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@ In what follows, all graphs are finite, simple (i.e. have no loops
and no parallel edges), and non-null.
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Definition

For a graph G and (not necessarily disjoint) sets A, B C V(G), an
A-B path in G, or a path from A to B in G, is either a one-vertex
path whose sole vertex is in AN B, or a path on at least two

vertices whose one endpoint is in A and whose other endpoint is in
B.




Definition

Given a graph G and (not necessarily disjoint) sets A, B C V(G),
we say that a set X C V/(G) separates A from B in G if every path
from A to B in G contains at least one vertex of X. Note that this
implies that AN B C X.




Definition

Given a graph G and a non-negative integer k, we say that G is
k-vertex-connected, or simply k-connected, if |V(G)| > k+ 1 and
for all X C V/(G) such that |X| < k — 1, we have that G\ X is

connected.
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k such that G is k-connected.
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The connectivity of a graph G, denoted £(G), is the largest integer
k such that G is k-connected.

o If k = k(G), then either G = Kj;1 or there exists a set of k
vertices whose deletion from G yields a disconnected graph.



Definition

Given a graph G and a non-negative integer k, we say that G is
k-vertex-connected, or simply k-connected, if |V(G)| > k+ 1 and
for all X C V/(G) such that |[X| < k — 1, we have that G\ X is
connected.

e Every (non-null) graph is 0-connected.
@ Every connected graph on at least two vertices is 1-connected.
(However, Kj is not 1-connected.)

Definition

The connectivity of a graph G, denoted £(G), is the largest integer
k such that G is k-connected.

o If k = k(G), then either G = Kj;1 or there exists a set of k
vertices whose deletion from G yields a disconnected graph.

@ If there exists a set of at most k vertices whose deletion from
G yields a disconnected graph, then k(G) < k.



Definition

Given a graph G and disjoint sets A, B C V(G), we say that a set
F C E(G) separates A from B in G if every path from A to B
contains at least one edge of F.




Definition

Given a graph G and disjoint sets A, B C V(G), we say that a set
F C E(G) separates A from B in G if every path from A to B
contains at least one edge of F.

Definition

Given a graph G and a non-negative integer £, we say that G is
(-edge-connected if |V(G)| > 2 and for all F C E(G) such that
|F| <€ —1, we have that G \ F is connected.
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The edge-connectivity of a graph G on at least two vertices,
denoted by A(G), is the largest integer ¢ such that G is
{-edge-connected.
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Definition

The edge-connectivity of a graph G on at least two vertices,
denoted by A(G), is the largest integer ¢ such that G is
{-edge-connected.

o If £ = A\(G), then there exists a set of ¢ edges whose deletion
from G yields a disconnected graph.

o If there exists a set of at most / edges whose deletion from G
yields a disconnected graph, then A(G) < /.



Proposition 1.1

Let G be a graph on at least two vertices. Then
(a) for all edges e € E(G), k(G) —1 < k(G \ e) < k(G);
(b) for all sets F C E(G), k(G \ F) < k(G).

Proposition 1.2

Let G be a graph on at least two vertices. Then
(a) for all edges e € E(G), A(G) —1 < A(G\ e) < \(G);
(b) for all sets F C E(G), A(G\ F) < A(G).




@ However, unlike edge deletion, vertex deletion sometimes
increases connectivity.



@ However, unlike edge deletion, vertex deletion sometimes
increases connectivity.

@ For instance, for the graph G represented below, we have that
k(G) = MN(G) =1, but k(G \ x) = A(G\ x) =5.
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k(G) < ANG) < 4(G).
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Proof. We first prove that \(G) < 6(G). Fix a vertex v € V(G)
such that dg(v) = 6(G), and let F be the set of all edges of G
that are incident with v. Clearly, G\ F is disconnected, and it
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Let G be a graph on at least two vertices. Then
k(G) < ANG) < 4(G).

Proof. We first prove that \(G) < 6(G). Fix a vertex v € V(G)
such that dg(v) = 6(G), and let F be the set of all edges of G

that are incident with v. Clearly, G\ F is disconnected, and it
follows that A(G) < §(G).

It remains to show that k(G) < A(G). Fix a set F C E(G) such
that |F| = A(G) and G\ F is disconnected.

Claim. If C is the vertex set of a component of G \ F,
then no edge of F has both its endpoints in C.

Proof of the Claim. Suppose some edge e € F be an edge that has
both its endpoints in C. Then G\ (F \ {e}) is still disconnected,
contrary to the fact that |F \ {e}| = |F| — 1= A(G) — 1. This
proves the Claim.



Let G be a graph on at least two vertices. Then
k(G) < MG) < 4(G).

Proof (continued). Reminder: F C E(G), |F| = A(G), G\ F is
disconnected. WTS k(G) < A(G).



Let G be a graph on at least two vertices. Then
k(G) < MG) < 4(G).

Proof (continued). Reminder: F C E(G), |F| = A(G), G\ F is
disconnected. WTS k(G) < A(G).

Suppose first that there exists a vertex v € V(G) that is not
incident with any edge in F. Let C be the vertex set of the
component of G\ F that contains v. By the Claim, no edge in F
has both endpoints in C. Now, let X be the set of all vertices in C
that are incident with an edge in F. Then |[X| < |F| = A(G) and
G \ X is disconnected. So, k(G) < A(G).




Let G be a graph on at least two vertices. Then
k(G) < A(G) < 4(G).

Proof (continued). Reminder: F C E(G), |F| = A(G), G\ F is
disconnected. WTS k(G) < A(G).

It remains to consider the case when every vertex of G is incident
with an edge of F.




Let G be a graph on at least two vertices. Then
k(G) < A(G) < 4(G).

Proof (continued). Reminder: F C E(G), |F| = A(G), G\ F is
disconnected, and every vertex in C is incident with an edge of F.
WTS k(G) < A\(G).

Fix any v € V(G); we claim that dg(v) < A(G). Let C be the
vertex set of the component of G \ F that contains v. Then for all
distinct u, w € N¢(v), we have (by the Claim) that uw ¢ F, and
so (since every vertex of G is incident with an edge in F) u and w

are incident with distinct edges of F. This implies that
dc(v) < |F| = A(G).
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Proof (continued). Reminder: F C E(G), |F| = A(G), G\ F is
disconnected, and every vertex in C is incident with an edge of F.
WTS k(G) < A\(G).

Fix any v € V(G); we claim that dg(v) < A(G). Let C be the
vertex set of the component of G \ F that contains v. Then for all
distinct u, w € N¢(v), we have (by the Claim) that uw ¢ F, and
so (since every vertex of G is incident with an edge in F) u and w

are incident with distinct edges of F. This implies that
dc(v) < |F| = A(G).



Let G be a graph on at least two vertices. Then
k(G) < A(G) < 4(G).

Proof (continued). Reminder: F C E(G), |F| = A(G), G\ F is
disconnected, and every vertex in C is incident with an edge of F.
WTS k(G) < A\(G).

Fix any v € V(G); we claim that dg(v) < A(G). Let C be the
vertex set of the component of G \ F that contains v. Then for all
distinct u, w € N¢(v), we have (by the Claim) that uw ¢ F, and
so (since every vertex of G is incident with an edge in F) u and w
are incident with distinct edges of F. This implies that

dg(v) < |F| = A(G). Since we chose v arbitrarily, this implies that
A(G) < A\(G); we already saw that A(G) < 6(G), and we now
deduce that A\(G) = A(G).



Let G be a graph on at least two vertices. Then

k(G) < A(G) < 4(G).

Proof (continued). Reminder: F C E(G), |
disconnected, A\(G) = A(G). WTS &(G) < A\(G).



Let G be a graph on at least two vertices. Then
k(G) < AXG) < 4(G).

Proof (continued). Reminder: F C E(G), |F| = X\(G), G\ F is
disconnected, A\(G) = A(G). WTS &(G) < A(G).

Now, if G is a complete graph, then |V(G)| = A(G) + 1, and we
see that kK(G) = A(G) = A(G). So assume that G is not complete,
and fix some x € V/(G) that has a non-neighbor in G. Then

G \ Ng(x) is disconnected, and we have that

ING(x)| = dg(x) < A(G) = A(G). So, k(G) < A(G).



Definition

A vertex-cutset of a graph G is any set X & V/(G) such that G\ X
has more components than G. Similarly, an edge-cutset of G is
any set F C E(G) such that G\ F has more components than G.
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Definition

A vertex-cutset of a graph G is any set X & V/(G) such that G\ X
has more components than G. Similarly, an edge-cutset of G is
any set F C E(G) such that G\ F has more components than G.

@ If G is connected, then a vertex-cutset of G is any set
X S V(G) such that G\ X is disconnected.

@ By definition, no graph G has a vertex-cutset of size strictly
smaller than x(G).

@ Similarly, no graph G has an edge-cutset of size strictly
smaller than A\(G).



Menger's theorem (vertex version)

Let G be a graph, and let A, B C V(G). Then the minimum
number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G.

=b A= {ay,as,a3,a4}
ay by B = {by, by, b3}
as b3

AN

set of vertices
separating
A from B
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Menger's theorem (vertex version)

Let G be a graph, and let A, B C V(G). Then the minimum
number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G.

Proof (outline). Assume inductively that the theorem is true for
graphs on fewer than |E(G)| edges. Let k be the minimum number
of vertices separating A from B in G. We must prove the
following:
(i) there can be no more than k pairwise disjoint paths from A to
Bin G;
(i) there are at least k pairwise disjoint paths from A to B.

(i) is “obvious.” Let's prove (ii). If E(G) =0, then |AN B| = k,
and there are k pairwise disjoint A-B paths in G. So assume that
G has at least one edge, say xy.



Menger's theorem (vertex version)

Let G be a graph, and let A, B C V(G). Then the minimum
number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G.

Proof (outline, continued). We apply the induction hypothesis to
Gy = G/xy.

T y Vzy
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Menger's theorem (vertex version)

Let G be a graph, and let A, B C V(G). Then the minimum
number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G.

Proof (outline, continued). We apply the induction hypothesis to
Gy = G/xy.

Ty Uzy
G G/xy
If x or y belongs to A, then let A= (A\ {x,y})U{vy}, and

otherwise, let A’ = A. Similarly, if x or y belongs to B, then let
B' = (B\ {x,y})U{vy}, and otherwise, let B’ = B.



Menger's theorem (vertex version)

Let G be a graph, and let A, B C V(G). Then the minimum
number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G.

Proof (outline, continued). Let Y C V/(G,,) be a minimum-sized
set of vertices separating A’ from B’ in G,,. By the induction
hypothesis, there are | Y| many pairwise disjoint paths in G, from
A’ to B', and it readily follows that there are at least |Y| many
pairwise disjoint paths in G from A to B. So, if |Y| > k, then we
are done.

Gy A Y B




Menger's theorem (vertex version)

Let G be a graph, and let A, B C V(G). Then the minimum
number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G.

Proof (outline, continued). From now on, we assume that

|Y| < k—1. Then v,, € Y, for otherwise, Y would separate A
from B in G, contrary to the fact that |Y| < k — 1. Now

X = (Y \{vqy})U{x,y} separates A from B in G, and we have
that | X| = | Y|+ 1. Note that this implies that | X| = k. Set

X ={x1,..., %k}




Menger's theorem (vertex version)

Let G be a graph, and let A, B C V(G). Then the minimum
number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G.

Proof (outline, continued). We now consider the graph G\ xy.



Menger's theorem (vertex version)
Let G be a graph, and let A, B C V(G). Then the minimum

number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G.

Proof (outline, continued). We now consider the graph G\ xy.
Since x,y € X, we know that any set of vertices separating A from
X in G\ xy also separates A from B in G; consequently, any such
set has at least k vertices.

G\ zy .




Menger's theorem (vertex version)

Let G be a graph, and let A, B C V(G). Then the minimum
number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G.

Proof (outline, continued). So, by the induction hypothesis, there
are k pairwise disjoint paths from A to X in G, call them
Py,..., P



Menger's theorem (vertex version)
Let G be a graph, and let A, B C V(G). Then the minimum

number of vertices separating A from B in G is equal to the
maximum number of pairwise disjoint A-B paths in G.

Proof (outline, continued). So, by the induction hypothesis, there
are k pairwise disjoint paths from A to X in G, call them

P1,..., Py. Similarly, there are k pairwise disjoint paths from B to
X in G, call them @, ..., Q.



Let G be a graph, and let s, t € V(G) be distinct, non-adjacent
vertices of G. Then the minimum number of vertices of

V(G) \ {s, t} separating s from ¢t in G is equal to the maximum
number of pairwise internally disjoint s-t paths in G.

The red and blue
path are internally
disjoint.

S~

set of two vertices
separating s from ¢



Let G be a graph, and let s, t € V(G) be distinct, non-adjacent
vertices of G. Then the minimum number of vertices of

V(G) \ {s, t} separating s from ¢t in G is equal to the maximum
number of pairwise internally disjoint s-t paths in G.

The red and blue
path are internally
disjoint.

S~

set of two vertices
separating s from ¢

Proof (outline). Apply Menger's theorem (vertex version) to the
graph G\ {s,t} and sets S = Ng(s) and T = Ng(t).



Definition

The line graph of a graph G, denoted by L(G), is the graph whose
vertex set is E(G), and in which e, f € L(V(G)) = E(G) are
adjacent if and only if e and f share an endpoint in G.

fi

€1 4

€2 €3




Menger's theorem (edge version)

Let G be a graph, and let s, t € V/(G) be distinct vertices of G.
Then the minimum number of edges separating s from t in G is
equal to the maximum number of pairwise edge-disjoint s-t paths
in G.

edges separating s from ¢



Menger's theorem (edge version)

Let G be a graph, and let s, t € V/(G) be distinct vertices of G.
Then the minimum number of edges separating s from t in G is
equal to the maximum number of pairwise edge-disjoint s-t paths
in G.

edges separating s from ¢

Proof (outline). Apply Menger's theorem (vertex version) to the
graph L(G) and the sets S = {e € E(G) | e is incident with s} and
T ={e € E(G) | e is incident with t}.



The global version of Menger's theorem

Let G be a graph on at least two vertices, and let k,¢ > 0 be
integers.

(a) G is k-connected if and only if for all distinct s,t € V(G),
there are k pairwise internally disjoint s-t paths in G.

(b) G is l-edge-connected if and only if for all distinct s,t € E(G),
there are £ pairwise edge-disjoint s-t paths in G.

Proof. HW.



