NDMI011: Combinatorics and Graph Theory 1

Lecture \#8
 Graph connectivity and Menger's theorems

Irena Penev

In what follows, all graphs are finite, simple (i.e. have no loops and no parallel edges), and non-null.

1 Vertex and edge connectivity

For a graph G and (not necessarily disjoint) sets $A, B \subseteq V(G)$, an A - B path in G, or a path from A to B in G, is either a one-vertex path whose sole vertex is in $A \cap B$, or a path on at least two vertices whose one endpoint is in A and whose other endpoint is in B.

Given a graph G and (not necessarily disjoint) sets $A, B \subseteq V(G)$, we say that a set $X \subseteq V(G)$ separates A from B in G if every path from A to B in G contains at least one vertex of X. Note that this implies that $A \cap B \subseteq X .{ }^{1}$

Given a graph G and a non-negative integer k, we say that G is k-vertexconnected, or simply k-connected, if $|V(G)| \geq k+1$ and for all $X \subseteq V(G)$ such that $|X| \leq k-1$, we have that $G \backslash X$ is connected. Note that this means that every (non-null) graph is 0 -connected, and that every connected graph on at least two vertices is 1 -connected. ${ }^{2}$ The connectivity of a graph G, denoted $\kappa(G)$, is the largest integer k such that G is k-connected. Note that if $k=\kappa(G)$, then either $G=K_{k+1}$ or there exists a set of k vertices whose deletion from G yields a disconnected graph. Furthermore, if there exists a set of at most k vertices whose deletion from G yields a disconnected graph, then $\kappa(G) \leq k$.

Given a graph G and disjoint sets $A, B \subseteq V(G)$, we say that a set $F \subseteq E(G)$ separates A from B in G if every path from A to B contains at least one edge of F.

Given a graph G and a non-negative integer ℓ, we say that G is ℓ-edgeconnected if $|V(G)| \geq 2$ and for all $F \subseteq E(G)$ such that $|F| \leq \ell-1$, we

[^0]have that $G \backslash F$ is connected. The edge-connectivity of a graph G on at least two vertices, denoted by $\lambda(G)$, is the largest integer ℓ such that G is ℓ-edge-connected. Note that if $\ell=\lambda(G)$, then there exists a set of ℓ edges whose deletion from G yields a disconnected graph. Furthermore, if there exists a set of at most ℓ edges whose deletion from G yields a disconnected graph, then $\lambda(G) \leq \ell$.

Proposition 1.1. Let G be a graph on at least two vertices. Then
(a) for all edges $e \in E(G), \kappa(G)-1 \leq \kappa(G \backslash e) \leq \kappa(G)$;
(b) for all sets $F \subseteq E(G), \kappa(G \backslash F) \leq \kappa(G)$.

Proof. Clearly, (b) follows from (a) by an easy induction. It remains to prove (a). Fix $e \in E(G)$.

We first show that $\kappa(G \backslash e) \geq \kappa(G)-1$. Since G is $\kappa(G)$-connected, we know that G (and consequently, $G \backslash e$ as well) has at least $\kappa(G)+1$ vertices. Now, fix $X \subseteq V(G)$ such that $|X| \leq \kappa(G)-2$; we must show that $(G \backslash e) \backslash X$ is connected. Suppose first that e is incident with some vertex in X. Then $(G \backslash e) \backslash X=G \backslash X$. Since $|X| \leq \kappa(G)-2$, we see that $G \backslash X$ is connected, and it follows that ($G \backslash e$) \X is connected. It remains to consider the case when e is not incident with any vertex in X. Set $e=x_{1} x_{2}$ (i.e. let x_{1} and x_{2} be the endpoints of e). Set $X_{1}=X \cup\left\{x_{1}\right\}$ and $X_{2} \cup\left\{x_{2}\right\}$. Then $\left|X_{1}\right|=\left|X_{2}\right|=\kappa(G)-1$, and we deduce that $G \backslash X_{1}$ and $G \backslash X_{2}$ are connected. Now, since $x_{2} \in V(G) \backslash X_{1}$, and since $G \backslash X_{1}$ is a connected graph on at least two vertices, we see that x_{2} is adjacent to some vertex in $u \in V(G) \backslash X_{1}$; since $x_{1} \in X_{1}$, we see that $u \neq x_{1}$. Now, $(G \backslash e) \backslash X$ can be obtained from the connected graph $G \backslash X_{2}$ by adding to it the vertex x_{2} and making it adjacent to all vertices in $N_{G}\left(x_{2}\right) \backslash\left\{x_{1}\right\}$. Since $u \in N_{G}\left(x_{2}\right) \backslash\left\{x_{1}\right\}$, we see that x_{2} is not an isolated vertex of $(G \backslash e) \backslash X$, and we deduce that $(G \backslash e) \backslash X$ is connected. This proves that $\kappa(G \backslash e) \leq \kappa(G)-1$.

It remains to show that $\kappa(G \backslash e) \leq \kappa(G)$. By definition, $|V(G)| \geq \kappa(G)+1$. If G has precisely $\kappa(G)+1$ vertices, then so does $G \backslash e$, and it follows from the definition that $\kappa(G \backslash e) \leq \kappa(G)$. It remains to consider the case when $|V(G)| \geq \kappa(G)+2$. In this case, there exists a set $X \subseteq V(G)$ of size $\kappa(G)$ such that $G \backslash X$ is disconnected. But then $(G \backslash e) \backslash X$ is disconnected as well, and it follows that $\kappa(G \backslash e) \leq \kappa(G)$.

Proposition 1.2. Let G be a graph on at least two vertices. Then
(a) for all edges $e \in E(G), \lambda(G)-1 \leq \lambda(G \backslash e) \leq \lambda(G)$;
(b) for all sets $F \subseteq E(G), \lambda(G \backslash F) \leq \lambda(G)$.

Proof. Clearly, (b) follows from (a) by an easy induction. It remains to prove (a). Fix $e \in E(G)$.

We first show that $\lambda(G \backslash e) \geq \lambda(G)-1$. Fix $F \subseteq E(G \backslash e)$ such that $|F| \leq \lambda(G)-2$. Set $F^{\prime}=F \cup\{e\}$; then $\left|F^{\prime}\right| \leq \lambda(G)-1$, and we deduce that $G \backslash F^{\prime}$ is connected. But $(G \backslash e) \backslash F=G \backslash F^{\prime}$, and we deduce that $(G \backslash e) \backslash F$ is connected. This proves that $\lambda(G \backslash e) \geq \lambda(G)-1$.

It remains to show that $\lambda(G \backslash e) \leq \lambda(G)$. Fix $F \subseteq E(G)$ with $|F|=\lambda(G)$, such that $G \backslash F$ is disconnected. Set $F^{\prime}=F \backslash\{e\}$; then $\left|F^{\prime}\right| \leq \lambda(G)$. Furthermore, we have that $(G \backslash e) \backslash F^{\prime}=G \backslash F$, and we deduce that $(G \backslash e) \backslash F^{\prime}$ is disconnected. Since $\left|F^{\prime}\right| \leq \lambda(G)$, we see that $\lambda(G \backslash e) \leq \lambda(G)$.

We note that, unlike edge deletion, vertex deletion sometimes increases connectivity. For instance, for the graph G represented below, we have that $\kappa(G)=\lambda(G)=1$, but $\kappa(G \backslash x)=\lambda(G \backslash x)=5$.

G
Recall that for a graph $G, \delta(G)$ is the minimum and $\Delta(G)$ the maximum degree in G, i.e. $\delta(G)=\min \left\{d_{G}(v) \mid v \in V(G)\right\}$ and $\Delta(G)=\max \left\{d_{G}(v) \mid\right.$ $v \in V(G)\}$.

Theorem 1.3. Let G be a graph on at least two vertices. Then $\kappa(G) \leq$ $\lambda(G) \leq \delta(G)$.

Proof. We first prove that $\lambda(G) \leq \delta(G)$. Fix a vertex $v \in V(G)$ such that $d_{G}(v)=\delta(G)$, and let F be the set of all edges of G that are incident with v. Clearly, $G \backslash F$ is disconnected, and it follows that $\lambda(G) \leq \delta(G)$.

It remains to show that $\kappa(G) \leq \lambda(G)$. Fix a set $F \subseteq E(G)$ such that $|F|=\lambda(G)$ and $G \backslash F$ is disconnected.

Claim. If C is the vertex set of a component of $G \backslash F$, then no edge of F has both its endpoints in C.

Proof of the Claim. Suppose otherwise. Let C be the vertex set of a component of $G \backslash F,{ }^{3}$ and let $e \in F$ be an edge that has both its endpoints in C. Then $G \backslash(F \backslash\{e\})$ is still disconnected, ${ }^{4}$ contrary to the fact that $|F \backslash\{e\}|=|F|-1=\lambda(G)-1$. This proves the Claim.

[^1]Suppose first that there exists a vertex $v \in V(G)$ that is not incident with any edge in F. Let C be the vertex set of the component of $G \backslash F$ that contains v. By the Claim, no edge in F has both endpoints in C. Now, let X be the set of all vertices in C that are incident with an edge in F. Then $|X| \leq|F|=\lambda(G)$ and $G \backslash X$ is disconnected. So, $\kappa(G) \leq \lambda(G)$.

It remains to consider the case when every vertex of G is incident with an edge of $F .{ }^{5}$ Fix any $v \in V(G)$; we claim that $d_{G}(v) \leq \lambda(G)$. Let C be the vertex set of the component of $G \backslash F$ that contains v. Then for all distinct $u, w \in N_{C}(v)$, we have (by the Claim) that $u w \notin F$, and so (since every vertex of G is incident with an edge in F) u and w are incident with distinct edges of F. This implies that $d_{G}(v) \leq|F|=\lambda(G) .{ }^{6}$ Since we chose v arbitrarily, this implies that $\Delta(G) \leq \lambda(G)$; we already saw that $\lambda(G) \leq \delta(G)$, and we now deduce that $\lambda(G)=\Delta(G)$. Now, if G is a complete graph, then $|V(G)|=\Delta(G)+1$, and we see that $\kappa(G)=\Delta(G)=\lambda(G)$. So assume that G is not complete, and fix some $x \in V(G)$ that has a non-neighbor in G. Then $G \backslash N_{G}(x)$ is disconnected, and we have that $\left|N_{G}(x)\right|=d_{G}(x) \leq \Delta(G)=\lambda(G)$. So, $\kappa(G) \leq \lambda(G)$.

Terminology: A vertex-cutset of a graph G is any set $X \varsubsetneqq V(G)$ such that $G \backslash X$ has more components than $G .{ }^{7}$ Similarly, an edge-cutset of G is any set $F \subseteq E(G)$ such that $G \backslash F$ has more components than G.
${ }^{5}$ For an example, see the graph below, with the edges of F in red.

[^2]By definition, no graph G has a vertex-cutset of size strictly smaller than $\kappa(G)$. Similarly, no graph G has an edge-cutset of size strictly smaller than $\lambda(G)$.

2 Menger's theorems

Menger's theorem (vertex version). Let G be a graph, and let $A, B \subseteq$ $V(G) .{ }^{8}$ Then the minimum number of vertices separating A from B in G is equal to the maximum number of pairwise disjoint $A-B$ paths in $G .{ }^{9}$

Proof. We assume inductively that the theorem holds for graphs that have fewer than $|E(G)|$ edges. More precisely, we assume that for all graphs G^{\prime} such that $\left|E\left(G^{\prime}\right)\right|<|E(G)|$, and all sets $A^{\prime}, B^{\prime} \subseteq V\left(G^{\prime}\right)$, the minimum number of vertices separating A^{\prime} from B^{\prime} in G^{\prime} is equal to the maximum number of pairwise disjoint $A^{\prime}-B^{\prime}$ paths in G^{\prime}. We must prove that this holds for G as well. From now on, we let k be the minimum number of vertices separating A from B in G.

First, we claim that there can be no more than k pairwise disjoint paths from A to B in G. Indeed, let $X \subseteq V(G)$ be a k-vertex set separating A from B in G, and let \mathcal{P} be any collection of pairwise disjoint paths from A to B. By definition, every path in \mathcal{P} contains at least one vertex of X, and since paths in \mathcal{P} are pairwise disjoint, no two paths in \mathcal{P} contain the same vertex of X. So, $|\mathcal{P}| \leq|X|=k$, as we had claimed.

It remains to show that there are at least k pairwise disjoint paths from A to B. Clearly, for any set $X \subseteq V(G)$ separating A from B in G, we have that $A \cap B \subseteq X$; consequently, $|A \cap B| \leq k$. Now, if $E(G)=\emptyset$, then $A \cap B$ separates A from B in G, and so $|A \cap B|=k$; in this case, the vertices of $A \cap B$ form k pairwise disjoint one-vertex paths from A to B, and we are done. From now on, we assume that G has at least one edge, say $x y$. Let

[^3]$G_{x y}:=G / x y$, i.e. let $G_{x y}$ be the graph obtained from G by contracting the edge $x y$, and let $v_{x y}$ be the vertex obtained by contracting $x y .{ }^{10}$

G

$G / x y$

Now, if x or y belongs to A, then let $A^{\prime}=(A \backslash\{x, y\}) \cup\left\{v_{x y}\right\}$, and otherwise, let $A^{\prime}=A$. Similarly, if x or y belongs to B, then let $B^{\prime}=(B \backslash\{x, y\}) \cup\left\{v_{x y}\right\}$, and otherwise, let $B^{\prime}=B$.

Let $Y \subseteq V\left(G_{x y}\right)$ be a minimum-sized set of vertices separating A^{\prime} from B^{\prime} in $G_{x y} .{ }^{11}$ By the induction hypothesis, there are $|Y|$ many pairwise disjoint paths in $G_{x y}$ from A^{\prime} to B^{\prime}, and it readily follows ${ }^{12}$ that there are at least $|Y|$ many pairwise disjoint paths in G from A to B. So, if $|Y| \geq k,{ }^{13}$ then we are done. From now on, we assume that $|Y| \leq k-1$. Then $v_{x y} \in Y$, for otherwise, Y would separate A from B in $G,{ }^{14}$ contrary to the fact that $|Y| \leq k-1$. Now $X:=\left(Y \backslash\left\{v_{x y}\right\}\right) \cup\{x, y\}$ separates A from B in $G,{ }^{15}$ and we have that $|X|=|Y|+1$. Note that this implies that $|X|=k .{ }^{16}$ Set $X=\left\{x_{1}, \ldots, x_{k}\right\}$.

We now consider the graph $G \backslash x y$, i.e. the graph obtained from G by deleting the edge $x y .{ }^{17}$ Since $x, y \in X$, we know that any set of vertices separating A from X in $G \backslash x y$ also separates A from B in $G ;{ }^{18}$ consequently, any such set has at least k vertices, and so by the induction hypothesis,

[^4]there are k pairwise disjoint paths from A to X in G, call them P_{1}, \ldots, P_{k}. Similarly, there are k pairwise disjoint paths from B to X in G, call them Q_{1}, \ldots, Q_{k}. We may assume that for all $i \in\{1, \ldots, k\}, x_{i}$ is an endpoint both of P_{i} and of Q_{i}. So, $P_{1}-x_{1}-Q_{1}, \ldots, P_{k}-x_{k}-Q_{k}$ are walks from A to B. But in fact, each of these walks is a path, for otherwise, it would contain a path from A to B that contains no vertex of $X .{ }^{19}$ So, there are at least k paths from A to B in G.

Given a graph G and distinct vertices $s, t \in V(G)$, two paths from s to t in G are internally disjoint if they have no vertices in common except the endpoints s and t.

The following corollary is also often referred to as the vertex version of Menger's theorem.

Corollary 2.1. Let G be a graph, and let $s, t \in V(G)$ be distinct, nonadjacent vertices of G. Then the minimum number of vertices of $V(G) \backslash$ $\{s, t\}$ separating s from t in G is equal to the maximum number of pairwise internally disjoint s-t paths in G.

Proof. Let $S=N_{G}(s)$ and $T=N_{G}(t)$. Obviously, the minimum number of vertices of $V(G) \backslash\{s, t\}$ separating s from t in G is equal to the minimum number of vertices of $V(G) \backslash\{s, t\}$ separating S from T in $G \backslash\{s, t\} .{ }^{20}$ Similarly, the maximum number of pairwise internally disjoint $s-t$ paths in G is equal to the maximum number of pairwise disjoint $S-T$ paths in G. By Menger's theorem (vertex version), the minimum number of vertices separating S from T in $G \backslash\{s, t\}$ is equal to the maximum number of pairwise disjoint S-T paths in $G \backslash\{s, t\}$. So, the minimum number of vertices of $V(G) \backslash\{s, t\}$ separating s from t in G is equal to the maximum number of pairwise internally disjoint s - t paths in G. This completes the argument.

[^5]Our next goal is to prove the edge version of Menger's theorem. The line graph of a graph G, denoted by $L(G)$, is the graph whose vertex set is $E(G)$, and in which $e, f \in L(V(G))=E(G)$ are adjacent if and only if e and f share an endpoint in G.

G

$L(G)$

Proposition 2.2. Let G be a graph, let $s, t \in V(G)$ be distinct vertices of G, let S be the set of all edges in G incident with s, and let T be the set of all edges in G incident with t. Let $X \subseteq E(G)$. Then X separates s from t in G if and only if X separates S from T in $L(G)$.

Proof. Suppose that X separates s from t in G; we must show that X separates S from T in G. Suppose otherwise. Then there exists some path e_{1}, \ldots, e_{r} in $L(G)$ that does not contain any vertex (in $L(G)$) from X. ${ }^{21}$ For each $i \in\{1, \ldots, r-1\}$, let v_{i} be a common vertex of e_{i} and $e_{i+1} \cdot{ }^{22}$ Then $s, v_{1}, \ldots, v_{r-1}, t$ is a walk in $L(G)$ from s to t that uses only edges e_{1}, \ldots, e_{r}, and consequently, does not use any edge of X. It follows that there is a path from s to t in G that does not use any edges of X, contrary to the fact that X separates s from t in G. This proves that X indeed separates S from T in G.

Suppose now that X does not separate s from t in G; we must show that X does not separate S from T in $L(G)$. Since X does not separate s from t in G, we know that there is a path v_{1}, \ldots, v_{r} in G, with $v_{1}=s$ and $v_{r}=t$, that does not use any edge of X. But now $v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{r-1} v_{r}$ is a path from S to T in $L(G)$ that does not use any vertex (in $L(G)$) in X. So, X does not separate S from T in $L(G)$.

Proposition 2.3. Let G be a graph, let $s, t \in V(G)$ be distinct vertices of G, let S be the set of all edges in G incident with s, and let T be the set of all edges in G incident with t. Let ℓ be a non-negative integer. Then the following are equivalent:
(i) there are ℓ pairwise edge-disjoint s-t paths in G;

[^6](ii) there are ℓ pairwise disjoint $S-G$ paths in $L(G)$.

Proof. Suppose first that (i) holds, and fix ℓ pairwise edge-disjoint s - t paths in G, say P_{1}, \ldots, P_{ℓ}. For all $i \in\{1, \ldots, \ell\}$, set $P_{i}=v_{1}^{i}, \ldots, v_{r_{i}}^{i}$. Now, for all $i \in\{1, \ldots, \ell\}$, set $P_{i}^{L}=v_{1}^{i} v_{2}^{i}, v_{2}^{i} v_{3}^{i}, \ldots, v_{r_{i}-1}^{i} v_{r_{i}}^{i}\left(\right.$ with $v_{1}^{i}=s$ and $\left.v_{r_{i}}^{i}=t\right)$. Clearly, $P_{1}^{L}, \ldots, P_{\ell}^{L}$ are pairwise disjoint $S-T$ paths in $L(G)$.

Suppose now that (ii) holds, and fix ℓ pairwise disjoint $S-T$ paths in G, say $Q_{1}^{L}, \ldots, Q_{\ell}^{L}$. For all $i \in\{1, \ldots, \ell\}$, set $Q_{i}^{L}=e_{1}^{i}, \ldots, e_{r_{i}}^{i}$. Now, for all $i \in\{1, \ldots, \ell\}$ and $j \in\left\{1, \ldots, r_{i}\right\}$, let v_{j}^{i} be a common vertex of the edges e_{j}^{i} and e_{j+1}^{i} in G, and set $Q_{i}=s, v_{1}^{i}, \ldots, v_{r_{i}-1}^{i}, t$. Then Q_{1}, \ldots, Q_{ℓ} are pairwise edge-disjoint s - t walks in G, and we deduce that there are ℓ pairwise edge-disjoint s - t paths in G.

Menger's theorem (edge version). Let G be a graph, and let $s, t \in V(G)$ be distinct vertices of G. Then the minimum number of edges separating s from t in G is equal to the maximum number of pairwise edge-disjoint s - t paths in G.

Proof. Let S be the set of all edges in G incident with s, and let T be the set of all edges in G incident with t. By Proposition 2.2, the minimum number of edges separating s from t in G is equal to the minimum number of vertices separating S from T in $L(G)$. By Proposition 2.3, the maximum number of pairwise edge-disjoint s - t paths in G is equal to the maximum number of pairwise disjoint $S-T$ paths in G. By Menger's theorem (vertex version), the minimum number of vertices separating S from T in $L(G)$ is equal to the maximum number of pairwise disjoint $S-T$ paths in G. We now deduce that the minimum number of edges separating s from t in G is equal to the maximum number of pairwise edge-disjoint $s-t$ paths in G. This completes the argument.

The global version of Menger's theorem. Let G be a graph on at least two vertices, and let $k, \ell \geq 0$ be integers.
(a) G is k-connected if and only if for all distinct $s, t \in V(G)$, there are k pairwise internally disjoint s-t paths in G.
(b) G is ℓ-edge-connected if and only if for all distinct $s, t \in E(G)$, there are ℓ pairwise edge-disjoint s-t paths in G.

Proof. HW.

[^0]: ${ }^{1}$ Indeed, if $x \in A \cap B$, then x counts as a one-vertex path from A to B. So, any set of vertices that separates A from B must include $A \cap B$ as a subset.
 ${ }^{2}$ However, K_{1} is not 1-connected.

[^1]: ${ }^{3}$ Since $G \backslash F$ is disconnected, this implies that C and $V(G) \backslash C$ are both non-empty, and there are no edges between them.
 ${ }^{4}$ This is because there are still no edges between C and $V(G) \backslash C$, and both C and $V(G) \backslash C$ are non-empty.

[^2]: ${ }^{6}$ Let us explain this in more detail. Let F_{1} be the set of all edges in F that are incident with v. Then $d_{G}(v)=\left|F_{1}\right|+\left|N_{C}(v)\right|$. Further, by what we just showed, every vertex in $N_{C}(v)$ is incident with an edge of F, and no two vertices in $N_{C}(v)$ are incident with the same edge of F. It is also clear that no vertex in $N_{C}(v)$ is incident with an edge of F_{1}. So, $\left|N_{C}(v)\right| \leq\left|F \backslash F_{1}\right|$, and we deduce that $d_{G}(v) \leq\left|F_{1}\right|+\left|F \backslash F_{1}\right|=|F|=\lambda(G)$.
 ${ }^{7}$ So, if G is connected, then a vertex-cutset of G is any set $X \varsubsetneqq V(G)$ such that $G \backslash X$ is disconnected.

[^3]: ${ }^{8} A$ and B need not be disjoint.
 9 "Pairwise disjoint" here means that no two paths have a vertex in common (and consequently, no two paths have an edge in common).

[^4]: ${ }^{10}$ Formally, we have that $v_{x y}$ is some vertex that does not belong to $V(G)$, and that $G_{x y}$ is the graph with vertex set $V\left(G_{x y}\right)=(V(G) \backslash\{x, y\}) \cup\left\{v_{x y}\right\}$ and edge set $E\left(G_{x y}\right)=\{e \in E(G) \mid e$ is incident neither with x nor with y in $G\} \cup\left\{v v_{x y} \mid\right.$ $v \in V(G), v$ is incident with x or y in $G\}$.
 ${ }^{11}$ This means that for all sets $Y^{\prime} \subseteq V\left(G_{x y}\right)$ separating A from B in $G_{x y}$, we have that $|Y| \leq\left|Y^{\prime}\right|$.
 ${ }^{12}$ Details?
 ${ }^{13}$ In fact, it is not possible that $|Y|>k$ (details?), but we do not need this stronger fact.
 ${ }^{14}$ Proof?
 ${ }^{15}$ Proof?
 ${ }^{16}$ Indeed, since $|Y| \leq k-1$, we have that $|X| \leq k$. On the other hand, since X separates A from B in G, we know that $|X| \geq k$. So, $|X|=k$.
 ${ }^{17}$ So, $V(G \backslash x y)=V(G)$ and $E(G \backslash x y)=E(G) \backslash\{x y\}$.
 ${ }^{18}$ Let us check this. Let Z be any set of vertices separating A from X in $G \backslash x y$, and let p_{1}, \ldots, p_{t}, with $p_{1} \in A$ and $p_{t} \in B$, be a path from A to B in G. Then some vertex of p_{1}, \ldots, p_{t} belongs to X; let $i \in\{1, \ldots, t\}$ be the smallest index such that $p_{i} \in X$. Then p_{1}, \ldots, p_{i} is a path from A to X in G. Furthermore, since p_{1}, \ldots, p_{i} contains exactly one vertex of X, and since $x, y \in X$, we see that the path p_{1}, \ldots, p_{i} does not use the edge $x y$; consequently, p_{1}, \ldots, p_{i} is a path from A to X in $G \backslash x y$, and we deduce that this path (and consequently, the path p_{1}, \ldots, p_{t} as well) contains a vertex of Z.

[^5]: ${ }^{19}$ Details?
 ${ }^{20}$ Indeed, for any set $X \subseteq V(G) \backslash\{s, t\}$, we have that X separates s from t in G if and only if X separates S from T in $G \backslash\{s, t\}$.

[^6]: ${ }^{21}$ Note that e_{1}, \ldots, e_{r} are vertices of $L(G)$, and consequently, edges of G.
 ${ }^{22}$ Such a vertex exists because e_{i} and e_{i+1} are adjacent vertices of $L(G)$, and consequently, they are edges of G that share an endpoint.

