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Lecture #8

Graph connectivity and Menger’s theorems

Irena Penev

In what follows, all graphs are finite, simple (i.e. have no loops and no
parallel edges), and non-null.

1 Vertex and edge connectivity

For a graph G and (not necessarily disjoint) sets A,B ⊆ V (G), an A-B path
in G, or a path from A to B in G, is either a one-vertex path whose sole
vertex is in A ∩B, or a path on at least two vertices whose one endpoint is
in A and whose other endpoint is in B.

Given a graph G and (not necessarily disjoint) sets A,B ⊆ V (G), we say
that a set X ⊆ V (G) separates A from B in G if every path from A to B in
G contains at least one vertex of X. Note that this implies that A∩B ⊆ X.1

Given a graph G and a non-negative integer k, we say that G is k-vertex-
connected, or simply k-connected, if |V (G)| ≥ k + 1 and for all X ⊆ V (G)
such that |X| ≤ k − 1, we have that G \ X is connected. Note that this
means that every (non-null) graph is 0-connected, and that every connected
graph on at least two vertices is 1-connected.2 The connectivity of a graph
G, denoted κ(G), is the largest integer k such that G is k-connected. Note
that if k = κ(G), then either G = Kk+1 or there exists a set of k vertices
whose deletion from G yields a disconnected graph. Furthermore, if there
exists a set of at most k vertices whose deletion from G yields a disconnected
graph, then κ(G) ≤ k.

Given a graph G and disjoint sets A,B ⊆ V (G), we say that a set
F ⊆ E(G) separates A from B in G if every path from A to B contains at
least one edge of F .

Given a graph G and a non-negative integer `, we say that G is `-edge-
connected if |V (G)| ≥ 2 and for all F ⊆ E(G) such that |F | ≤ ` − 1, we

1Indeed, if x ∈ A ∩B, then x counts as a one-vertex path from A to B. So, any set of
vertices that separates A from B must include A ∩B as a subset.

2However, K1 is not 1-connected.
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have that G \ F is connected. The edge-connectivity of a graph G on at
least two vertices, denoted by λ(G), is the largest integer ` such that G is
`-edge-connected. Note that if ` = λ(G), then there exists a set of ` edges
whose deletion from G yields a disconnected graph. Furthermore, if there
exists a set of at most ` edges whose deletion from G yields a disconnected
graph, then λ(G) ≤ `.

Proposition 1.1. Let G be a graph on at least two vertices. Then

(a) for all edges e ∈ E(G), κ(G)− 1 ≤ κ(G \ e) ≤ κ(G);

(b) for all sets F ⊆ E(G), κ(G \ F ) ≤ κ(G).

Proof. Clearly, (b) follows from (a) by an easy induction. It remains to prove
(a). Fix e ∈ E(G).

We first show that κ(G \ e) ≥ κ(G) − 1. Since G is κ(G)-connected,
we know that G (and consequently, G \ e as well) has at least κ(G) + 1
vertices. Now, fix X ⊆ V (G) such that |X| ≤ κ(G)− 2; we must show that
(G \ e) \X is connected. Suppose first that e is incident with some vertex
in X. Then (G \ e) \X = G \X. Since |X| ≤ κ(G)− 2, we see that G \X
is connected, and it follows that (G \ e) \ X is connected. It remains to
consider the case when e is not incident with any vertex in X. Set e = x1x2
(i.e. let x1 and x2 be the endpoints of e). Set X1 = X ∪ {x1} and X2 ∪ {x2}.
Then |X1| = |X2| = κ(G) − 1, and we deduce that G \X1 and G \X2 are
connected. Now, since x2 ∈ V (G) \ X1, and since G \ X1 is a connected
graph on at least two vertices, we see that x2 is adjacent to some vertex in
u ∈ V (G) \X1; since x1 ∈ X1, we see that u 6= x1. Now, (G \ e) \X can be
obtained from the connected graph G \X2 by adding to it the vertex x2 and
making it adjacent to all vertices in NG(x2) \ {x1}. Since u ∈ NG(x2) \ {x1},
we see that x2 is not an isolated vertex of (G \ e) \X, and we deduce that
(G \ e) \X is connected. This proves that κ(G \ e) ≤ κ(G)− 1.

It remains to show that κ(G\e) ≤ κ(G). By definition, |V (G)| ≥ κ(G)+1.
If G has precisely κ(G) + 1 vertices, then so does G \ e, and it follows from
the definition that κ(G \ e) ≤ κ(G). It remains to consider the case when
|V (G)| ≥ κ(G) + 2. In this case, there exists a set X ⊆ V (G) of size κ(G)
such that G \X is disconnected. But then (G \ e) \X is disconnected as
well, and it follows that κ(G \ e) ≤ κ(G).

Proposition 1.2. Let G be a graph on at least two vertices. Then

(a) for all edges e ∈ E(G), λ(G)− 1 ≤ λ(G \ e) ≤ λ(G);

(b) for all sets F ⊆ E(G), λ(G \ F ) ≤ λ(G).

Proof. Clearly, (b) follows from (a) by an easy induction. It remains to prove
(a). Fix e ∈ E(G).
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We first show that λ(G \ e) ≥ λ(G) − 1. Fix F ⊆ E(G \ e) such that
|F | ≤ λ(G)− 2. Set F ′ = F ∪ {e}; then |F ′| ≤ λ(G)− 1, and we deduce that
G \F ′ is connected. But (G \ e) \F = G \F ′, and we deduce that (G \ e) \F
is connected. This proves that λ(G \ e) ≥ λ(G)− 1.

It remains to show that λ(G\e) ≤ λ(G). Fix F ⊆ E(G) with |F | = λ(G),
such that G \ F is disconnected. Set F ′ = F \ {e}; then |F ′| ≤ λ(G).
Furthermore, we have that (G\e)\F ′ = G\F , and we deduce that (G\e)\F ′
is disconnected. Since |F ′| ≤ λ(G), we see that λ(G \ e) ≤ λ(G).

We note that, unlike edge deletion, vertex deletion sometimes increases
connectivity. For instance, for the graph G represented below, we have that
κ(G) = λ(G) = 1, but κ(G \ x) = λ(G \ x) = 5.

x

G

Recall that for a graph G, δ(G) is the minimum and ∆(G) the maximum
degree in G, i.e. δ(G) = min{dG(v) | v ∈ V (G)} and ∆(G) = max{dG(v) |
v ∈ V (G)}.

Theorem 1.3. Let G be a graph on at least two vertices. Then κ(G) ≤
λ(G) ≤ δ(G).

Proof. We first prove that λ(G) ≤ δ(G). Fix a vertex v ∈ V (G) such that
dG(v) = δ(G), and let F be the set of all edges of G that are incident with v.
Clearly, G \ F is disconnected, and it follows that λ(G) ≤ δ(G).

It remains to show that κ(G) ≤ λ(G). Fix a set F ⊆ E(G) such that
|F | = λ(G) and G \ F is disconnected.

Claim. If C is the vertex set of a component of G \ F , then no
edge of F has both its endpoints in C.

Proof of the Claim. Suppose otherwise. Let C be the vertex set of a
component of G \ F ,3 and let e ∈ F be an edge that has both its endpoints
in C. Then G \ (F \ {e}) is still disconnected,4 contrary to the fact that
|F \ {e}| = |F | − 1 = λ(G)− 1. This proves the Claim. �

3Since G \ F is disconnected, this implies that C and V (G) \ C are both non-empty,
and there are no edges between them.

4This is because there are still no edges between C and V (G) \ C, and both C and
V (G) \ C are non-empty.
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Suppose first that there exists a vertex v ∈ V (G) that is not incident
with any edge in F . Let C be the vertex set of the component of G \ F that
contains v. By the Claim, no edge in F has both endpoints in C. Now, let
X be the set of all vertices in C that are incident with an edge in F . Then
|X| ≤ |F | = λ(G) and G \X is disconnected. So, κ(G) ≤ λ(G).

C

V (G) \ S

X

F

v

It remains to consider the case when every vertex of G is incident with
an edge of F .5 Fix any v ∈ V (G); we claim that dG(v) ≤ λ(G). Let C
be the vertex set of the component of G \ F that contains v. Then for
all distinct u,w ∈ NC(v), we have (by the Claim) that uw /∈ F , and so
(since every vertex of G is incident with an edge in F ) u and w are incident
with distinct edges of F . This implies that dG(v) ≤ |F | = λ(G).6 Since
we chose v arbitrarily, this implies that ∆(G) ≤ λ(G); we already saw that
λ(G) ≤ δ(G), and we now deduce that λ(G) = ∆(G). Now, if G is a complete
graph, then |V (G)| = ∆(G) + 1, and we see that κ(G) = ∆(G) = λ(G).
So assume that G is not complete, and fix some x ∈ V (G) that has a
non-neighbor in G. Then G \ NG(x) is disconnected, and we have that
|NG(x)| = dG(x) ≤ ∆(G) = λ(G). So, κ(G) ≤ λ(G).

Terminology: A vertex-cutset of a graph G is any set X $ V (G) such
that G \X has more components than G.7 Similarly, an edge-cutset of G is
any set F ⊆ E(G) such that G \ F has more components than G.

5For an example, see the graph below, with the edges of F in red.

6Let us explain this in more detail. Let F1 be the set of all edges in F that are incident
with v. Then dG(v) = |F1|+ |NC(v)|. Further, by what we just showed, every vertex in
NC(v) is incident with an edge of F , and no two vertices in NC(v) are incident with the
same edge of F . It is also clear that no vertex in NC(v) is incident with an edge of F1. So,
|NC(v)| ≤ |F \ F1|, and we deduce that dG(v) ≤ |F1|+ |F \ F1| = |F | = λ(G).

7So, if G is connected, then a vertex-cutset of G is any set X $ V (G) such that G \X
is disconnected.
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By definition, no graph G has a vertex-cutset of size strictly smaller than
κ(G). Similarly, no graph G has an edge-cutset of size strictly smaller than
λ(G).

2 Menger’s theorems

Menger’s theorem (vertex version). Let G be a graph, and let A,B ⊆
V (G).8 Then the minimum number of vertices separating A from B in G is
equal to the maximum number of pairwise disjoint A-B paths in G.9

b2

a4 = b1

a1

a2 b3

a3

A = {a1, a2, a3, a4}

B = {b1, b2, b3}

set of vertices
separating
A from B

Proof. We assume inductively that the theorem holds for graphs that have
fewer than |E(G)| edges. More precisely, we assume that for all graphs
G′ such that |E(G′)| < |E(G)|, and all sets A′, B′ ⊆ V (G′), the minimum
number of vertices separating A′ from B′ in G′ is equal to the maximum
number of pairwise disjoint A′-B′ paths in G′. We must prove that this holds
for G as well. From now on, we let k be the minimum number of vertices
separating A from B in G.

First, we claim that there can be no more than k pairwise disjoint paths
from A to B in G. Indeed, let X ⊆ V (G) be a k-vertex set separating A
from B in G, and let P be any collection of pairwise disjoint paths from A
to B. By definition, every path in P contains at least one vertex of X, and
since paths in P are pairwise disjoint, no two paths in P contain the same
vertex of X. So, |P| ≤ |X| = k, as we had claimed.

It remains to show that there are at least k pairwise disjoint paths from
A to B. Clearly, for any set X ⊆ V (G) separating A from B in G, we have
that A ∩B ⊆ X; consequently, |A ∩B| ≤ k. Now, if E(G) = ∅, then A ∩B
separates A from B in G, and so |A ∩ B| = k; in this case, the vertices of
A ∩ B form k pairwise disjoint one-vertex paths from A to B, and we are
done. From now on, we assume that G has at least one edge, say xy. Let

8A and B need not be disjoint.
9“Pairwise disjoint” here means that no two paths have a vertex in common (and

consequently, no two paths have an edge in common).
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Gxy := G/xy, i.e. let Gxy be the graph obtained from G by contracting the
edge xy, and let vxy be the vertex obtained by contracting xy.10

x y vxy

G G/xy

Now, if x or y belongs to A, then let A′ = (A\{x, y})∪{vxy}, and otherwise,
let A′ = A. Similarly, if x or y belongs to B, then let B′ = (B\{x, y})∪{vxy},
and otherwise, let B′ = B.

Let Y ⊆ V (Gxy) be a minimum-sized set of vertices separating A′ from B′

in Gxy.11 By the induction hypothesis, there are |Y | many pairwise disjoint
paths in Gxy from A′ to B′, and it readily follows12 that there are at least
|Y | many pairwise disjoint paths in G from A to B. So, if |Y | ≥ k,13 then
we are done. From now on, we assume that |Y | ≤ k − 1. Then vxy ∈ Y ,
for otherwise, Y would separate A from B in G,14 contrary to the fact that
|Y | ≤ k − 1. Now X := (Y \ {vxy}) ∪ {x, y} separates A from B in G,15

and we have that |X| = |Y |+ 1. Note that this implies that |X| = k.16 Set
X = {x1, . . . , xk}.

We now consider the graph G \ xy, i.e. the graph obtained from G by
deleting the edge xy.17 Since x, y ∈ X, we know that any set of vertices
separating A from X in G \xy also separates A from B in G;18 consequently,
any such set has at least k vertices, and so by the induction hypothesis,

10Formally, we have that vxy is some vertex that does not belong to V (G), and

that Gxy is the graph with vertex set V (Gxy) =
(
V (G) \ {x, y}

)
∪ {vxy} and edge

set E(Gxy) = {e ∈ E(G) | e is incident neither with x nor with y in G} ∪ {vvxy |
v ∈ V (G), v is incident with x or y in G}.

11This means that for all sets Y ′ ⊆ V (Gxy) separating A from B in Gxy, we have that
|Y | ≤ |Y ′|.

12Details?
13In fact, it is not possible that |Y | > k (details?), but we do not need this stronger fact.
14Proof?
15Proof?
16Indeed, since |Y | ≤ k− 1, we have that |X| ≤ k. On the other hand, since X separates

A from B in G, we know that |X| ≥ k. So, |X| = k.
17So, V (G \ xy) = V (G) and E(G \ xy) = E(G) \ {xy}.
18Let us check this. Let Z be any set of vertices separating A from X in G \ xy, and

let p1, . . . , pt, with p1 ∈ A and pt ∈ B, be a path from A to B in G. Then some vertex of
p1, . . . , pt belongs to X; let i ∈ {1, . . . , t} be the smallest index such that pi ∈ X. Then
p1, . . . , pi is a path from A to X in G. Furthermore, since p1, . . . , pi contains exactly one
vertex of X, and since x, y ∈ X, we see that the path p1, . . . , pi does not use the edge xy;
consequently, p1, . . . , pi is a path from A to X in G \ xy, and we deduce that this path
(and consequently, the path p1, . . . , pt as well) contains a vertex of Z.
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there are k pairwise disjoint paths from A to X in G, call them P1, . . . , Pk.
Similarly, there are k pairwise disjoint paths from B to X in G, call them
Q1, . . . , Qk. We may assume that for all i ∈ {1, . . . , k}, xi is an endpoint
both of Pi and of Qi. So, P1 − x1 − Q1, . . . , Pk − xk − Qk are walks from
A to B. But in fact, each of these walks is a path, for otherwise, it would
contain a path from A to B that contains no vertex of X.19 So, there are at
least k paths from A to B in G.

Given a graph G and distinct vertices s, t ∈ V (G), two paths from s to t
in G are internally disjoint if they have no vertices in common except the
endpoints s and t.

The following corollary is also often referred to as the vertex version of
Menger’s theorem.

Corollary 2.1. Let G be a graph, and let s, t ∈ V (G) be distinct, non-
adjacent vertices of G. Then the minimum number of vertices of V (G) \
{s, t} separating s from t in G is equal to the maximum number of pairwise
internally disjoint s-t paths in G.

The red and blue
path are internally
disjoint.

set of two vertices
separating s from t

s t

Proof. Let S = NG(s) and T = NG(t). Obviously, the minimum number of
vertices of V (G) \ {s, t} separating s from t in G is equal to the minimum
number of vertices of V (G) \ {s, t} separating S from T in G \ {s, t}.20
Similarly, the maximum number of pairwise internally disjoint s-t paths
in G is equal to the maximum number of pairwise disjoint S-T paths in
G. By Menger’s theorem (vertex version), the minimum number of vertices
separating S from T in G\{s, t} is equal to the maximum number of pairwise
disjoint S-T paths in G \ {s, t}. So, the minimum number of vertices of
V (G) \ {s, t} separating s from t in G is equal to the maximum number of
pairwise internally disjoint s-t paths in G. This completes the argument.

19Details?
20Indeed, for any set X ⊆ V (G) \ {s, t}, we have that X separates s from t in G if and

only if X separates S from T in G \ {s, t}.
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Our next goal is to prove the edge version of Menger’s theorem. The
line graph of a graph G, denoted by L(G), is the graph whose vertex set is
E(G), and in which e, f ∈ L(V (G)) = E(G) are adjacent if and only if e and
f share an endpoint in G.

e1

e2 e3

e4
e5

e1

e2

e4

e3

e5

G L(G)

f1

f2

f1

f2

Proposition 2.2. Let G be a graph, let s, t ∈ V (G) be distinct vertices of
G, let S be the set of all edges in G incident with s, and let T be the set of
all edges in G incident with t. Let X ⊆ E(G). Then X separates s from t in
G if and only if X separates S from T in L(G).

Proof. Suppose that X separates s from t in G; we must show that X
separates S from T in G. Suppose otherwise. Then there exists some path
e1, . . . , er in L(G) that does not contain any vertex (in L(G)) from X.21 For
each i ∈ {1, . . . , r − 1}, let vi be a common vertex of ei and ei+1.

22 Then
s, v1, . . . , vr−1, t is a walk in L(G) from s to t that uses only edges e1, . . . , er,
and consequently, does not use any edge of X. It follows that there is a path
from s to t in G that does not use any edges of X, contrary to the fact that
X separates s from t in G. This proves that X indeed separates S from T
in G.

Suppose now that X does not separate s from t in G; we must show that
X does not separate S from T in L(G). Since X does not separate s from t
in G, we know that there is a path v1, . . . , vr in G, with v1 = s and vr = t,
that does not use any edge of X. But now v1v2, v2v3, . . . , vr−1vr is a path
from S to T in L(G) that does not use any vertex (in L(G)) in X. So, X
does not separate S from T in L(G).

Proposition 2.3. Let G be a graph, let s, t ∈ V (G) be distinct vertices of
G, let S be the set of all edges in G incident with s, and let T be the set
of all edges in G incident with t. Let ` be a non-negative integer. Then the
following are equivalent:

(i) there are ` pairwise edge-disjoint s-t paths in G;

21Note that e1, . . . , er are vertices of L(G), and consequently, edges of G.
22Such a vertex exists because ei and ei+1 are adjacent vertices of L(G), and consequently,

they are edges of G that share an endpoint.
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(ii) there are ` pairwise disjoint S-G paths in L(G).

s t

The red and blue path
are edge-disjoint.

Proof. Suppose first that (i) holds, and fix ` pairwise edge-disjoint s-t paths
in G, say P1, . . . , P`. For all i ∈ {1, . . . , `}, set Pi = vi1, . . . , v

i
ri . Now, for all

i ∈ {1, . . . , `}, set PL
i = vi1v

i
2, v

i
2v

i
3, . . . , v

i
ri−1v

i
ri (with vi1 = s and viri = t).

Clearly, PL
1 , . . . , P

L
` are pairwise disjoint S-T paths in L(G).

Suppose now that (ii) holds, and fix ` pairwise disjoint S-T paths in
G, say QL

1 , . . . , Q
L
` . For all i ∈ {1, . . . , `}, set QL

i = ei1, . . . , e
i
ri . Now, for

all i ∈ {1, . . . , `} and j ∈ {1, . . . , ri}, let vij be a common vertex of the

edges eij and eij+1 in G, and set Qi = s, vi1, . . . , v
i
ri−1, t. Then Q1, . . . , Q` are

pairwise edge-disjoint s-t walks in G, and we deduce that there are ` pairwise
edge-disjoint s-t paths in G.

Menger’s theorem (edge version). Let G be a graph, and let s, t ∈ V (G)
be distinct vertices of G. Then the minimum number of edges separating s
from t in G is equal to the maximum number of pairwise edge-disjoint s-t
paths in G.

s t

edges separating s from t

Proof. Let S be the set of all edges in G incident with s, and let T be the set
of all edges in G incident with t. By Proposition 2.2, the minimum number
of edges separating s from t in G is equal to the minimum number of vertices
separating S from T in L(G). By Proposition 2.3, the maximum number
of pairwise edge-disjoint s-t paths in G is equal to the maximum number
of pairwise disjoint S-T paths in G. By Menger’s theorem (vertex version),
the minimum number of vertices separating S from T in L(G) is equal to
the maximum number of pairwise disjoint S-T paths in G. We now deduce
that the minimum number of edges separating s from t in G is equal to the
maximum number of pairwise edge-disjoint s-t paths in G. This completes
the argument.
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The global version of Menger’s theorem. Let G be a graph on at least
two vertices, and let k, ` ≥ 0 be integers.

(a) G is k-connected if and only if for all distinct s, t ∈ V (G), there are k
pairwise internally disjoint s-t paths in G.

(b) G is `-edge-connected if and only if for all distinct s, t ∈ E(G), there are
` pairwise edge-disjoint s-t paths in G.

Proof. HW.
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