NDMI011: Combinatorics and Graph Theory 1

Lecture #8

Graph connectivity and Menger's theorems

Irena Penev

November 23, 2020

• In what follows, all graphs are finite, simple (i.e. have no loops and no parallel edges), and non-null.

• In what follows, all graphs are finite, simple (i.e. have no loops and no parallel edges), and non-null.

Definition

For a graph G and (not necessarily disjoint) sets $A, B \subseteq V(G)$, an A-B path in G, or a path from A to B in G, is either a one-vertex path whose sole vertex is in $A \cap B$, or a path on at least two vertices whose one endpoint is in A and whose other endpoint is in B.

Given a graph G and (not necessarily disjoint) sets $A, B \subseteq V(G)$, we say that a set $X \subseteq V(G)$ separates A from B in G if every path from A to B in G contains at least one vertex of X. Note that this implies that $A \cap B \subseteq X$.

Given a graph G and a non-negative integer k, we say that G is *k*-vertex-connected, or simply *k*-connected, if $|V(G)| \ge k + 1$ and for all $X \subseteq V(G)$ such that $|X| \le k - 1$, we have that $G \setminus X$ is connected.

Given a graph G and a non-negative integer k, we say that G is *k*-vertex-connected, or simply *k*-connected, if $|V(G)| \ge k + 1$ and for all $X \subseteq V(G)$ such that $|X| \le k - 1$, we have that $G \setminus X$ is connected.

• Every (non-null) graph is 0-connected.

Given a graph G and a non-negative integer k, we say that G is *k*-vertex-connected, or simply *k*-connected, if $|V(G)| \ge k + 1$ and for all $X \subseteq V(G)$ such that $|X| \le k - 1$, we have that $G \setminus X$ is connected.

- Every (non-null) graph is 0-connected.
- Every connected graph on at least two vertices is 1-connected. (However, K_1 is **not** 1-connected.)

Given a graph G and a non-negative integer k, we say that G is *k*-vertex-connected, or simply *k*-connected, if $|V(G)| \ge k + 1$ and for all $X \subseteq V(G)$ such that $|X| \le k - 1$, we have that $G \setminus X$ is connected.

- Every (non-null) graph is 0-connected.
- Every connected graph on at least two vertices is 1-connected. (However, *K*₁ is **not** 1-connected.)

Definition

The *connectivity* of a graph G, denoted $\kappa(G)$, is the largest integer k such that G is k-connected.

Given a graph G and a non-negative integer k, we say that G is *k*-vertex-connected, or simply *k*-connected, if $|V(G)| \ge k + 1$ and for all $X \subseteq V(G)$ such that $|X| \le k - 1$, we have that $G \setminus X$ is connected.

- Every (non-null) graph is 0-connected.
- Every connected graph on at least two vertices is 1-connected. (However, *K*₁ is **not** 1-connected.)

Definition

The *connectivity* of a graph G, denoted $\kappa(G)$, is the largest integer k such that G is k-connected.

If k = κ(G), then either G = K_{k+1} or there exists a set of k vertices whose deletion from G yields a disconnected graph.

Given a graph G and a non-negative integer k, we say that G is *k*-vertex-connected, or simply *k*-connected, if $|V(G)| \ge k + 1$ and for all $X \subseteq V(G)$ such that $|X| \le k - 1$, we have that $G \setminus X$ is connected.

- Every (non-null) graph is 0-connected.
- Every connected graph on at least two vertices is 1-connected. (However, *K*₁ is **not** 1-connected.)

Definition

The *connectivity* of a graph G, denoted $\kappa(G)$, is the largest integer k such that G is k-connected.

- If k = κ(G), then either G = K_{k+1} or there exists a set of k vertices whose deletion from G yields a disconnected graph.
- If there exists a set of at most k vertices whose deletion from G yields a disconnected graph, then $\kappa(G) \leq k$.

Given a graph G and disjoint sets $A, B \subseteq V(G)$, we say that a set $F \subseteq E(G)$ separates A from B in G if every path from A to B contains at least one edge of F.

Given a graph G and disjoint sets $A, B \subseteq V(G)$, we say that a set $F \subseteq E(G)$ separates A from B in G if every path from A to B contains at least one edge of F.

Definition

Given a graph G and a non-negative integer ℓ , we say that G is ℓ -edge-connected if $|V(G)| \ge 2$ and for all $F \subseteq E(G)$ such that $|F| \le \ell - 1$, we have that $G \setminus F$ is connected.

The *edge-connectivity* of a graph *G* on at least two vertices, denoted by $\lambda(G)$, is the largest integer ℓ such that *G* is ℓ -edge-connected.

The *edge-connectivity* of a graph *G* on at least two vertices, denoted by $\lambda(G)$, is the largest integer ℓ such that *G* is ℓ -edge-connected.

 If ℓ = λ(G), then there exists a set of ℓ edges whose deletion from G yields a disconnected graph.

The *edge-connectivity* of a graph *G* on at least two vertices, denoted by $\lambda(G)$, is the largest integer ℓ such that *G* is ℓ -edge-connected.

- If ℓ = λ(G), then there exists a set of ℓ edges whose deletion from G yields a disconnected graph.
- If there exists a set of at most ℓ edges whose deletion from G yields a disconnected graph, then λ(G) ≤ ℓ.

Proposition 1.1

Let G be a graph on at least two vertices. Then

- (a) for all edges $e \in E(G)$, $\kappa(G) 1 \le \kappa(G \setminus e) \le \kappa(G)$;
- (b) for all sets $F \subseteq E(G)$, $\kappa(G \setminus F) \leq \kappa(G)$.

Proposition 1.2

Let G be a graph on at least two vertices. Then

- (a) for all edges $e \in E(G)$, $\lambda(G) 1 \le \lambda(G \setminus e) \le \lambda(G)$;
- (b) for all sets $F \subseteq E(G)$, $\lambda(G \setminus F) \leq \lambda(G)$.

• However, unlike edge deletion, vertex deletion sometimes increases connectivity.

- However, unlike edge deletion, vertex deletion sometimes increases connectivity.
- For instance, for the graph G represented below, we have that $\kappa(G) = \lambda(G) = 1$, but $\kappa(G \setminus x) = \lambda(G \setminus x) = 5$.

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof.

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof. We first prove that $\lambda(G) \leq \delta(G)$. Fix a vertex $v \in V(G)$ such that $d_G(v) = \delta(G)$, and let F be the set of all edges of G that are incident with v. Clearly, $G \setminus F$ is disconnected, and it follows that $\lambda(G) \leq \delta(G)$.

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof. We first prove that $\lambda(G) \leq \delta(G)$. Fix a vertex $v \in V(G)$ such that $d_G(v) = \delta(G)$, and let F be the set of all edges of G that are incident with v. Clearly, $G \setminus F$ is disconnected, and it follows that $\lambda(G) \leq \delta(G)$.

It remains to show that $\kappa(G) \leq \lambda(G)$. Fix a set $F \subseteq E(G)$ such that $|F| = \lambda(G)$ and $G \setminus F$ is disconnected.

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof. We first prove that $\lambda(G) \leq \delta(G)$. Fix a vertex $v \in V(G)$ such that $d_G(v) = \delta(G)$, and let F be the set of all edges of G that are incident with v. Clearly, $G \setminus F$ is disconnected, and it follows that $\lambda(G) \leq \delta(G)$.

It remains to show that $\kappa(G) \leq \lambda(G)$. Fix a set $F \subseteq E(G)$ such that $|F| = \lambda(G)$ and $G \setminus F$ is disconnected.

Claim. If C is the vertex set of a component of $G \setminus F$, then no edge of F has both its endpoints in C.

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof. We first prove that $\lambda(G) \leq \delta(G)$. Fix a vertex $v \in V(G)$ such that $d_G(v) = \delta(G)$, and let F be the set of all edges of G that are incident with v. Clearly, $G \setminus F$ is disconnected, and it follows that $\lambda(G) \leq \delta(G)$.

It remains to show that $\kappa(G) \leq \lambda(G)$. Fix a set $F \subseteq E(G)$ such that $|F| = \lambda(G)$ and $G \setminus F$ is disconnected.

Claim. If C is the vertex set of a component of $G \setminus F$, then no edge of F has both its endpoints in C.

Proof of the Claim. Suppose some edge $e \in F$ be an edge that has both its endpoints in C. Then $G \setminus (F \setminus \{e\})$ is still disconnected, contrary to the fact that $|F \setminus \{e\}| = |F| - 1 = \lambda(G) - 1$. This proves the Claim.

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). Reminder: $F \subseteq E(G)$, $|F| = \lambda(G)$, $G \setminus F$ is disconnected. WTS $\kappa(G) \leq \lambda(G)$.

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). Reminder: $F \subseteq E(G)$, $|F| = \lambda(G)$, $G \setminus F$ is disconnected. WTS $\kappa(G) \leq \lambda(G)$.

Suppose first that there exists a vertex $v \in V(G)$ that is not incident with any edge in F. Let C be the vertex set of the component of $G \setminus F$ that contains v. By the Claim, no edge in F has both endpoints in C. Now, let X be the set of all vertices in C that are incident with an edge in F. Then $|X| \leq |F| = \lambda(G)$ and $G \setminus X$ is disconnected. So, $\kappa(G) \leq \lambda(G)$.

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). Reminder: $F \subseteq E(G)$, $|F| = \lambda(G)$, $G \setminus F$ is disconnected. WTS $\kappa(G) \leq \lambda(G)$.

It remains to consider the case when every vertex of G is incident with an edge of F.

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). Reminder: $F \subseteq E(G)$, $|F| = \lambda(G)$, $G \setminus F$ is disconnected, and every vertex in C is incident with an edge of F. WTS $\kappa(G) \leq \lambda(G)$.

Fix any $v \in V(G)$; we claim that $d_G(v) \leq \lambda(G)$. Let C be the vertex set of the component of $G \setminus F$ that contains v. Then for all distinct $u, w \in N_C(v)$, we have (by the Claim) that $uw \notin F$, and so (since every vertex of G is incident with an edge in F) u and w are incident with distinct edges of F. This implies that $d_G(v) \leq |F| = \lambda(G)$.

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). Reminder: $F \subseteq E(G)$, $|F| = \lambda(G)$, $G \setminus F$ is disconnected, and every vertex in C is incident with an edge of F. WTS $\kappa(G) \leq \lambda(G)$.

Fix any $v \in V(G)$; we claim that $d_G(v) \leq \lambda(G)$. Let C be the vertex set of the component of $G \setminus F$ that contains v. Then for all distinct $u, w \in N_C(v)$, we have (by the Claim) that $uw \notin F$, and so (since every vertex of G is incident with an edge in F) u and w are incident with distinct edges of F. This implies that $d_G(v) \leq |F| = \lambda(G)$.

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). Reminder: $F \subseteq E(G)$, $|F| = \lambda(G)$, $G \setminus F$ is disconnected, and every vertex in C is incident with an edge of F. WTS $\kappa(G) \leq \lambda(G)$.

Fix any $v \in V(G)$; we claim that $d_G(v) \leq \lambda(G)$. Let C be the vertex set of the component of $G \setminus F$ that contains v. Then for all distinct $u, w \in N_C(v)$, we have (by the Claim) that $uw \notin F$, and so (since every vertex of G is incident with an edge in F) u and w are incident with distinct edges of F. This implies that $d_G(v) \leq |F| = \lambda(G)$. Since we chose v arbitrarily, this implies that $\Delta(G) \leq \lambda(G)$; we already saw that $\lambda(G) \leq \delta(G)$, and we now deduce that $\lambda(G) = \Delta(G)$.

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). Reminder: $F \subseteq E(G)$, $|F| = \lambda(G)$, $G \setminus F$ is disconnected, $\lambda(G) = \Delta(G)$. WTS $\kappa(G) \leq \lambda(G)$.

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). Reminder: $F \subseteq E(G)$, $|F| = \lambda(G)$, $G \setminus F$ is disconnected, $\lambda(G) = \Delta(G)$. WTS $\kappa(G) \leq \lambda(G)$.

Now, if G is a complete graph, then $|V(G)| = \Delta(G) + 1$, and we see that $\kappa(G) = \Delta(G) = \lambda(G)$. So assume that G is not complete, and fix some $x \in V(G)$ that has a non-neighbor in G. Then $G \setminus N_G(x)$ is disconnected, and we have that $|N_G(x)| = d_G(x) \le \Delta(G) = \lambda(G)$. So, $\kappa(G) \le \lambda(G)$.

A vertex-cutset of a graph G is any set $X \subsetneq V(G)$ such that $G \setminus X$ has more components than G. Similarly, an *edge-cutset* of G is any set $F \subseteq E(G)$ such that $G \setminus F$ has more components than G.

A vertex-cutset of a graph G is any set $X \subsetneq V(G)$ such that $G \setminus X$ has more components than G. Similarly, an *edge-cutset* of G is any set $F \subseteq E(G)$ such that $G \setminus F$ has more components than G.

• If G is connected, then a vertex-cutset of G is any set $X \subsetneq V(G)$ such that $G \setminus X$ is disconnected.

A vertex-cutset of a graph G is any set $X \subsetneq V(G)$ such that $G \setminus X$ has more components than G. Similarly, an *edge-cutset* of G is any set $F \subseteq E(G)$ such that $G \setminus F$ has more components than G.

- If G is connected, then a vertex-cutset of G is any set $X \subsetneq V(G)$ such that $G \setminus X$ is disconnected.
- By definition, no graph G has a vertex-cutset of size strictly smaller than κ(G).

A vertex-cutset of a graph G is any set $X \subsetneq V(G)$ such that $G \setminus X$ has more components than G. Similarly, an *edge-cutset* of G is any set $F \subseteq E(G)$ such that $G \setminus F$ has more components than G.

- If G is connected, then a vertex-cutset of G is any set $X \subsetneq V(G)$ such that $G \setminus X$ is disconnected.
- By definition, no graph G has a vertex-cutset of size strictly smaller than κ(G).
- Similarly, no graph G has an edge-cutset of size strictly smaller than λ(G).

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

$$A = \{a_1, a_2, a_3, a_4\}$$

$$B = \{b_1, b_2, b_3\}$$

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline).

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline). Assume inductively that the theorem is true for graphs on fewer than |E(G)| edges. Let k be the minimum number of vertices separating A from B in G.

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline). Assume inductively that the theorem is true for graphs on fewer than |E(G)| edges. Let k be the minimum number of vertices separating A from B in G. We must prove the following:

- (i) there can be no more than k pairwise disjoint paths from A to B in G;
- (ii) there are at least k pairwise disjoint paths from A to B.

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline). Assume inductively that the theorem is true for graphs on fewer than |E(G)| edges. Let k be the minimum number of vertices separating A from B in G. We must prove the following:

- (i) there can be no more than k pairwise disjoint paths from A to B in G;
- (ii) there are at least k pairwise disjoint paths from A to B.

```
(i) is "obvious." Let's prove (ii).
```

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline). Assume inductively that the theorem is true for graphs on fewer than |E(G)| edges. Let k be the minimum number of vertices separating A from B in G. We must prove the following:

- (i) there can be no more than k pairwise disjoint paths from A to B in G;
- (ii) there are at least k pairwise disjoint paths from A to B.

(i) is "obvious." Let's prove (ii). If $E(G) = \emptyset$, then $|A \cap B| = k$, and there are k pairwise disjoint A-B paths in G.

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline). Assume inductively that the theorem is true for graphs on fewer than |E(G)| edges. Let k be the minimum number of vertices separating A from B in G. We must prove the following:

- (i) there can be no more than k pairwise disjoint paths from A to B in G;
- (ii) there are at least k pairwise disjoint paths from A to B.

(i) is "obvious." Let's prove (ii). If $E(G) = \emptyset$, then $|A \cap B| = k$, and there are k pairwise disjoint A-B paths in G. So assume that G has at least one edge, say xy.

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline, continued). We apply the induction hypothesis to $G_{xy} := G/xy$.

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline, continued). We apply the induction hypothesis to $G_{xy} := G/xy$.

If x or y belongs to A, then let $A' = (A \setminus \{x, y\}) \cup \{v_{xy}\}$, and otherwise, let A' = A. Similarly, if x or y belongs to B, then let $B' = (B \setminus \{x, y\}) \cup \{v_{xy}\}$, and otherwise, let B' = B.

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline, continued). Let $Y \subseteq V(G_{xy})$ be a minimum-sized set of vertices separating A' from B' in G_{xy} . By the induction hypothesis, there are |Y| many pairwise disjoint paths in G_{xy} from A' to B', and it readily follows that there are at least |Y| many pairwise disjoint paths in G from A to B. So, if $|Y| \ge k$, then we are done.

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline, continued). From now on, we assume that $|Y| \le k - 1$. Then $v_{xy} \in Y$, for otherwise, Y would separate A from B in G, contrary to the fact that $|Y| \le k - 1$. Now $X := (Y \setminus \{v_{xy}\}) \cup \{x, y\}$ separates A from B in G, and we have that |X| = |Y| + 1. Note that this implies that |X| = k. Set $X = \{x_1, \ldots, x_k\}$.

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline, continued). We now consider the graph $G \setminus xy$.

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline, continued). We now consider the graph $G \setminus xy$. Since $x, y \in X$, we know that any set of vertices separating A from X in $G \setminus xy$ also separates A from B in G; consequently, any such set has at least k vertices.

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline, continued). So, by the induction hypothesis, there are k pairwise disjoint paths from A to X in G, call them P_1, \ldots, P_k .

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint A-B paths in G.

Proof (outline, continued). So, by the induction hypothesis, there are k pairwise disjoint paths from A to X in G, call them P_1, \ldots, P_k . Similarly, there are k pairwise disjoint paths from B to X in G, call them Q_1, \ldots, Q_k .

Corollary 2.1

Let G be a graph, and let $s, t \in V(G)$ be distinct, non-adjacent vertices of G. Then the minimum number of vertices of $V(G) \setminus \{s, t\}$ separating s from t in G is equal to the maximum number of pairwise internally disjoint s-t paths in G.

The red and blue path are internally disjoint.

set of two vertices separating s from t

Corollary 2.1

Let G be a graph, and let $s, t \in V(G)$ be distinct, non-adjacent vertices of G. Then the minimum number of vertices of $V(G) \setminus \{s, t\}$ separating s from t in G is equal to the maximum number of pairwise internally disjoint s-t paths in G.

Proof (outline). Apply Menger's theorem (vertex version) to the graph $G \setminus \{s, t\}$ and sets $S = N_G(s)$ and $T = N_G(t)$.

The *line graph* of a graph G, denoted by L(G), is the graph whose vertex set is E(G), and in which $e, f \in L(V(G)) = E(G)$ are adjacent if and only if e and f share an endpoint in G.

Let G be a graph, and let $s, t \in V(G)$ be distinct vertices of G. Then the minimum number of edges separating s from t in G is equal to the maximum number of pairwise edge-disjoint s-t paths in G.

Let G be a graph, and let $s, t \in V(G)$ be distinct vertices of G. Then the minimum number of edges separating s from t in G is equal to the maximum number of pairwise edge-disjoint s-t paths in G.

Proof (outline). Apply Menger's theorem (vertex version) to the graph L(G) and the sets $S = \{e \in E(G) \mid e \text{ is incident with } s\}$ and $T = \{e \in E(G) \mid e \text{ is incident with } t\}$.

The global version of Menger's theorem

Let G be a graph on at least two vertices, and let $k,\ell\geq 0$ be integers.

- (a) G is k-connected if and only if for all distinct $s, t \in V(G)$, there are k pairwise internally disjoint s-t paths in G.
- (b) G is ℓ -edge-connected if and only if for all distinct $s, t \in E(G)$, there are ℓ pairwise edge-disjoint s-t paths in G.

Proof. HW.