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This lecture consists of three parts:

1 Another look at the Ford-Fulkerson algorithm.
2 Matching.
3 Latin rectangles.
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Part I: Another look at the Ford-Fulkerson algorithm.

Definition
An (s, t)-path in a network (G , s, t, c) is a sequence v0, v1, . . . , v`

of vertices of G such that v0 = s, v` = t, and for all
i ∈ {0, . . . , `− 1}, we have that one of (vi , vi+1) and (vi+1, vi )
belongs to E (G).
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Definition
Given a flow f in the network (G , s, t, c), an (s, t)-path
v0, v1, . . . , v` in (G , s, t, c) is said to be an f -augmenting path if
the following two conditions are satisfied:

for all i ∈ {1, . . . , `− 1} such that (vi , vi+1) ∈ E (G), we have
that f (vi , vi+1) < c(vi , vi+1);
for all i ∈ {1, . . . , `− 1} such that (vi+1, vi ) ∈ E (G), we have
that f (vi+1, vi ) > 0.
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Lemma 2.5 from Lecture Notes 6
Let f be a flow in a network (G , s, t, c). Then f is a maximum
flow if and only if there does not exist an f -augmenting path in
(G , s, t, c). Furthermore, if f is a maximum flow, then there exists
a cut R in (G , s, t, c) such that val(f ) = c(R).

In Lecture 6, we saw how, given a flow f in a network
(G , s, t, c), one can either find an f -augmenting path, or
determine that one does not exist.
If one does not exist, then Lemma 2.5 from Lecture Notes 6
guarantees that the flow f is maximum.
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The Ford-Fulkerson algorithm finds a maximum flow in a network
(G , s, t, c). Its steps are as follows:

1 Set f (e) := 0 for all e ∈ E (G).
2 While there exists an f -augmenting path in the network:

1 Find an f -augmenting path v0, . . . , v` (with v0 = s and
v` = t).

2 Set
ε1 = min

(
{c(vi , vi+1)− f (vi , vi+1) | 0 ≤ i ≤ `− 1,

(vi , vi+1) ∈ E(G)} ∪ {∞}
)

;

ε2 = min
(
{f (vi+1, vi) | 0 ≤ i ≤ `− 1, (vi+1, vi) ∈ E(G)}

∪{∞}
)

;
ε = min{ε1, ε2}.

3 Update f as follows:
f (vi , vi+1) := f (vi , vi+1) + ε for all i ∈ {0, . . . , `− 1} such that
(vi , vi+1) ∈ E(G);
f (vi+1, vi) := f (vi+1, vi)− ε for all i ∈ {0, . . . , `− 1} such that
(vi+1, vi) ∈ E(G).

3 Return f .



But is the Ford-Fulkerson algorithm correct?

For this, it would need to have the following two properties:
(1) the algorithm terminates for every input network (G , s, t, c);
(2) if, given an input network (G , s, t, c), the algorithm returns a

flow f , then f is indeed a maximum flow in (G , s, t, c).
(2) is definitely holds: the algorithm returns f only if there is
no f -augmenting path in the input network (G , s, t, c), and in
this case, Lemma 2.5 from Lecture Notes 6 guarantees that
the f is a maximum flow in (G , s, t, c).
But (1) may fail!

The good news is that this is only possible if some of the
capacities in the network are irrational.
If all capacities are rational, then the algorithm terminates and
correctly outputs a maximum flow.
We first deal with the case when the capacities are integers.
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Theorem 1.1
Let (G , s, t, c) be a network in which all capacities are non-negative
integers. Then, for input (G , s, t, c), the Ford-Fulkerson algorithm
terminates and outputs a maximum flow, and furthermore, the
output flow through each edge is a non-negative integer. In
particular, some maximum flow in (G , s, t, c) has the property that
flows through all edges are non-negative integers.

Proof.

If we begin with an integer flow in the network (G , s, t, c),
and we find an augmenting path, then since all capacities are
integers, the number ε (defined as in the description of the
Ford-Fulkerson algorithm) will be a positive integer; so, the
updated flow will still be an integer flow, since the flow through an
edge can either remain unchanged, or increase by ε, or decrease by
ε.
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particular, some maximum flow in (G , s, t, c) has the property that
flows through all edges are non-negative integers.

Proof (continued). Now, the initial flow created by the
Ford-Fulkerson algorithm for the network (G , s, t, c) is the
zero-flow (and so in particular, an integer flow), and by what we
just proved, after each iteration, the new flow is still an integer
flow.

The algorithm terminates because after each iteration, the
value of the flow increases by a positive integer (namely, by the ε
that we compute for that iteration), and the maximum value of the
flow is bounded (e.g. by the sum of capacities), and so there can
be only finitely many iterations.
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Theorem 1.1
Let (G , s, t, c) be a network in which all capacities are non-negative
integers. Then, for input (G , s, t, c), the Ford-Fulkerson algorithm
terminates and outputs a maximum flow, and furthermore, the
output flow through each edge is a non-negative integer. In
particular, some maximum flow in (G , s, t, c) has the property that
flows through all edges are non-negative integers.

Proof (continued). The fact that the algorithm returns a correct
answer follows from its stopping criterion: the algorithm
terminates and returns a flow f once there are no f -augmenting
paths, and in this case, Lemma 2.5 from Lecture Notes 6
guarantees that f is a maximum flow.



Theorem 1.1 does not state that every maximum flow in a
network with integer capacities is an integer flow.

It merely guarantees that at least one maximum flow in such a
network is an integer flow.
For instance, the flow in the picture below is maximum for
any value of ε ∈ [0, 1], but only two values of ε (namely,
ε = 0 and ε = 1) yield an integer flow.
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s t val(f) = 2
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c(A,B) = 2

ε ∈ [0, 1]
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Theorem 1.1
Let (G , s, t, c) be a network in which all capacities are non-negative
integers. Then, for input (G , s, t, c), the Ford-Fulkerson algorithm
terminates and outputs a maximum flow, and furthermore, the
output flow through each edge is a non-negative integer. In
particular, some maximum flow in (G , s, t, c) has the property that
flows through all edges are non-negative integers.

Theorem 1.1 is important for certain theoretical applications
(e.g. matching theory), as well for certain practical
applications.

Consider, for example, a network that models a transportation
network of trucks, where the capacity of a truck is the number
of containers that it can carry.
Certainly, we would want a maximum flow that is an integer
flow. (A truck should not transport 7

3 or 3
√
π containers!)
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Theorem 1.2
Let (G , s, t, c) be a network in which all capacities are
non-negative rational numbers. Then, for input (G , s, t, c), the
Ford-Fulkerson algorithm terminates and outputs a maximum flow,
and furthermore, the output flow through each edge is an
non-negative rational number. In particular, some maximum flow
in (G , s, t, c) has the property that flows through all edges are
non-negative rational numbers.

Proof (outline). Let d be a positive integer such that all capacities
in (G , s, t, c) are integer multiples of 1

d . (To see that d exists, we
can first write all capacities in (G , s, t, c) as fractions, and then we
take d to be the least common multiple of the denominators of the
capacities.) Now the proof is completely analogous to that of
Theorem 1.1, except that instead of integers, we have integer
multiples of 1

d (for flows and capacities) throughout.
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in (G , s, t, c) has the property that flows through all edges are
non-negative rational numbers.

The key point of the proof of Theorem 1.2 is that there exists
some positive integer d such that in each iteration, the value
of the flow increases by at least 1

d , and so there cannot be
infinitely many iterations.
If (some of) our capacities are irrational, such a d need not
exist.

For a concrete example, see the Lecture Notes.
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Part II: Matchings

Definition
A matching in a graph G is a set of edges M ⊆ E (G) such that
every vertex of G is incident with at most one edge in M.

Definition
A vertex cover of a graph G is any set C of vertices of G such that
every edge of G has at least one endpoint in C .



Part II: Matchings

Definition
A matching in a graph G is a set of edges M ⊆ E (G) such that
every vertex of G is incident with at most one edge in M.

Definition
A vertex cover of a graph G is any set C of vertices of G such that
every edge of G has at least one endpoint in C .



The Kőnig-Egerváry theorem
The maximum size of a matching in a bipartite graph is equal to
the minimum size of a vertex cover in that graph.

Proof.

Let G be a bipartite graph with bipartition (A,B). Clearly,
it suffices to prove the following two statements:
(a) for every matching M and every vertex cover C of G , we have

that |M| ≤ |C |;
(b) there exist a matching M and a vertex cover C of G such that
|M| = |C |.

Proof of (a). Fix a matching M and a vertex cover C in G .
Clearly, every edge of M has at least one endpoint in C . Since no
two edges of M share an endpoint, we deduce that |M| ≤ |C |.
This proves (a).
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Proof (continued).
(b) there exist a matching M and a vertex cover C of G such that
|M| = |C |.

Proof of (b).

We form a network (G ′, s, t, c) as follows:
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Proof (continued).
(b) there exist a matching M and a vertex cover C of G such that
|M| = |C |.

Proof of (b). We form a network (G ′, s, t, c) as follows:
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Proof (continued).
(b) there exist a matching M and a vertex cover C of G such that
|M| = |C |.

Proof of (b) (continued). Let f be a maximum flow in (G ′, s, t, c),
and let R be a cut of minimum capacity.

By Theorem 1.1, we may
assume that f (e) is an integer for all e ∈ E (G ′). By the Max-flow
min-cut theorem, we know that val(f ) = c(R). It now suffices to
produce a matching of size val(f ) and vertex cover of size c(R).
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(b) there exist a matching M and a vertex cover C of G such that
|M| = |C |.

Proof of (b) (continued). Let f be a maximum flow in (G ′, s, t, c),
and let R be a cut of minimum capacity. By Theorem 1.1, we may
assume that f (e) is an integer for all e ∈ E (G ′).

By the Max-flow
min-cut theorem, we know that val(f ) = c(R). It now suffices to
produce a matching of size val(f ) and vertex cover of size c(R).



Proof (continued).
(b) there exist a matching M and a vertex cover C of G such that
|M| = |C |.

Proof of (b) (continued). Let f be a maximum flow in (G ′, s, t, c),
and let R be a cut of minimum capacity. By Theorem 1.1, we may
assume that f (e) is an integer for all e ∈ E (G ′). By the Max-flow
min-cut theorem, we know that val(f ) = c(R). It now suffices to
produce a matching of size val(f ) and vertex cover of size c(R).
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Proof (continued). Because of capacities, and because of inflows
and outflows, we have that f (e) ≤ 1 for all e ∈ E (G ′). So,
f (e) ∈ {0, 1} for all e ∈ E (G ′).
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1

|A| + 1

1

Proof (continued). Let
M = {ab ∈ E (G) | a ∈ A, b ∈ B, f (a, b) = 1}. Then M is a
matching of size val(f ) (details: Lecture Notes).
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Proof (continued). Reminder: R is a cut of minimum capacity.

R
cannot contain any edges between A and B. Let C be the set of
all vertices in V (G) = A ∪ B that are incident with at least one
edge of R. Then R = {(s, a) | a ∈ A ∩ C} ∪ {(b, t) | b ∈ B ∩ C}.
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Proof (continued). Reminder: R is a cut of minimum capacity. R
cannot contain any edges between A and B.

Let C be the set of
all vertices in V (G) = A ∪ B that are incident with at least one
edge of R. Then R = {(s, a) | a ∈ A ∩ C} ∪ {(b, t) | b ∈ B ∩ C}.
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Proof (continued). Reminder: R is a cut of minimum capacity. R
cannot contain any edges between A and B. Let C be the set of
all vertices in V (G) = A ∪ B that are incident with at least one
edge of R.

Then R = {(s, a) | a ∈ A ∩ C} ∪ {(b, t) | b ∈ B ∩ C}.
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Proof (continued). Reminder: R is a cut of minimum capacity. R
cannot contain any edges between A and B. Let C be the set of
all vertices in V (G) = A ∪ B that are incident with at least one
edge of R. Then R = {(s, a) | a ∈ A ∩ C} ∪ {(b, t) | b ∈ B ∩ C}.
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Proof (continued). Reminder:
R = {(s, a) | a ∈ A ∩ C} ∪ {(b, t) | b ∈ B ∩ C}.

Then
|C | = cap(R), and C is a vertex cover of G (details: Lecture
Notes).
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Proof (continued). Reminder:
R = {(s, a) | a ∈ A ∩ C} ∪ {(b, t) | b ∈ B ∩ C}. Then
|C | = cap(R), and C is a vertex cover of G (details: Lecture
Notes).



Definition
Given a bipartite graph G with bipartition (A,B),

an A-saturating matching in G is a matching M in G such
that every vertex of A is incident with some edge in M;
a B-saturating matching in G is a matching M in G such that
every vertex of B is incident with some edge in M.

For a graph G and a set A ⊆ V (G), we denote by NG(A) the
set of all vertices in V (G) \ A that have a neighbor in A.



Hall’s theorem (graph theoretic formulation)
Let G be a bipartite graph with bipartition (A,B). Then the
following are equivalent:
(a) all sets A′ ⊆ A satisfy |A′| ≤ |NG(A′)|;
(b) G has an A-saturating matching.

A′

NG(A
′)

B

A



(a) all sets A′ ⊆ A satisfy |A′| ≤ |NG(A′)|;
(b) G has an A-saturating matching.

A′

NG(A
′)

B

A

Proof (continued). “(b) =⇒ (a).” is “obvious.” For “(a) =⇒ (b),”
it suffices to show that any vertex cover of G is of size ≥ |A|.



(a) all sets A′ ⊆ A satisfy |A′| ≤ |NG(A′)|;
(b) G has an A-saturating matching.
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Proof (continued). “(b) =⇒ (a).” is “obvious.”

For “(a) =⇒ (b),”
it suffices to show that any vertex cover of G is of size ≥ |A|.



(a) all sets A′ ⊆ A satisfy |A′| ≤ |NG(A′)|;
(b) G has an A-saturating matching.

A′

NG(A
′)

B

A

Proof (continued). “(b) =⇒ (a).” is “obvious.” For “(a) =⇒ (b),”
it suffices to show that any vertex cover of G is of size ≥ |A|.



Proof (continued). Let C be a vertex cover of G .

A

B

C

Then there can be no edges between A \ C and B \ C , and we
deduce that NG(A \ C) ⊆ B ∩ C , and consequently,
|NG(A \ C)| ≤ |B ∩ C |. Now we have the following:

|A| = |A ∩ C |+ |A \ C |
≤ |A ∩ C |+ |NG(A \ C)| by (a)
≤ |A ∩ C |+ |B ∩ C |
= |C |.



Corollary 2.1
Let G be a bipartite graph with bipartition (A,B). Assume that G
has at least one edge and that for all a ∈ A and b ∈ B, we have
that dG(a) ≥ dG(b). Then G has an A-saturating matching.

Proof. Lecture Notes.



Definition
For a non-negative integer k, a graph G is k-regular if it all its
vertices are of degree k. G is regular if there exists some
non-negative integer k such that G is k-regular.

Definition
A perfect matching in a graph G is a matching M such that every
vertex of G is incident with an edge in M.



Definition
For a non-negative integer k, a graph G is k-regular if it all its
vertices are of degree k. G is regular if there exists some
non-negative integer k such that G is k-regular.

Definition
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vertex of G is incident with an edge in M.



Corollary 2.1
Let G be a bipartite graph with bipartition (A,B). Assume that G
has at least one edge and that for all a ∈ A and b ∈ B, we have
that dG(a) ≥ dG(b). Then G has an A-saturating matching.

Corollary 2.2
Every regular bipartite graph that has at least one edge has a
perfect matching.

Proof. Let G be a k-regular (k ≥ 0) bipartite graph with
bipartition (A,B), and assume that G has at least one edge. By
Corollary 2.1, G has an A-saturating matching. Now, since G has
at least one edge, we see that k ≥ 1. Further, since G is k-regular,
we have that |E (G)| = k|A| and |E (G)| = k|B|, and so
k|A| = k|B|; since k 6= 0, it follows that |A| = |B|. Consequently,
any A-saturating matching of G is a perfect matching. Since G has
an A-saturating matching, it follows that G has a perfect matching.
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has at least one edge and that for all a ∈ A and b ∈ B, we have
that dG(a) ≥ dG(b). Then G has an A-saturating matching.

Corollary 2.2
Every regular bipartite graph that has at least one edge has a
perfect matching.

Proof. Let G be a k-regular (k ≥ 0) bipartite graph with
bipartition (A,B), and assume that G has at least one edge. By
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we have that |E (G)| = k|A| and |E (G)| = k|B|, and so
k|A| = k|B|; since k 6= 0, it follows that |A| = |B|.

Consequently,
any A-saturating matching of G is a perfect matching. Since G has
an A-saturating matching, it follows that G has a perfect matching.



Corollary 2.1
Let G be a bipartite graph with bipartition (A,B). Assume that G
has at least one edge and that for all a ∈ A and b ∈ B, we have
that dG(a) ≥ dG(b). Then G has an A-saturating matching.
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any A-saturating matching of G is a perfect matching. Since G has
an A-saturating matching, it follows that G has a perfect matching.



Part III: Latin rectangles

Definition
For positive integers r and n, with r ≤ n, an r × n Latin rectangle
is an r × n array (or matrix) whose entries are numbers 1, . . . , n,
and in which each number 1, . . . , n occurs at most once in each
row and each column.

1 2 3

2 31

4

4

Theorem 3.1
Let r and n be positive integers such that r < n. Then every r × n
Latin rectangle can be extended to an n × n Latin square.
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Theorem 3.1
Let r and n be positive integers such that r < n. Then every r × n
Latin rectangle can be extended to an n × n Latin square.

Proof outline.

Let L =
[

a1 . . . an
]

be an r × n Latin
rectangle. Obviously, it suffices to show that we can extend L to
an (r + 1)× n Latin rectangle by adding a row of length n to the
bottom of L, for then the result will follow immediately by an easy
induction.
Let A = {a1, . . . , an} and B = {1, . . . , n}, and let G be the
bipartite graph with bipartition (A,B) in which ai ∈ A and j ∈ B
are adjacent if and only if j is not an entry of the column ai .
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Theorem 3.1
Let r and n be positive integers such that r < n. Then every r × n
Latin rectangle can be extended to an n × n Latin square.

Proof outline (continued).
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1 2 3 4

A

B

Then G is an (n − r)-regular bipartite graph that has at least one
edge. So, by Corollary 2.2, G has a perfect matching. This perfect
matching gives a “recipe” for adding one row to our r × n Latin
rectangle in a way that produces an (r + 1)× n Latin rectangle.
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