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Lecture #8
Graph connectivity and Menger’s theorems

Irena Penev

In what follows, all graphs are finite, simple (i.e. have no loops and no
parallel edges), and non-null.

1 Vertex and edge connectivity

For a graph G and (not necessarily disjoint) sets A, B C V(G), an A-B path
in G, or a path from A to B in G, is either a one-vertex path whose sole
vertex is in AN B, or a path on at least two vertices whose one endpoint is
in A and whose other endpoint is in B.

Given a graph G and (not necessarily disjoint) sets A, B C V(G), we say
that a set X C V(G) separates A from B in G if every path from A to B in
G contains at least one vertex of X. Note that this implies that AN B C X!

Given a graph G and a non-negative integer k, we say that G is k-vertex-
connected, or simply k-connected, if |V (G)| > k+ 1 and for all X C V(G)
such that |X| < k — 1, we have that G \ X is connected. Note that this
means that every (non-null) graph is 0-connected, and that every connected
graph on at least two vertices is 1-connected.? The connectivity of a graph
G, denoted x(G), is the largest integer k such that G is k-connected. Note
that if & = k(G), then either G = K}y or there exists a set of k vertices
whose deletion from G yields a disconnected graph. Furthermore, if there
exists a set of at most k vertices whose deletion from G yields a disconnected
graph, then x(G) < k.

Given a graph G and disjoint sets A, B C V(G), we say that a set
F C E(G) separates A from B in G if every path from A to B contains at
least one edge of F'.

Given a graph G and a non-negative integer ¢, we say that G is £-edge-
connected if |V (G)| > 2 and for all FF C E(G) such that |F| < ¢ —1, we

ndeed, if z € AN B, then & counts as a one-vertex path from A to B. So, any set of
vertices that separates A from B must include A N B as a subset.
2However, K is not 1-connected.



have that G\ F' is connected. The edge-connectivity of a graph G on at
least two vertices, denoted by A(G), is the largest integer ¢ such that G is
(-edge-connected. Note that if £ = A(G), then there exists a set of £ edges
whose deletion from G yields a disconnected graph. Furthermore, if there
exists a set of at most £ edges whose deletion from G yields a disconnected
graph, then A\(G) < /.

Proposition 1.1. Let G be a graph on at least two vertices. Then
(a) for all edges e € E(G), k(G) —1 < k(G \ e) < k(G);
(b) for all sets F C E(G), k(G \ F) < k(G).

Proof. Clearly, (b) follows from (a) by an easy induction. It remains to prove
(a). Fix e € E(G).

We first show that (G \ e) > k(G) — 1. Since G is k(G)-connected,
we know that G (and consequently, G \ e as well) has at least x(G) + 1
vertices. Now, fix X C V(G) such that | X| < k(G) — 2; we must show that
(G\ e)\ X is connected. Suppose first that e is incident with some vertex
in X. Then (G \e)\ X =G\ X. Since | X| < k(G) — 2, we see that G\ X
is connected, and it follows that (G \ e) \ X is connected. It remains to
consider the case when e is not incident with any vertex in X. Set e = x1x9
(i.e. let 1 and z2 be the endpoints of €). Set X; = X U{z1} and X9 U {z2}.
Then | X;| = | X3 = k(G) — 1, and we deduce that G\ X; and G \ X» are
connected. Now, since z2 € V(G) \ X1, and since G \ X; is a connected
graph on at least two vertices, we see that xs is adjacent to some vertex in
u € V(G)\ Xy; since x1 € X1, we see that u # 1. Now, (G \ e)\ X can be
obtained from the connected graph G\ X» by adding to it the vertex zo and
making it adjacent to all vertices in Ng(x2) \ {x1}. Since u € Ng(z2) \ {z1},
we see that za is not an isolated vertex of (G \ e) \ X, and we deduce that
(G\ e)\ X is connected. This proves that k(G \ e) < kK(G) — 1.

It remains to show that k(G\e) < k(G). By definition, |V(G)| > k(G)+1.
If G has precisely x(G) + 1 vertices, then so does G \ e, and it follows from
the definition that x(G \ e) < k(G). It remains to consider the case when
[V(G)| > k(G) + 2. In this case, there exists a set X C V(G) of size k(G)
such that G\ X is disconnected. But then (G \ e) \ X is disconnected as
well, and it follows that x(G \ e) < k(G). O

Proposition 1.2. Let G be a graph on at least two vertices. Then
(a) for all edges e € E(G), A(G) —1 < AG \ e) < A(G);
(b) for all sets F C E(G), A(G\ F) < A(G).

Proof. Clearly, (b) follows from (a) by an easy induction. It remains to prove
(a). Fix e € E(G).



We first show that A\(G \ e) > A\(G) — 1. Fix FF C E(G \ e) such that
|F| < AG)—2. Set F' = FU{e}; then |F'| < A(G) — 1, and we deduce that
G\ F’ is connected. But (G\e)\ F = G\ F’, and we deduce that (G\e)\ F
is connected. This proves that A(G \ e) > A\(G) — 1.

It remains to show that A\(G'\ e) < A(G). Fix F' C E(G) with |F| = \(G),
such that G \ F is disconnected. Set F' = F'\ {e}; then |[F'| < \(G).
Furthermore, we have that (G\e)\ F' = G\ F, and we deduce that (G\e)\ F’
is disconnected. Since [F’| < A\(G), we see that A(G '\ e) < \(G). O

We note that, unlike edge deletion, vertex deletion sometimes increases
connectivity. For instance, for the graph G represented below, we have that
k(G) = AG) =1, but k(G \ z) =G\ z)=5.

r

G

Recall that for a graph G, §(G) is the minimum and A(G) the maximum
degree in G, i.e. §(G) = min{dg(v) | v € V(G)} and A(G) = max{dg(v) |
veV(G)}.

Theorem 1.3. Let G be a graph on at least two vertices. Then k(G) <
AMG) <(G).

Proof. We first prove that A(G) < §(G). Fix a vertex v € V(@) such that
da(v) = 0(G), and let F' be the set of all edges of G that are incident with v.
Clearly, G \ F is disconnected, and it follows that A(G) < 4(G).

It remains to show that x(G) < A(G). Fix a set FF C E(G) such that
|F'| = A(G) and G \ F is disconnected.

Claim. If C is the vertex set of a component of G \ F', then no
edge of F' has both its endpoints in C.

Proof of the Claim. Suppose otherwise. Let C' be the vertex set of a
component of G\ F,? and let e € F be an edge that has both its endpoints
in C. Then G\ (F \ {e}) is still disconnected,* contrary to the fact that
|F'\ {e}| = |F| — 1 = A(G) — 1. This proves the Claim. l

3Since G\ F is disconnected, this implies that C' and V(G) \ C are both non-empty,
and there are no edges between them.

“This is because there are still no edges between C' and V(G) \ C, and both C and
V(G) \ C are non-empty.



Suppose first that there exists a vertex v € V(G) that is not incident
with any edge in F. Let C be the vertex set of the component of G \ F' that
contains v. By the Claim, no edge in F' has both endpoints in C'. Now, let
X be the set of all vertices in C' that are incident with an edge in F'. Then
|X| < |F|=X\G) and G\ X is disconnected. So, k(G) < A(G).

It remains to consider the case when every vertex of G is incident with
an edge of F.° Fix any v € V(G); we claim that dg(v) < A(G). Let C
be the vertex set of the component of G \ F' that contains v. Then for
all distinct u,w € Ng(v), we have (by the Claim) that uw ¢ F, and so
(since every vertex of G is incident with an edge in F') v and w are incident
with distinct edges of F. This implies that dg(v) < |F| = MG).% Since
we chose v arbitrarily, this implies that A(G) < A(G); we already saw that
AMG) < §(G), and we now deduce that A(G) = A(G). Now, if G is a complete
graph, then |[V(G)| = A(G) + 1, and we see that x(G) = A(G) = \G).
So assume that G is not complete, and fix some x € V(G) that has a
non-neighbor in G. Then G \ Ng(z) is disconnected, and we have that
|INGg(2)| = da(x) < A(G) = A(G). So, k(G) < XNG). O

Terminology: A wvertez-cutset of a graph G is any set X & V(G) such
that G'\ X has more components than G.” Similarly, an edge-cutset of G is
any set F' C E(G) such that G\ F' has more components than G.

SFor an example, see the graph below, with the edges of F' in red.

5Let us explain this in more detail. Let Fy be the set of all edges in F' that are incident
with v. Then dg(v) = |Fi| + |Nc(v)|. Further, by what we just showed, every vertex in
Nc¢(v) is incident with an edge of F, and no two vertices in N¢(v) are incident with the
same edge of F. It is also clear that no vertex in N¢(v) is incident with an edge of Fi. So,
|[Nc(v)| < |F\ Fi|, and we deduce that dg(v) < |Fi|+ |F \ Fi| = |F| = A(G).

"So, if G is connected, then a vertex-cutset of G is any set X G V(G) such that G'\ X
is disconnected.



By definition, no graph G has a vertex-cutset of size strictly smaller than
k(G). Similarly, no graph G has an edge-cutset of size strictly smaller than

AG).

2 Menger’s theorems

Menger’s theorem (vertex version). Let G be a graph, and let A, B C
V(G).® Then the minimum number of vertices separating A from B in G is
equal to the mazimum number of pairwise disjoint A-B paths in G.°

A= {a17a27a3,a4}

a by B = {b1, by, b3}

bs

a2

AN

set of vertices
separating
A from B

Proof. We assume inductively that the theorem holds for graphs that have
fewer than |E(G)| edges. More precisely, we assume that for all graphs
G’ such that |[E(G")| < |E(G)], and all sets A, B’ C V(G'), the minimum
number of vertices separating A’ from B’ in G’ is equal to the maximum
number of pairwise disjoint A’-B’ paths in G'. We must prove that this holds
for G as well. From now on, we let k be the minimum number of vertices
separating A from B in G.

First, we claim that there can be no more than k pairwise disjoint paths
from A to B in G. Indeed, let X C V(G) be a k-vertex set separating A
from B in G, and let P be any collection of pairwise disjoint paths from A
to B. By definition, every path in P contains at least one vertex of X, and
since paths in P are pairwise disjoint, no two paths in P contain the same
vertex of X. So, |P| < |X| =k, as we had claimed.

It remains to show that there are at least k pairwise disjoint paths from
A to B. Clearly, for any set X C V(G) separating A from B in G, we have
that AN B C X; consequently, |AN B| < k. Now, if E(G) = (), then AN B
separates A from B in G, and so |AN B| = k; in this case, the vertices of
AN B form k pairwise disjoint one-vertex paths from A to B, and we are
done. From now on, we assume that G has at least one edge, say zy. Let

8 A and B need not be disjoint.
9 “Pairwise disjoint” here means that no two paths have a vertex in common (and
consequently, no two paths have an edge in common).



Gy = G/zy, i.e. let G4y be the graph obtained from G by contracting the
edge zy, and let v,, be the vertex obtained by contracting xy. 10

€T Yy Uy
G G/xy

Now, if z or y belongs to A, then let A" = (A\ {z,y}) U{vyy}, and otherwise,
let A" = A. Similarly, if z or y belongs to B, then let B’ = (B\{z, y})U{vay},
and otherwise, let B’ = B.

Let Y C V(Gyy) be a minimum-sized set of vertices separating A’ from B’
in ny.ll By the induction hypothesis, there are |Y'| many pairwise disjoint
paths in Gy from A’ to B’, and it readily follows!? that there are at least
|Y'| many pairwise disjoint paths in G from A to B. So, if |[Y| > k,'3 then
we are done. From now on, we assume that |Y| < k — 1. Then vy, €Y,
for otherwise, Y would separate A from B in G, contrary to the fact that
Y] < k—1. Now X := (Y \ {vgy}) U {z,y} separates A from B in G,
and we have that |X| = |Y| + 1. Note that this implies that | X| = k.16 Set
X = {:Cl,...,.%'k}.

We now consider the graph G \ zy, i.e. the graph obtained from G by
deleting the edge xy.!” Since z,y € X, we know that any set of vertices
separating A from X in G\ zy also separates A from B in G;'® consequently,
any such set has at least k vertices, and so by the induction hypothesis,

YFormally, we have that vy, is some vertex that does not belong to V(G), and
that G4, is the graph with vertex set V(Gy) = (V(G) \ {m,y}) U {vzy} and edge
set F(Gzy) = {e € E(GQ) | eis incident neither with = nor with y in G} U {vvgy |
v € V(G), v is incident with z or y in G}.

"' This means that for all sets Y’ C V(Gy) separating A from B in G, we have that
ERd

2Details?

3In fact, it is not possible that |Y| > k (details?), but we do not need this stronger fact.

M4Proof?

B Proof?

Tndeed, since |Y| < k — 1, we have that |X| < k. On the other hand, since X separates
A from B in G, we know that |X| > k. So, | X| = k.

S0, V(G \ zy) = V(G) and E(G \ zy) = E(G) \ {zy}.

8Let us check this. Let Z be any set of vertices separating A from X in G \ zy, and
let p1,...,pt, with p1 € A and p: € B, be a path from A to B in G. Then some vertex of
D1,...,pt belongs to X; let ¢ € {1,...,t} be the smallest index such that p; € X. Then
Pi,...,pi is a path from A to X in G. Furthermore, since p1, ..., p; contains exactly one
vertex of X, and since x,y € X, we see that the path p1,...,p; does not use the edge xy;
consequently, p1,...,p; is a path from A to X in G \ zy, and we deduce that this path
(and consequently, the path pi,...,p: as well) contains a vertex of Z.



there are k pairwise disjoint paths from A to X in G, call them Py,..., P;.
Similarly, there are k pairwise disjoint paths from B to X in G, call them
Q1,...,Qr. We may assume that for all i € {1,...,k}, x; is an endpoint
both of P; and of @;. So, P, —x1 — Q1,..., Py — xp — Qi are walks from
A to B. But in fact, each of these walks is a path, for otherwise, it would
contain a path from A to B that contains no vertex of X.'9 So, there are at
least k paths from A to B in G. O

Given a graph G and distinct vertices s,t € V(G), two paths from s to ¢
in G are internally disjoint if they have no vertices in common except the
endpoints s and t.

The following corollary is also often referred to as the vertex version of
Menger’s theorem.

Corollary 2.1. Let G be a graph, and let s,t € V(G) be distinct, non-
adjacent vertices of G. Then the minimum number of vertices of V(G) \
{s,t} separating s from t in G is equal to the mazimum number of pairwise
internally disjoint s-t paths in G.

The red and blue
path are internally
disjoint.

™

set of two vertices
separating s from ¢

Proof. Let S = Ng(s) and T' = Ng(t). Obviously, the minimum number of
vertices of V(G) \ {s,t} separating s from ¢ in G is equal to the minimum
number of vertices of V(G) \ {s,t} separating S from T in G \ {s,t}.2°
Similarly, the maximum number of pairwise internally disjoint s-t paths
in G is equal to the maximum number of pairwise disjoint S-T" paths in
G. By Menger’s theorem (vertex version), the minimum number of vertices
separating S from 7" in G\ {s, t} is equal to the maximum number of pairwise
disjoint S-T paths in G\ {s,t}. So, the minimum number of vertices of
V(G) \ {s,t} separating s from ¢ in G is equal to the maximum number of
pairwise internally disjoint s-t paths in G. This completes the argument. [

"“Details?
20Indeed, for any set X C V(Q) \ {s,t}, we have that X separates s from ¢ in G if and
only if X separates S from T in G \ {s, t}.



Our next goal is to prove the edge version of Menger’s theorem. The
line graph of a graph G, denoted by L(G), is the graph whose vertex set is
E(G), and in which e, f € L(V(G)) = E(G) are adjacent if and only if e and
f share an endpoint in G.

, fi
i
€] 4 €1 4
€5
€9 €3 €2 €3
J2
I2
G L(G)

Proposition 2.2. Let G be a graph, let s,t € V(G) be distinct vertices of
G, let S be the set of all edges in G incident with s, and let T be the set of
all edges in G incident with t. Let X C E(G). Then X separates s from t in
G if and only if X separates S from T in L(G).

Proof. Suppose that X separates s from t in G; we must show that X
separates S from T in G. Suppose otherwise. Then there exists some path
e1,...,e- in L(G) that does not contain any vertex (in L(G)) from X.2! For
each i € {1,...,7 — 1}, let v; be a common vertex of e; and e;;1.22 Then
$,V1,...,0p—1,t is a walk in L(G) from s to t that uses only edges ey, ..., e,
and consequently, does not use any edge of X. It follows that there is a path
from s to ¢ in G that does not use any edges of X, contrary to the fact that
X separates s from ¢ in GG. This proves that X indeed separates S from T
in G.

Suppose now that X does not separate s from ¢ in GG; we must show that
X does not separate S from 7" in L(G). Since X does not separate s from ¢
in GG, we know that there is a path vq,...,v, in G, with v;1 = s and v, = t,
that does not use any edge of X. But now vyve, vovs, ..., v._1v, is a path
from S to T in L(G) that does not use any vertex (in L(G)) in X. So, X
does not separate S from 7" in L(G). O

Proposition 2.3. Let G be a graph, let s,t € V(G) be distinct vertices of
G, let S be the set of all edges in G incident with s, and let T be the set
of all edges in G incident with t. Let £ be a non-negative integer. Then the
following are equivalent:

(i) there are £ pairwise edge-disjoint s-t paths in G;

2!'Note that ey, ..., e, are vertices of L(G), and consequently, edges of G.
22Quch a vertex exists because e; and e;11 are adjacent vertices of L(@G), and consequently,
they are edges of G that share an endpoint.



(ii) there are £ pairwise disjoint S-G paths in L(G).

The red and blue path
are edge-disjoint.

Proof. Suppose first that (i) holds, and fix ¢ pairwise edge-disjoint s-t paths
in G,say Pp,...,P. Forallie {1,...,0}, set P, =0! ..., 0% . Now, for all

s Upy e )

i€ {l,....0}, set PL = wivy, vhol, ... vkl vl (with v] = s and v, = t).
Clearly, PL, ..., PZL are pairwise disjoint S-T" paths in L(G).

Suppose now that (ii) holds, and fix ¢ pairwise disjoint S-7" paths in

G, say QF,...,QF. Foralli € {1,...,0}, set QF = €t,... el . Now, for

e

all i € {1,...,4} and j € {1,...,7}, let v}- be a common vertex of the

edges eé and e§+1 in G, and set Q; = s,vi, e >Uf=i71=t‘ Then Q1,...,Qy are
pairwise edge-disjoint s-t walks in G, and we deduce that there are £ pairwise
edge-disjoint s-t paths in G. O

Menger’s theorem (edge version). Let G be a graph, and let s,t € V(G)
be distinct vertices of G. Then the minimum number of edges separating s
from t in G is equal to the mazimum number of pairwise edge-disjoint s-t
paths in G.

edges separating s from ¢

Proof. Let S be the set of all edges in G incident with s, and let T be the set
of all edges in G incident with ¢. By Proposition 2.2, the minimum number
of edges separating s from ¢ in G is equal to the minimum number of vertices
separating S from 7" in L(G). By Proposition 2.3, the maximum number
of pairwise edge-disjoint s-t paths in G is equal to the maximum number
of pairwise disjoint S-T" paths in G. By Menger’s theorem (vertex version),
the minimum number of vertices separating S from 7" in L(G) is equal to
the maximum number of pairwise disjoint S-T paths in G. We now deduce
that the minimum number of edges separating s from ¢ in G is equal to the
maximum number of pairwise edge-disjoint s-t paths in GG. This completes
the argument. O



The global version of Menger’s theorem. Let G be a graph on at least
two vertices, and let k,£ > 0 be integers.

(a) G is k-connected if and only if for all distinct s,t € V(G), there are k
pairwise internally disjoint s-t paths in G.

(b) G is L-edge-connected if and only if for all distinct s,t € E(G), there are
¢ pairwise edge-disjoint s-t paths in G.

Proof. HW. 0
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