
NDMI011: Combinatorics and Graph Theory 1

Lecture #7

Applications of networks

Irena Penev

1 The Ford-Fulkerson algorithm (again)

Recall that an (s, t)-path in a network (G, s, t, c) is a sequence v0, v1, . . . , v`
of vertices of G such that v0 = s, v` = t, and for all i ∈ {0, . . . , ` − 1}, we
have that one of (vi, vi+1) and (vi+1, vi) belongs to E(G). Note that an
(s, t)-path may, but need not be, a directed (s, t)-path (see the figure below
for an example).

s t

Given a flow f in the network (G, s, t, c), an (s, t)-path v0, v1, . . . , v` in
(G, s, t, c) is said to be an f -augmenting path if the following two conditions
are satisfied (see Figure 1.1 for an example):

• for all i ∈ {1, . . . , ` − 1} such that (vi, vi+1) ∈ E(G), we have that
f(vi, vi+1) < c(vi, vi+1);

• for all i ∈ {1, . . . , ` − 1} such that (vi+1, vi) ∈ E(G), we have that
f(vi+1, vi) > 0.

In Lecture 6, we saw how, given a flow f in a network (G, s, t, c), one can
either find an f -augmenting path, or determine that one does not exist. If
one does not exist, then Lemma 2.5 from Lecture Notes 6 guarantees that
the flow f is maximum.

The Ford-Fulkerson algorithm is the following. Its input is a network
(G, s, t, c), and it proceeds as follows:

1. Set f(e) := 0 for all e ∈ E(G).

2. While there exists an f -augmenting path in the network:

1

π,π

π,2π

6,6

1
2 ,2

1
2 ,

1
2

1,3

9
2 ,5

7
2 ,4

√
2,9 π +

√
2,6

2−
√
2,8s t

Figure 1.1: An f -augmenting path (edges in blue) in a network (G, s, t, c).
(Flow is in blue and capacities are in red.)

(a) Find an f -augmenting path v0, . . . , v` (with v0 = s and v` = t).

(b) Set

• ε1 = min
(
{c(vi, vi+1)−f(vi, vi+1) | 0 ≤ i ≤ `−1, (vi, vi+1) ∈

E(G)} ∪ {∞}
)

;

• ε2 = min
(
{f(vi+1, vi) | 0 ≤ i ≤ ` − 1, (vi+1, vi) ∈ E(G)} ∪

{∞}
)

;

• ε = min{ε1, ε2}.
(c) Update f as follows:

• f(vi, vi+1) := f(vi, vi+1)+ε for all i ∈ {0, . . . , `−1} such that
(vi, vi+1) ∈ E(G);1

• f(vi+1, vi) := f(vi+1, vi)−ε for all i ∈ {0, . . . , `−1} such that
(vi+1, vi) ∈ E(G).2

3. Return f .

In the previous lecture, we did not actually prove the correctness of the
algorithm. For correctness, we would need the following two properties:

(1) the algorithm terminates for every input network (G, s, t, c);

(2) if, given an input network (G, s, t, c), the algorithm returns a flow f ,
then f is indeed a maximum flow in (G, s, t, c).

It is easy to see that (2) is satisfied. Indeed, the algorithm returns f only if
there is no f -augmenting path in the input network (G, s, t, c), and in this
case, Lemma 2.5 from Lecture Notes 6 guarantees that the f is a maximum
flow in (G, s, t, c). Unfortunately, (1) may fail (we give an example at the

1So, for edges on our augmenting path directed with the flow, we increase the flow by ε.
2So, for edges on our augmenting path directed against the flow, we decrease the flow

by ε.

2

end of the section). The good news is that this is only possible if some of the
capacities in the network are irrational. If all capacities are rational, then
the algorithm terminates and correctly outputs a maximum flow. We first
deal with the case when the capacities are integers.

Theorem 1.1. Let (G, s, t, c) be a network in which all capacities are non-
negative integers. Then, for input (G, s, t, c), the Ford-Fulkerson algorithm
terminates and outputs a maximum flow, and furthermore, the output flow
through each edge is a non-negative integer. In particular, some maximum
flow in (G, s, t, c) has the property that flows through all edges are non-
negative integers.

Proof. If we begin with an integer flow (i.e. a flow f such that f(e) is an
integer for each edge e in our network) in the network (G, s, t, c), and we
find an augmenting path, then since all capacities are integers, the number
ε (defined as in the description of the Ford-Fulkerson algorithm) will be
a positive integer; so, the updated flow will still be an integer flow, since
the flow through an edge can either remain unchanged, or increase by ε, or
decrease by ε. Now, the initial flow created by the Ford-Fulkerson algorithm
for the network (G, s, t, c) is the zero-flow (and so in particular, an integer
flow), and by what we just proved, after each iteration, the new flow is still an
integer flow. The algorithm terminates because after each iteration, the value
of the flow increases by a positive integer (namely, by the ε that we compute
for that iteration), and the maximum value of the flow is bounded (e.g. by
the sum of capacities), and so there can be only finitely many iterations. The
fact that the algorithm returns a correct answer follows from its stopping
criterion: the algorithm terminates and returns a flow f once there are no
f -augmenting paths, and in this case, Lemma 2.5 from Lecture Notes 6
guarantees that f is a maximum flow.

Note that Theorem 1.1 does not state that every maximum flow in a
network with integer capacities is an integer flow. It merely guarantees that
at least one maximum flow in such a network is an integer flow.3 For instance,
the flow in the picture below is maximum for any value of ε ∈ [0, 1], but only
two values of ε (namely, ε = 0 and ε = 1) yield an integer flow.

1,1

1,1
ε,1

1 + ε,2

1− ε,2

s t val(f) = 2

A
B

c(A,B) = 2

ε ∈ [0, 1]

3While the maximum value of a flow in a network is unique, there may be many (possibly
infinitely many) flows in the network that have that value, and by definition, all such flows
are maximum.

3

Theorem 1.1 is important for certain theoretical applications (see section 2
for an example), as well for certain practical applications.4

If we replace the word “integer” by the word “rational” in the statemnent
of Theorem 1.1, we still get a correct statement.

Theorem 1.2. Let (G, s, t, c) be a network in which all capacities are non-
negative rational numbers. Then, for input (G, s, t, c), the Ford-Fulkerson
algorithm terminates and outputs a maximum flow, and furthermore, the
output flow through each edge is an non-negative rational number. In partic-
ular, some maximum flow in (G, s, t, c) has the property that flows through
all edges are non-negative rational numbers.

Proof. Let d be a positive integer such that all capacities in (G, s, t, c) are
integer multiples of 1

d .5 Now the proof is completely analogous to that of
Theorem 1.1, except that instead of integers, we have integer multiples of 1

d
(for flows and capacities) throughout.6

The key point of the proof of Theorem 1.2 is that there exists some
positive integer d such that in each iteration, the value of the flow increases
by at least 1

d , and so there cannot be infinitely many iterations. If (some
of) our capacities are irrational, such a d need not exist. Let us give an

example of this.7 First, let r = −1+
√
5

2 , and let the sequence {rn}∞n=0 be
defined recursively as follows:

• r0 = 1 and r1 = r;

• rn+2 = rn − rn+1 for all integers n ≥ 0.

It is easy to check that rn = rn for all integers n ≥ 0.8 Let M be some large
number (say, M = 100). We now consider the network flow below.

4Consider, for example, a network that models a transportation network of trucks,
where the capacity of a truck is the number of containers that it can carry. Certainly, we
would want a maximum flow that is an integer flow. (A truck should not transport 7

3
or

3
√
π containers!)
5To see that d exists, we can first write all capacities in (G, s, t, c) as fractions, and then

we take d to be the least common multiple of the denominators of the capacities.
6Check this!
7We give only describe the construction. If you’d like a challenge, prove that it actually

works. (It’s a slightly messy induction.)
8This formula can be obtained using, for example, generating functions. Correctness is

easily verified by induction.

4

M

M

M

M

M

M

1

1 = r0

r = r1s t

b

c

a

d

The maximum value of a flow in this network is 2M , as certified by the flow
represented below, and the cut ({s, a, b, c, d}, {t}) of capacity 2M .

M ,M

0,M

M ,M

M ,M

M ,M

M ,M

0,1

0,1

0,rs t

b

c

a

d

We note that the flow above can easily be obtained in two iterations of the
Ford-Fulkerson algorithm: we start with the zero flow, then we choose the
augmenting path s, d, t (with ε = M), and then we choose the augmenting
path s, b, c, t (again with ε = M). However, if we choose “bad” augmenting
paths, the algorithm may continue forever, as we describe below.

Let P1 be the s, t-path s, b, a, d, c, t; let P2 be the s, t-path s, a, b, c, d, t;
and let P3 be the s, t-path s, d, a, b, c, t.

M

M

M

M

M

M

1

1

rs t

b

c

a

d

P1 = s, b, a, d, c, t

5

M

M

M

M

M

M

1

1

rs t

b

c

a

d

P2 = s, a, b, c, d, t

M

M

M

M

M

M

1

1

rs t

b

c

a

d

P3 = s, d, a, b, c, t

We start with the zero flow f0, and then we use the augmenting path s, a, b, c, t
(with ε = 1), thus obtaining the flow f1, represented below.

0,M

1,M

0,M

1,M

0,M

1,M

1,1

0,1

0,rs t

b

c

a

d

From now on, we cyclically select augmenting paths P1, P2, P3. It can be then
shown by induction that the algorithm never terminates,9 and furthermore,

the value of the flows that the algorithm produces converges to 1+2
∞∑
n=2

rn = 3,

whereas the maximum flow in our network has value 2M > 3.10

9This is, essentially, because ε tends to zero as we keep iterating. Recall that in the
case of rational capacities (see Theorem 1.2), we could always find an integer d ≥ 1 such
that in each iteration, we had ε ≥ 1

d
. This need not be the case if (some of) our capacities

are irrational.
10If you want a bit of a challenge, try to prove (by induction) that this is indeed correct.

6

2 Matchings and transversals

A matching in a graph G is a set of edges M ⊆ E(G) such that every vertex
of G is incident with at most one edge in M . An example of a matching in a
graph is given below (edges of the matching are in red).

A vertex cover of a graph G is any set C of vertices of G such that every
edge of G has at least one endpoint in C. An example of a vertex cover in a
graph is given below (vertices of the vertex cover are in red).

The Kőnig-Egerváry theorem. The maximum size of a matching in a
bipartite graph is equal to the minimum size of a vertex cover in that graph.

Proof. Let G be a bipartite graph with bipartition (A,B). Clearly, it suffices
to prove the following two statements:

(a) for every matching M and every vertex cover C of G, we have that
|M | ≤ |C|;11

(b) there exist a matching M and a vertex cover C of G such that |M | = |C|.

We begin by proving (a). Fix a matching M and a vertex cover C in G.
Clearly, every edge of M has at least one endpoint in C. Since no two edges
of M share an endpoint, we deduce that |M | ≤ |C|. This proves (a).

It remains to prove (b). Let s and t be two new vertices, i.e. s 6= t and
s, t /∈ V (G). We now form a network (G′, s, t, c) as follows:

• V (G′) = V (G) ∪ {s, t};

• E(G′) = {(s, a) | a ∈ A} ∪ {(a, b) | a ∈ A, b ∈ B, ab ∈ E(G)} ∪ {(b, t) |
b ∈ B};

11In fact, (a) holds for all graphs, not just bipartite ones. However, there are (non-
bipartite) graphs for which (b) fails.

7

• c(a, b) = |A|+ 1 for all (a, b) ∈ E(G′), with a ∈ A and b ∈ B;

• c(s, a) = 1 for all a ∈ A;

• c(b, t) = 1 for all b ∈ B.

s

t

A

B

1

|A| + 1

1

Let f be a maximum flow in (G′, s, t, c), and let R be a cut of minimum
capacity. By Theorem 1.1, we may assume that f(e) is an integer for all
e ∈ E(G′). By the Max-flow min-cut theorem, we know that val(f) = c(R).
It now suffices to produce a matching of size val(f) and vertex cover of size
c(R).

First, we claim that f(e) ∈ {0, 1} for all e ∈ E(G′). Clearly, it suffices
to show that f(e) ≤ 1 for all e ∈ E(G′).12 For all a ∈ A, we have that
f(s, a) ≤ c(s, a) = 1; and for all b ∈ B, we have that f(b, t) ≤ c(b, t) = 1.
Now, fix a ∈ A and b ∈ B such that ab ∈ E(G). The inflow into a is at most
1,13 and so the outflow is at most one. So, f(a, b) ≤ 1. This proves that
f(e) ∈ {0, 1} for all e ∈ E(G′), as we had claimed.

12This is because, for all e ∈ E(G′), f(e) is a non-negative integer, and so if f(e) ≤ 1,
then f(e) ∈ {0, 1}.

13This is because (s, a) is the only edge in G′ with head a, and f(s, a) ≤ c(s, a) = 1.

8

Now, let M = {ab ∈ E(G) | a ∈ A, b ∈ B, f(a, b) = 1}. Then14

|M | = |{(a, b) ∈ E(G′) | a ∈ A, b ∈ B, f(a, b) = 1}|

= |{e ∈ SG′(A ∪ {s}, B ∪ {t}) | f(e) = 1}|

(∗)
= f(A ∪ {s}, B ∪ {t})

(∗∗)
= val(f),

where (*) follows from the fact that f(e) ∈ {0, 1} for all e ∈ E(G), and (**)
follows from Lemma 2.3 from Lecture Notes 6. Let us check that M is a
matching in G. Suppose otherwise. Then one of the following holds:

(i) there exist a ∈ A and b1, b2 ∈ B (with b1 6= b2) such that ab1, ab2 ∈M ;

(ii) there exist a1, a2 ∈ A (with a1 6= a2) and b ∈ B such that a1b, a2b ∈M .

Suppose first that (i) holds. Then f(a, b1) = f(a, b2) = 1, and so the outflow
from a is at least 2. On the other hand, the inflow into a is at most 1,15 a
contradiction. Suppose now that (ii) holds. then f(a1, b) = f(a2, b) = 1, and
so the inflow into b is at least 2. On the other hand, the outflow from b is at
most 1,16 a contradiction. This proves that M is indeed a matching.

It remains to produce a vertex cover of size c(R). Let C be the set of
all vertices in V (G) = A ∪B that are incident with at least one edge of R.
Our goal is to show that C is a vertex cover of size at most c(R). First,
note that {(s, a) | a ∈ A} is a cut in (G′, s, t, c) of capacity |A|, and so
c(R) ≤ |A|. Since every edge from A to B has capacity |A|+ 1 > c(R), we
deduce that R does not contain any edges from A to B; then R = {(s, a) |
a ∈ A ∩ C} ∪ {(b, t) | b ∈ B ∩ C}. It follows that

c(R) =
(∑

a∈A∩C
c(s, a)︸ ︷︷ ︸

=1

)
+
(∑

b∈B∩C
c(b, t)︸ ︷︷ ︸
=1

)

= |A ∩ C|+ |B ∩ C|

= |C|.

It remains to show that C is a vertex cover of G. Fix adjacent vertices a ∈ A
and b ∈ B; we must show that at least one of a, b belongs to C. Suppose
otherwise. It then follows from the construction of C that R contains none of

14SG′(A ∪ {s}, B ∪ {t}) is the set of all edges from A ∪ {s} to B ∪ {t} in the oriented
graph G′; note that all edges in SG′(A ∪ {s}, B ∪ {t}) are in fact from A to B.

15This is because (s, a) is the only edge in G′ with head a, and f(s, a) ≤ c(s, a) = 1.
16This is because (b, t) is the only edge in G′ with tail b, and f(b, t) ≤ c(b, t) = 1.

9

the edges (s, a), (a, b), and (b, t) of G′, and consequently, s, a, b, t is a directed
path from s to t in G′ \R, contrary to the fact that R is a cut in (G′, s, t, c).
This proves that C is indeed a vertex cover of G. This completes the proof
of (b).

Given a bipartite graph G with bipartition (A,B),

• an A-saturating matching in G is a matching M in G such that every
vertex of A is incident with some edge in M ;

• a B-saturating matching in G is a matching M in G such that every
vertex of B is incident with some edge in M .

For a graph G and a set A ⊆ V (G), we denote by NG(A) the set of
all vertices in V (G) \ A that have a neighbor in A. As a corollary of the
Kőnig-Egerváry theorem, we obtain the following.

Hall’s theorem (graph theoretic formulation). Let G be a bipartite
graph with bipartition (A,B). Then the following are equivalent:

(a) all sets A′ ⊆ A satisfy |A′| ≤ |NG(A′)|;

(b) G has an A-saturating matching.

A′

NG(A
′)

B

A

Proof. Suppose first that (b) holds; we must prove that (a) holds. Fix an
A-saturating matching M in G, and fix A′ ⊆ A. Since M is an A-saturating
matching, and since A′ is a stable set,17 we know that precisely |A′| edges
in M are incident with a vertex in A′, and each of those edges has another
endpoint in B. No two edges in M share an endpoint, and it follows that
exactly |A′| vertices in B are incident with an edge of M that has an endpoint
in A′; let B′ be the set of all such vertices of B. But clearly, B′ ⊆ NG(A′),
and so |NG(A′)| ≥ |B′| = |A′|. This proves (a).

Suppose, conversely, that (a) holds; we must prove that (b) holds. Since
all edges of G are between A and B, it suffices to show that G has a matching
of size at least |A|.18 By the Kőnig-Egerváry theorem, it is enough to show

17A stable set (or independent set) is a set of pairwise non-adjacent vertices.
18Note that any matching in G of size at least |A| is in fact of size precisely |A|.

10

that any vertex cover of G is of size at least |A|. Let C be a vertex cover of
G. Then there can be no edges between A \ C and B \ C, and we deduce
that NG(A \ C) ⊆ B ∩ C, and consequently, |NG(A \ C)| ≤ |B ∩ C|. Now
we have the following:

|A| = |A ∩ C|+ |A \ C|

≤ |A ∩ C|+ |NG(A \ C)| by (a)

≤ |A ∩ C|+ |B ∩ C|

= |C|.

This completes the proof of (b).

The degree of a vertex v in a graph G, denoted by dG(v), is the number
of edges of G that v is incident with.

Corollary 2.1. Let G be a bipartite graph with bipartition (A,B). Assume
that G has at least one edge and that for all a ∈ A and b ∈ B, we have that
dG(a) ≥ dG(b). Then G has an A-saturating matching.

Proof. We first check that dG(a) ≥ 1 for all a ∈ A. Suppose otherwise, and
fix some a0 ∈ A such that d(a0) = 0. Now, since G has at least one edge,
and since every edge of G has one endpoint in A and the other one in B,
we see that some vertex b0 ∈ B is incident with at least one edge, and so
dG(b0) ≥ 1. But now dG(a0) < dG(b0), a contradiction. This proves that
dG(a) ≥ 1 for all a ∈ A, as we had claimed.

Now, suppose that G does not have an A-saturating matching. Then by
Hall’s theorem, there exists some A′ ⊆ A such that |A′| > |NG(A′)|.

A′

NG(A
′)

B

A

Note that every edge in G has at least one endpoint in (A \A′) ∪NG(A′),19

19Indeed, if some edge of G had neither endpoint in (A \A′) ∪NG(A′), then one of its
endpoints would be in A′ and the other one would be in B \NG(A′), a contradiction.

11

and so
|E(G)| ≤

∑
v∈(A\A′)∪NG(A′)

dG(v)

≤
(∑

a∈A\A′
dG(a)

)
+
(∑

b∈NG(A′)

dG(b)
)
.

Now, since A′ ⊆ A and NG(A′) ⊆ B, we know that for all a ∈ A′ and
b ∈ NG(A′), we have that dG(a) ≥ dG(b). Furthermore, by our choice of A′,
we have that |A′| > |NG(A′)|. Since dG(a) ≥ 1 for all a ∈ A, we now deduce
that

∑
a∈A′

dG(a) >
∑

b∈NG(A′)

dG(b), and it follows that

|E(G)| ≤
(∑

a∈A\A′
dG(a)

)
+
(∑

b∈NG(A′)

dG(b)
)
.

<
(∑

a∈A\A′
dG(a)

)
+
(∑

a∈A′
dG(a)

)
=

∑
a∈A

dG(a).

But this is impossible since, obviously, |E(G)| =
∑
a∈A

dG(a).

For a non-negative integer k, a graph G is k-regular if it all its vertices
are of degree k. G is regular if there exists some non-negative integer k such
that G is k-regular.

A perfect matching in a graph G is a matching M such that every vertex
of G is incident with an edge in M . An example of a perfect matching is
shown below (edges of the perfect matching are in red).

Obviously, not all graphs have perfect matchings. For instance, no graph
with an odd number of vertices has a perfect matching. (There are also many
graphs that have an even number of vertices, and yet do not have a perfect
matching.)

Corollary 2.2. Every regular bipartite graph that has at least one edge has
a perfect matching.

12

Proof. Let G be a k-regular (k ≥ 0) bipartite graph with bipartition (A,B),
and assume that G has at least one edge. By Corollary 2.1, G has an A-
saturating matching. Now, since G has at least one edge, we see that k ≥ 1.
Further, since G is k-regular, we have that |E(G)| = k|A| and |E(G)| = k|B|,
and so k|A| = k|B|; since k 6= 0, it follows that |A| = |B|. Consequently,
any A-saturating matching of G is a perfect matching. Since G has an
A-saturating matching, it follows that G has a perfect matching.

For a graph G, and a set S $ V (G), let oddG(S) be the number of odd
components (i.e. components with an odd number of vertices) of the graph
G \ S. The following theorem gives a necessary and sufficient condition for a
graph to have a perfect matching.

Tutte’s theorem. Let G be a graph. Then the following are equivalent:

(a) for all sets S $ V (G), we have that oddG(S) ≤ |S|;

(b) G has a perfect matching.

Proof. Omitted.

We complete this section by giving another formulation of Hall’s theorem.
We first need a definition. Suppose X and I are sets, and {Ai}i∈I is a
family of (not necessarily distinct) subsets of X.20 A transversal (or a system
of distinct representatives) for (X, {Ai}i∈I) is an injective (i.e. one-to-one)
function f : I → X such that for all i ∈ I, we have that f(i) ∈ Ai.

Hall’s theorem (combinatorial formulation). Let X and I be finite
sets, and let {Ai}i∈I be a family of (not necessarily distinct) subsets of X.
Then the following are equivalent:

(a) all sets J ⊆ I satisfy |J | ≤ |
⋃

j∈J Aj |;

(b) (X, {Ai}i∈I) has a transversal.

Proof. HW.

3 Extending Latin rectangles

For positive integers r and n, with r ≤ n, an r × n Latin rectangle is an
r × n array (or matrix) whose entries are numbers 1, . . . , n, and in which
each number 1, . . . , n occurs at most once in each row and each column. One
2× 4 Latin rectangle is represented below.

20Technically, we have that A : I →P(X); for i ∈ I, we write Ai instead of A(i).

13

1 2 3

2 31

4

4

Theorem 3.1. Let r and n be positive integers such that r < n. Then every
r × n Latin rectangle can be extended to an n× n Latin square.21

Proof. Let L =
[

a1 . . . an

]
be an r× n Latin rectangle.22 Obviously, it

suffices to show that we can extend L to an (r + 1)× n Latin rectangle by
adding a row of length n to the bottom of L, for then the result will follow
immediately by an easy induction.

Let A = {a1, . . . ,an} and B = {1, . . . , n}, and let G be the bipartite
graph with bipartition (A,B) in which ai ∈ A and j ∈ B are adjacent if and
only if j is not an entry of the column ai. For instance, for the Latin rectangle
from the beginning of the section, we would get the following bipartite graph:

1

2

2

4

3

1 3

4

1 2 3 4

A

B

Each column of L has r entries, and consequently, there are n− r values in
B that do not appear in it. So, for all ai ∈ A, we have that dG(ai) = n− r.
Now, fix j ∈ B. We know that j appears exactly once in each row of L, and L
has r rows. Consequently, j appears exactly r times in L, and since it cannot
appear more than once in any column, we see that it appears in precisely r
columns of L. Thus, j fails to appear in precisely n− r columns of L, and
consequently, dG(j) = n− r. We have now shown that is (n− r)-regular. So,
G is a regular bipartite graph, and (since r < n) it has at least one edge.
Corollary 2.2 now implies that G has a perfect matching, call it M . Now,
for each i ∈ {1, . . . , n}, let ji be the (unique) element of {1, . . . , n} such that
aiji ∈M . We now add the row

[
j1 . . . jn

]
to the bottom of L, and we

thus obtain an (r + 1)× n Latin square, which is what we needed.

21This means that, for any r × n Latin rectangle, it is possible to add n − r rows of
length n to the bottom of the Latin rectangle that we started with and thus obtain an
n× n Latin square.

22This means that a1, . . . ,an are the columns of our Latin rectangle, in that order.

14

