaller than λ(G).
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Menger’s theorem (vertex version)
Let G be a graph, and let A,B ⊆ V (G). Then the minimum
number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G .
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Menger’s theorem (vertex version)
Let G be a graph, and let A,B ⊆ V (G). Then the minimum
number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G .

Proof (outline).

Assume inductively that the theorem is true for
graphs on fewer than |E (G)| edges. Let k be the minimum number
of vertices separating A from B in G . We must prove the
following:

(i) there can be no more than k pairwise disjoint paths from A to
B in G ;

(ii) there are at least k pairwise disjoint paths from A to B.

(i) is “obvious.” Let’s prove (ii). If E (G) = ∅, then |A ∩ B| = k,
and there are k pairwise disjoint A-B paths in G . So assume that
G has at least one edge, say xy .
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Menger’s theorem (vertex version)
Let G be a graph, and let A,B ⊆ V (G). Then the minimum
number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G .

Proof (outline, continued). We apply the induction hypothesis to
Gxy := G/xy .

x y vxy

G G/xy

If x or y belongs to A, then let A′ = (A \ {x , y}) ∪ {vxy}, and
otherwise, let A′ = A. Similarly, if x or y belongs to B, then let
B′ = (B \ {x , y}) ∪ {vxy}, and otherwise, let B′ = B.
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Menger’s theorem (vertex version)
Let G be a graph, and let A,B ⊆ V (G). Then the minimum
number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G .

Proof (outline, continued). Let Y ⊆ V (Gxy ) be a minimum-sized
set of vertices separating A′ from B′ in Gxy . By the induction
hypothesis, there are |Y | many pairwise disjoint paths in Gxy from
A′ to B′, and it readily follows that there are at least |Y | many
pairwise disjoint paths in G from A to B. So, if |Y | ≥ k, then we
are done.

A′ B′YGxy



Menger’s theorem (vertex version)
Let G be a graph, and let A,B ⊆ V (G). Then the minimum
number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G .

Proof (outline, continued). From now on, we assume that
|Y | ≤ k − 1. Then vxy ∈ Y , for otherwise, Y would separate A
from B in G , contrary to the fact that |Y | ≤ k − 1. Now
X := (Y \ {vxy}) ∪ {x , y} separates A from B in G , and we have
that |X | = |Y |+ 1. Note that this implies that |X | = k. Set
X = {x1, . . . , xk}.

A′ B′YGxy



Menger’s theorem (vertex version)
Let G be a graph, and let A,B ⊆ V (G). Then the minimum
number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G .

Proof (outline, continued). We now consider the graph G \ xy .

Since x , y ∈ X , we know that any set of vertices separating A from
X in G \ xy also separates A from B in G ; consequently, any such
set has at least k vertices.
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Menger’s theorem (vertex version)
Let G be a graph, and let A,B ⊆ V (G). Then the minimum
number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G .

Proof (outline, continued). We now consider the graph G \ xy .
Since x , y ∈ X , we know that any set of vertices separating A from
X in G \ xy also separates A from B in G ; consequently, any such
set has at least k vertices.
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Menger’s theorem (vertex version)
Let G be a graph, and let A,B ⊆ V (G). Then the minimum
number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G .

Proof (outline, continued). So, by the induction hypothesis, there
are k pairwise disjoint paths from A to X in G , call them
P1, . . . ,Pk .

Similarly, there are k pairwise disjoint paths from B to
X in G , call them Q1, . . . ,Qk .
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xk
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...

A X B
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Menger’s theorem (vertex version)
Let G be a graph, and let A,B ⊆ V (G). Then the minimum
number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G .

Proof (outline, continued). So, by the induction hypothesis, there
are k pairwise disjoint paths from A to X in G , call them
P1, . . . ,Pk . Similarly, there are k pairwise disjoint paths from B to
X in G , call them Q1, . . . ,Qk .
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Corollary 2.1
Let G be a graph, and let s, t ∈ V (G) be distinct, non-adjacent
vertices of G . Then the minimum number of vertices of
V (G) \ {s, t} separating s from t in G is equal to the maximum
number of pairwise internally disjoint s-t paths in G .

The red and blue
path are internally
disjoint.

set of two vertices
separating s from t

s t

Proof (outline). Apply Menger’s theorem (vertex version) to the
graph G \ {s, t} and sets S = NG(s) and T = NG(t).
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vertices of G . Then the minimum number of vertices of
V (G) \ {s, t} separating s from t in G is equal to the maximum
number of pairwise internally disjoint s-t paths in G .
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Proof (outline). Apply Menger’s theorem (vertex version) to the
graph G \ {s, t} and sets S = NG(s) and T = NG(t).



Definition
The line graph of a graph G , denoted by L(G), is the graph whose
vertex set is E (G), and in which e, f ∈ L(V (G)) = E (G) are
adjacent if and only if e and f share an endpoint in G .

e1

e2 e3

e4
e5

e1

e2

e4

e3

e5

G L(G)

f1

f2
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Menger’s theorem (edge version)
Let G be a graph, and let s, t ∈ V (G) be distinct vertices of G .
Then the minimum number of edges separating s from t in G is
equal to the maximum number of pairwise edge-disjoint s-t paths
in G .

s t

edges separating s from t

Proof (outline). Apply Menger’s theorem (vertex version) to the
graph L(G) and the sets S = {e ∈ E (G) | e is incident with s} and
T = {e ∈ E (G) | e is incident with t}.



Menger’s theorem (edge version)
Let G be a graph, and let s, t ∈ V (G) be distinct vertices of G .
Then the minimum number of edges separating s from t in G is
equal to the maximum number of pairwise edge-disjoint s-t paths
in G .

s t

edges separating s from t

Proof (outline). Apply Menger’s theorem (vertex version) to the
graph L(G) and the sets S = {e ∈ E (G) | e is incident with s} and
T = {e ∈ E (G) | e is incident with t}.



The global version of Menger’s theorem
Let G be a graph on at least two vertices, and let k, ` ≥ 0 be
integers.
(a) G is k-connected if and only if for all distinct s, t ∈ V (G),

there are k pairwise internally disjoint s-t paths in G .
(b) G is `-edge-connected if and only if for all distinct s, t ∈ E (G),

there are ` pairwise edge-disjoint s-t paths in G .

Proof. HW.


