NDMI011: Combinatorics and Graph Theory 1

Lecture \#8

Graph connectivity and Menger's theorems

Irena Penev

November 23, 2020

- In what follows, all graphs are finite, simple (i.e. have no loops and no parallel edges), and non-null.
- In what follows, all graphs are finite, simple (i.e. have no loops and no parallel edges), and non-null.

Definition

For a graph G and (not necessarily disjoint) sets $A, B \subseteq V(G)$, an $A-B$ path in G, or a path from A to B in G, is either a one-vertex path whose sole vertex is in $A \cap B$, or a path on at least two vertices whose one endpoint is in A and whose other endpoint is in B.

Definition

Given a graph G and (not necessarily disjoint) sets $A, B \subseteq V(G)$, we say that a set $X \subseteq V(G)$ separates A from B in G if every path from A to B in G contains at least one vertex of X. Note that this implies that $A \cap B \subseteq X$.

Definition

Given a graph G and a non-negative integer k, we say that G is k-vertex-connected, or simply k-connected, if $|V(G)| \geq k+1$ and for all $X \subseteq V(G)$ such that $|X| \leq k-1$, we have that $G \backslash X$ is connected.

Definition

Given a graph G and a non-negative integer k, we say that G is k-vertex-connected, or simply k-connected, if $|V(G)| \geq k+1$ and for all $X \subseteq V(G)$ such that $|X| \leq k-1$, we have that $G \backslash X$ is connected.

- Every (non-null) graph is 0-connected.

Definition

Given a graph G and a non-negative integer k, we say that G is k-vertex-connected, or simply k-connected, if $|V(G)| \geq k+1$ and for all $X \subseteq V(G)$ such that $|X| \leq k-1$, we have that $G \backslash X$ is connected.

- Every (non-null) graph is 0-connected.
- Every connected graph on at least two vertices is 1-connected. (However, K_{1} is not 1-connected.)

Definition

Given a graph G and a non-negative integer k, we say that G is k-vertex-connected, or simply k-connected, if $|V(G)| \geq k+1$ and for all $X \subseteq V(G)$ such that $|X| \leq k-1$, we have that $G \backslash X$ is connected.

- Every (non-null) graph is 0-connected.
- Every connected graph on at least two vertices is 1-connected. (However, K_{1} is not 1 -connected.)

Definition

The connectivity of a graph G, denoted $\kappa(G)$, is the largest integer k such that G is k-connected.

Definition

Given a graph G and a non-negative integer k, we say that G is k-vertex-connected, or simply k-connected, if $|V(G)| \geq k+1$ and for all $X \subseteq V(G)$ such that $|X| \leq k-1$, we have that $G \backslash X$ is connected.

- Every (non-null) graph is 0-connected.
- Every connected graph on at least two vertices is 1-connected. (However, K_{1} is not 1-connected.)

Definition

The connectivity of a graph G, denoted $\kappa(G)$, is the largest integer k such that G is k-connected.

- If $k=\kappa(G)$, then either $G=K_{k+1}$ or there exists a set of k vertices whose deletion from G yields a disconnected graph.

Definition

Given a graph G and a non-negative integer k, we say that G is k-vertex-connected, or simply k-connected, if $|V(G)| \geq k+1$ and for all $X \subseteq V(G)$ such that $|X| \leq k-1$, we have that $G \backslash X$ is connected.

- Every (non-null) graph is 0-connected.
- Every connected graph on at least two vertices is 1-connected. (However, K_{1} is not 1-connected.)

Definition

The connectivity of a graph G, denoted $\kappa(G)$, is the largest integer k such that G is k-connected.

- If $k=\kappa(G)$, then either $G=K_{k+1}$ or there exists a set of k vertices whose deletion from G yields a disconnected graph.
- If there exists a set of at most k vertices whose deletion from G yields a disconnected graph, then $\kappa(G) \leq k$.

Definition

Given a graph G and disjoint sets $A, B \subseteq V(G)$, we say that a set $F \subseteq E(G)$ separates A from B in G if every path from A to B contains at least one edge of F.

Definition

Given a graph G and disjoint sets $A, B \subseteq V(G)$, we say that a set $F \subseteq E(G)$ separates A from B in G if every path from A to B contains at least one edge of F.

Definition

Given a graph G and a non-negative integer ℓ, we say that G is ℓ-edge-connected if $|V(G)| \geq 2$ and for all $F \subseteq E(G)$ such that $|F| \leq \ell-1$, we have that $G \backslash F$ is connected.

Definition

The edge-connectivity of a graph G on at least two vertices, denoted by $\lambda(G)$, is the largest integer ℓ such that G is ℓ-edge-connected.

Definition

The edge-connectivity of a graph G on at least two vertices, denoted by $\lambda(G)$, is the largest integer ℓ such that G is ℓ-edge-connected.

- If $\ell=\lambda(G)$, then there exists a set of ℓ edges whose deletion from G yields a disconnected graph.

Definition

The edge-connectivity of a graph G on at least two vertices, denoted by $\lambda(G)$, is the largest integer ℓ such that G is ℓ-edge-connected.

- If $\ell=\lambda(G)$, then there exists a set of ℓ edges whose deletion from G yields a disconnected graph.
- If there exists a set of at most ℓ edges whose deletion from G yields a disconnected graph, then $\lambda(G) \leq \ell$.

Proposition 1.1

Let G be a graph on at least two vertices. Then
(a) for all edges $e \in E(G), \kappa(G)-1 \leq \kappa(G \backslash e) \leq \kappa(G)$;
(b) for all sets $F \subseteq E(G), \kappa(G \backslash F) \leq \kappa(G)$.

Proposition 1.2

Let G be a graph on at least two vertices. Then
(a) for all edges $e \in E(G), \lambda(G)-1 \leq \lambda(G \backslash e) \leq \lambda(G)$;
(b) for all sets $F \subseteq E(G), \lambda(G \backslash F) \leq \lambda(G)$.

- However, unlike edge deletion, vertex deletion sometimes increases connectivity.
- However, unlike edge deletion, vertex deletion sometimes increases connectivity.
- For instance, for the graph G represented below, we have that $\kappa(G)=\lambda(G)=1$, but $\kappa(G \backslash x)=\lambda(G \backslash x)=5$.

G

Theorem 1.3

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof.

Theorem 1.3

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof. We first prove that $\lambda(G) \leq \delta(G)$. Fix a vertex $v \in V(G)$ such that $d_{G}(v)=\delta(G)$, and let F be the set of all edges of G that are incident with v. Clearly, $G \backslash F$ is disconnected, and it follows that $\lambda(G) \leq \delta(G)$.

Theorem 1.3

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof. We first prove that $\lambda(G) \leq \delta(G)$. Fix a vertex $v \in V(G)$ such that $d_{G}(v)=\delta(G)$, and let F be the set of all edges of G that are incident with v. Clearly, $G \backslash F$ is disconnected, and it follows that $\lambda(G) \leq \delta(G)$.
It remains to show that $\kappa(G) \leq \lambda(G)$. Fix a set $F \subseteq E(G)$ such that $|F|=\lambda(G)$ and $G \backslash F$ is disconnected.

Theorem 1.3

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof. We first prove that $\lambda(G) \leq \delta(G)$. Fix a vertex $v \in V(G)$ such that $d_{G}(v)=\delta(G)$, and let F be the set of all edges of G that are incident with v. Clearly, $G \backslash F$ is disconnected, and it follows that $\lambda(G) \leq \delta(G)$.
It remains to show that $\kappa(G) \leq \lambda(G)$. Fix a set $F \subseteq E(G)$ such that $|F|=\lambda(G)$ and $G \backslash F$ is disconnected.

Claim. If C is the vertex set of a component of $G \backslash F$, then no edge of F has both its endpoints in C.

Theorem 1.3

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof. We first prove that $\lambda(G) \leq \delta(G)$. Fix a vertex $v \in V(G)$ such that $d_{G}(v)=\delta(G)$, and let F be the set of all edges of G that are incident with v. Clearly, $G \backslash F$ is disconnected, and it follows that $\lambda(G) \leq \delta(G)$.
It remains to show that $\kappa(G) \leq \lambda(G)$. Fix a set $F \subseteq E(G)$ such that $|F|=\lambda(G)$ and $G \backslash F$ is disconnected.

Claim. If C is the vertex set of a component of $G \backslash F$, then no edge of F has both its endpoints in C.

Proof of the Claim. Suppose some edge $e \in F$ be an edge that has both its endpoints in C. Then $G \backslash(F \backslash\{e\})$ is still disconnected, contrary to the fact that $|F \backslash\{e\}|=|F|-1=\lambda(G)-1$. This proves the Claim.

Theorem 1.3

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). Reminder: $F \subseteq E(G),|F|=\lambda(G), G \backslash F$ is disconnected. WTS $\kappa(G) \leq \lambda(G)$.

Theorem 1.3

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). Reminder: $F \subseteq E(G),|F|=\lambda(G), G \backslash F$ is disconnected. WTS $\kappa(G) \leq \lambda(G)$.
Suppose first that there exists a vertex $v \in V(G)$ that is not incident with any edge in F. Let C be the vertex set of the component of $G \backslash F$ that contains v. By the Claim, no edge in F has both endpoints in C. Now, let X be the set of all vertices in C that are incident with an edge in F. Then $|X| \leq|F|=\lambda(G)$ and $G \backslash X$ is disconnected. So, $\kappa(G) \leq \lambda(G)$.

Theorem 1.3

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). Reminder: $F \subseteq E(G),|F|=\lambda(G), G \backslash F$ is disconnected. WTS $\kappa(G) \leq \lambda(G)$.
It remains to consider the case when every vertex of G is incident with an edge of F.

Theorem 1.3

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). Reminder: $F \subseteq E(G),|F|=\lambda(G), G \backslash F$ is disconnected, and every vertex in C is incident with an edge of F. WTS $\kappa(G) \leq \lambda(G)$.
Fix any $v \in V(G)$; we claim that $d_{G}(v) \leq \lambda(G)$. Let C be the vertex set of the component of $G \backslash F$ that contains v. Then for all distinct $u, w \in N_{C}(v)$, we have (by the Claim) that $u w \notin F$, and so (since every vertex of G is incident with an edge in F) u and w are incident with distinct edges of F. This implies that $d_{G}(v) \leq|F|=\lambda(G)$.

Theorem 1.3

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). Reminder: $F \subseteq E(G),|F|=\lambda(G), G \backslash F$ is disconnected, and every vertex in C is incident with an edge of F. WTS $\kappa(G) \leq \lambda(G)$.
Fix any $v \in V(G)$; we claim that $d_{G}(v) \leq \lambda(G)$. Let C be the vertex set of the component of $G \backslash F$ that contains v. Then for all distinct $u, w \in N_{C}(v)$, we have (by the Claim) that $u w \notin F$, and so (since every vertex of G is incident with an edge in F) u and w are incident with distinct edges of F. This implies that $d_{G}(v) \leq|F|=\lambda(G)$.

Theorem 1.3

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). Reminder: $F \subseteq E(G),|F|=\lambda(G), G \backslash F$ is disconnected, and every vertex in C is incident with an edge of F. WTS $\kappa(G) \leq \lambda(G)$.
Fix any $v \in V(G)$; we claim that $d_{G}(v) \leq \lambda(G)$. Let C be the vertex set of the component of $G \backslash F$ that contains v. Then for all distinct $u, w \in N_{C}(v)$, we have (by the Claim) that $u w \notin F$, and so (since every vertex of G is incident with an edge in F) u and w are incident with distinct edges of F. This implies that $d_{G}(v) \leq|F|=\lambda(G)$. Since we chose v arbitrarily, this implies that $\Delta(G) \leq \lambda(G)$; we already saw that $\lambda(G) \leq \delta(G)$, and we now deduce that $\lambda(G)=\Delta(G)$.

Theorem 1.3

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). Reminder: $F \subseteq E(G),|F|=\lambda(G), G \backslash F$ is disconnected, $\lambda(G)=\Delta(G)$. WTS $\kappa(G) \leq \lambda(G)$.

Theorem 1.3

Let G be a graph on at least two vertices. Then $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Proof (continued). Reminder: $F \subseteq E(G),|F|=\lambda(G), G \backslash F$ is disconnected, $\lambda(G)=\Delta(G)$. WTS $\kappa(G) \leq \lambda(G)$.
Now, if G is a complete graph, then $|V(G)|=\Delta(G)+1$, and we see that $\kappa(G)=\Delta(G)=\lambda(G)$. So assume that G is not complete, and fix some $x \in V(G)$ that has a non-neighbor in G. Then $G \backslash N_{G}(x)$ is disconnected, and we have that

$$
\left|N_{G}(x)\right|=d_{G}(x) \leq \Delta(G)=\lambda(G) . \text { So, } \kappa(G) \leq \lambda(G)
$$

Definition

A vertex-cutset of a graph G is any set $X \varsubsetneqq V(G)$ such that $G \backslash X$ has more components than G. Similarly, an edge-cutset of G is any set $F \subseteq E(G)$ such that $G \backslash F$ has more components than G.

Definition

A vertex-cutset of a graph G is any set $X \varsubsetneqq V(G)$ such that $G \backslash X$ has more components than G. Similarly, an edge-cutset of G is any set $F \subseteq E(G)$ such that $G \backslash F$ has more components than G.

- If G is connected, then a vertex-cutset of G is any set $X \varsubsetneqq V(G)$ such that $G \backslash X$ is disconnected.

Definition

A vertex-cutset of a graph G is any set $X \varsubsetneqq V(G)$ such that $G \backslash X$ has more components than G. Similarly, an edge-cutset of G is any set $F \subseteq E(G)$ such that $G \backslash F$ has more components than G.

- If G is connected, then a vertex-cutset of G is any set $X \varsubsetneqq V(G)$ such that $G \backslash X$ is disconnected.
- By definition, no graph G has a vertex-cutset of size strictly smaller than $\kappa(G)$.

Definition

A vertex-cutset of a graph G is any set $X \varsubsetneqq V(G)$ such that $G \backslash X$ has more components than G. Similarly, an edge-cutset of G is any set $F \subseteq E(G)$ such that $G \backslash F$ has more components than G.

- If G is connected, then a vertex-cutset of G is any set $X \varsubsetneqq V(G)$ such that $G \backslash X$ is disconnected.
- By definition, no graph G has a vertex-cutset of size strictly smaller than $\kappa(G)$.
- Similarly, no graph G has an edge-cutset of size strictly smaller than $\lambda(G)$.

Menger's theorem (vertex version)

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint $A-B$ paths in G.

Menger's theorem (vertex version)

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint $A-B$ paths in G.

Proof (outline).

Menger's theorem (vertex version)

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint $A-B$ paths in G.

Proof (outline). Assume inductively that the theorem is true for graphs on fewer than $|E(G)|$ edges. Let k be the minimum number of vertices separating A from B in G.

Menger's theorem (vertex version)

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint $A-B$ paths in G.

Proof (outline). Assume inductively that the theorem is true for graphs on fewer than $|E(G)|$ edges. Let k be the minimum number of vertices separating A from B in G. We must prove the following:
(i) there can be no more than k pairwise disjoint paths from A to B in G;
(ii) there are at least k pairwise disjoint paths from A to B.

Menger's theorem (vertex version)

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint $A-B$ paths in G.

Proof (outline). Assume inductively that the theorem is true for graphs on fewer than $|E(G)|$ edges. Let k be the minimum number of vertices separating A from B in G. We must prove the following:
(i) there can be no more than k pairwise disjoint paths from A to B in G;
(ii) there are at least k pairwise disjoint paths from A to B.
(i) is "obvious." Let's prove (ii).

Menger's theorem (vertex version)

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint $A-B$ paths in G.

Proof (outline). Assume inductively that the theorem is true for graphs on fewer than $|E(G)|$ edges. Let k be the minimum number of vertices separating A from B in G. We must prove the following:
(i) there can be no more than k pairwise disjoint paths from A to B in G;
(ii) there are at least k pairwise disjoint paths from A to B.
(i) is "obvious." Let's prove (ii). If $E(G)=\emptyset$, then $|A \cap B|=k$, and there are k pairwise disjoint $A-B$ paths in G.

Menger's theorem (vertex version)

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint $A-B$ paths in G.

Proof (outline). Assume inductively that the theorem is true for graphs on fewer than $|E(G)|$ edges. Let k be the minimum number of vertices separating A from B in G. We must prove the following:
(i) there can be no more than k pairwise disjoint paths from A to B in G;
(ii) there are at least k pairwise disjoint paths from A to B.
(i) is "obvious." Let's prove (ii). If $E(G)=\emptyset$, then $|A \cap B|=k$, and there are k pairwise disjoint $A-B$ paths in G. So assume that G has at least one edge, say $x y$.

Menger's theorem (vertex version)

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint $A-B$ paths in G.

Proof (outline, continued). We apply the induction hypothesis to $G_{x y}:=G / x y$.

G

$G / x y$

Menger's theorem (vertex version)

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint $A-B$ paths in G.

Proof (outline, continued). We apply the induction hypothesis to $G_{x y}:=G / x y$.

G

$G / x y$

If x or y belongs to A, then let $A^{\prime}=(A \backslash\{x, y\}) \cup\left\{v_{x y}\right\}$, and otherwise, let $A^{\prime}=A$. Similarly, if x or y belongs to B, then let $B^{\prime}=(B \backslash\{x, y\}) \cup\left\{v_{x y}\right\}$, and otherwise, let $B^{\prime}=B$.

Menger's theorem (vertex version)

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint $A-B$ paths in G.

Proof (outline, continued). Let $Y \subseteq V\left(G_{x y}\right)$ be a minimum-sized set of vertices separating A^{\prime} from B^{\prime} in $G_{x y}$. By the induction hypothesis, there are $|Y|$ many pairwise disjoint paths in $G_{x y}$ from A^{\prime} to B^{\prime}, and it readily follows that there are at least $|Y|$ many pairwise disjoint paths in G from A to B. So, if $|Y| \geq k$, then we are done.

Menger's theorem (vertex version)

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint $A-B$ paths in G.

Proof (outline, continued). From now on, we assume that $|Y| \leq k-1$. Then $v_{x y} \in Y$, for otherwise, Y would separate A from B in G, contrary to the fact that $|Y| \leq k-1$. Now $X:=\left(Y \backslash\left\{v_{x y}\right\}\right) \cup\{x, y\}$ separates A from B in G, and we have that $|X|=|Y|+1$. Note that this implies that $|X|=k$. Set $X=\left\{x_{1}, \ldots, x_{k}\right\}$.

Menger's theorem (vertex version)

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint $A-B$ paths in G.

Proof (outline, continued). We now consider the graph $G \backslash x y$.

Menger's theorem (vertex version)

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint $A-B$ paths in G.

Proof (outline, continued). We now consider the graph $G \backslash x y$. Since $x, y \in X$, we know that any set of vertices separating A from X in $G \backslash x y$ also separates A from B in G; consequently, any such set has at least k vertices.

Menger's theorem (vertex version)

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint $A-B$ paths in G.

Proof (outline, continued). So, by the induction hypothesis, there are k pairwise disjoint paths from A to X in G, call them P_{1}, \ldots, P_{k}.

Menger's theorem (vertex version)

Let G be a graph, and let $A, B \subseteq V(G)$. Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint $A-B$ paths in G.

Proof (outline, continued). So, by the induction hypothesis, there are k pairwise disjoint paths from A to X in G, call them P_{1}, \ldots, P_{k}. Similarly, there are k pairwise disjoint paths from B to X in G, call them Q_{1}, \ldots, Q_{k}.

Corollary 2.1

Let G be a graph, and let $s, t \in V(G)$ be distinct, non-adjacent vertices of G. Then the minimum number of vertices of $V(G) \backslash\{s, t\}$ separating s from t in G is equal to the maximum number of pairwise internally disjoint $s-t$ paths in G.

Corollary 2.1

Let G be a graph, and let $s, t \in V(G)$ be distinct, non-adjacent vertices of G. Then the minimum number of vertices of $V(G) \backslash\{s, t\}$ separating s from t in G is equal to the maximum number of pairwise internally disjoint s - t paths in G.

Proof (outline). Apply Menger's theorem (vertex version) to the graph $G \backslash\{s, t\}$ and sets $S=N_{G}(s)$ and $T=N_{G}(t)$.

Definition

The line graph of a graph G, denoted by $L(G)$, is the graph whose vertex set is $E(G)$, and in which $e, f \in L(V(G))=E(G)$ are adjacent if and only if e and f share an endpoint in G.

G

$L(G)$

Menger's theorem (edge version)

Let G be a graph, and let $s, t \in V(G)$ be distinct vertices of G. Then the minimum number of edges separating s from t in G is equal to the maximum number of pairwise edge-disjoint $s-t$ paths in G.
edges separating s from t

Menger's theorem (edge version)

Let G be a graph, and let $s, t \in V(G)$ be distinct vertices of G. Then the minimum number of edges separating s from t in G is equal to the maximum number of pairwise edge-disjoint s - t paths in G.
edges separating s from t

Proof (outline). Apply Menger's theorem (vertex version) to the graph $L(G)$ and the sets $S=\{e \in E(G) \mid e$ is incident with $s\}$ and $T=\{e \in E(G) \mid e$ is incident with $t\}$.

The global version of Menger's theorem

Let G be a graph on at least two vertices, and let $k, \ell \geq 0$ be integers.
(a) G is k-connected if and only if for all distinct $s, t \in V(G)$, there are k pairwise internally disjoint $s-t$ paths in G.
(b) G is ℓ-edge-connected if and only if for all distinct $s, t \in E(G)$, there are ℓ pairwise edge-disjoint $s-t$ paths in G.

Proof. HW.

