NDMI011: Combinatorics and Graph Theory 1

Lecture #6

Flows and cuts in networks

Irena Penev

November 2, 2020

Definition

A network is an ordered four-tuple (G, s, t, c), where G is an
oriented graph, s and t are two distinct vertices of this graph
(called the source and sink, respectively), and ¢ : E(G) — [0, +00)
is a function, called the capacity function. The capacity of an edge
e € E(G) is the number c(e).

Definition

A network is an ordered four-tuple (G, s, t, c), where G is an
oriented graph, s and t are two distinct vertices of this graph
(called the source and sink, respectively), and ¢ : E(G) — [0, +00)
is a function, called the capacity function. The capacity of an edge
e € E(G) is the number c(e).

@ Networks can be used to model, for example, a system of
pipes used to transport some resource, such as water or oil;
capacities would be the number of units of volume that a
given pipe can transport per unit time.

Definition

A feasible flow (or simply flow) in a network (G,s,t,c) is a
function f : E(G) — [0, +00) s.t.:
o f(e) < c(e) for all e € E(G);
e for all v e V(G)\ {s, t}, we have
> fxv)= > f(vy)

(x,v)€E(G) (v.y)€E(G)

Definition
The value of a flow f in a network (G, s, t,c) is

wal(f)=(Y fsx))-(X f(x9)

(s,x)EE(G) (x,s)€E(G)

A maximum flow in (G, s, t,c) is a flow * that has maximum
value, i.e. one that satisfies val(f) < val(f*) for all flows f.

@ The value of the flow above is 7 + 6 — % = % + .

Every network (G, s, t,c) has a maximum flow.

Proof. Omitted.

Every network (G, s, t,c) has a maximum flow.

Proof. Omitted.
@ Theorem 1.1 should seem plausible, but the proof is not
obvious (since the number of flows is, typically, infinite).

@ The proof relies on certain results from analysis, which we
omit.

Definition
An s, t-cut, or simply cut, in a network (G, s, t,c) is a set
R C E(G) such that G\ R contains no directed path from s to t.
The capacity of the cut R is ¢(R) = Y c(e).
eeR

Max-flow min-cut theorem

The maximum value of a flow in a network is equal to the
minimum capacity of a cut in that network.

e For a network (G, s, t,c), a flow f in that network, and a set
of edges R C E(G), we write

c(R)= > c(e) and f(R)= Y f(e).

eeR eeER

e For a network (G, s, t,c), a flow f in that network, and a set
of edges R C E(G), we write
c(R)= > c(e) and f(R)= Y f(e).
eeR

eeR

@ For a directed graph G and disjoint sets A, B C V/(G), we set
S(A,B)={(a,b) € E(G)|a€ A, be B}.

e For a network (G, s, t,c), a flow f in that network, and a set
of edges R C E(G), we write
c(R)= > c(e) and f(R)= Y f(e).
eeR

eeR

@ For a directed graph G and disjoint sets A, B C V/(G), we set
S(A,B)={(a,b) € E(G)|a€ A, be B}.

e For a network (G, s, t, c), disjoint sets A, B C V(G), and a
flow f, we write

c(A,B)=c(S(A,B)) and (A B)=f(S(A,B)).

Proposition 2.1

Let (G,s,t, c) be a network, and let (A, B) be a partition of V(G)
such that s € Aand t € B. Then S(A, B) is a cut in (G, s, t, ¢).

Proof. Lecture Notes.

Proposition 2.2

Let (G, s, t,c) be a network, and let R be a cut in this network.
Then there exists a partition (A, B) of V(G) such that s € A,
t € B, and S(A, B) C R.

Proposition 2.2

Let (G, s, t,c) be a network, and let R be a cut in this network.
Then there exists a partition (A, B) of V(G) such that s € A,
t € B, and S(A, B) C R.

Proof (outline). Let A be the set of all vertices v € V(G) such that
G \ R contains a directed path from s to v, and set B = V(G) \ A.

Lemma 2.3

Let f be a flow in a network (G, s, t,c), and let (A, B) be a
partition of V/(G) such that s € Aand t € B. Then
val(f) = f(A,B) — f(B, A). In particular,® we have that

va/(f):(3 f(x,t))—(3 f(t,x)).

(x,t)€E(G) (t,x)€E(G)

“This happens if we take A = V(G) \ {t} and B = {t}.

Proof. Lecture Notes.

val(f) =%+

Corollary 2.4

Let f be a flow in a network (G, s, t,c), and let R be a cut. Then
val(f) < c(R).

Proof.

Corollary 2.4

Let f be a flow in a network (G, s, t,c), and let R be a cut. Then
val(f) < c(R).

Proof. By Proposition 2.2, there exists a partition (A, B) of V(G)
such that s€ A, t € B, and S(A,B) C R.

Corollary 2.4

Let f be a flow in a network (G, s, t,c), and let R be a cut. Then
val(f) < c(R).

Proof. By Proposition 2.2, there exists a partition (A, B) of V(G)
such that s€ A, t € B, and S(A,B) C R.

Corollary 2.4

Let f be a flow in a network (G, s, t,c), and let R be a cut. Then

val(f) < c(R).

Proof. By Proposition 2.2, there exists a partition (A, B) of V(G)
such that s € A, t € B, and S(A,B) C R. Then

val(f) = f(A,B)—f(B,A)
< f(A B)
< ¢(A,B)

< <(R)

which is what we needed to show.

by Lemma 2.3
because f(e) > 0 Ve € E(G)
because f(e) < c(e) Ve € E(G)

because S(A,B) C R and
and c(e) > 0 Ve € E(G)

Definition

An (s, t)-path in a network (G, s, t, c) is a sequence vo, v1,...,Vy
of vertices of G such that vy = s, vy = t, and for all
i€{0,...,£—1}, we have that one of (v;, vi+1) and (vjt1, vi)

belongs to E(G).
s /\/\/\ t

Definition
Given a flow f in the network (G, s, t,c), an (s, t)-path
Vo, V1,...,ve in (G,s,t,c) is said to be an f-augmenting path if
the following two conditions are satisfied:
e forall i e {1,...,¢— 1} such that (v;, vi+1) € E(G), we have
that f(vi, vit1) < c(vi, Vit1);
o forall i€ {l,...,0—1} such that (vit1,v;) € E(G), we have
that f(V,'_H, V,') > 0.

Let f be a flow in a network (G, s, t,c). Then f is a maximum
flow if and only if there does not exist an f-augmenting path in
(G,s, t,c). Furthermore, if f is a maximum flow, then there exists
acut Rin (G,s,t,c) such that val(f) = ¢(R).

Proof.

Let f be a flow in a network (G, s, t,c). Then f is a maximum
flow if and only if there does not exist an f-augmenting path in
(G,s, t,c). Furthermore, if f is a maximum flow, then there exists
acut Rin (G,s,t,c) such that val(f) = ¢(R).

Proof. It suffices the prove the following two statements:

(a) If there exists an f-augmenting path in (G, s, t, c), then f is
not a maximum flow in (G, s, t, c).

(b) If there does not exist an f-augmenting path in (G, s, t, c),
then f is a maximum flow in (G, s, t, ¢), and furthermore,
there exists a cut R in (G, s, t, c) such that val(f) = c(R).

(a) If there exists an f-augmenting path in (G, s, t, c), then f is
not a maximum flow in (G, s, t, c).

Proof of (a). Suppose that vy, ..., vy (with vo = s and vy = t) an

f-augmenting path in (G, s, t, c).

(a) If there exists an f-augmenting path in (G, s, t, c), then f is
not a maximum flow in (G, s, t, c).

Proof of (a). Suppose that vy, ..., vy (with vo = s and vy = t) an
f-augmenting path in (G, s, t,c). Now, set

o e1 = min ({c(vi, vis1) = F(vi,vipa) [0 < i< 01,
(viy vis1) € E(G)} U{oo});

o o =min ({f(viy1,%) | 0< i < €—1,(viy1, %) € E(G)}
Ufoc});

e ¢ = min{e1,e2}.

We now define a new flow f’ as follows:
o f'(vi,vit1) = f(vi,viy1) +¢ forall i € {0,...,¢ — 1} such
that (V,'7 V,'_|_1) S E(G),
o f'(viy1,vi) = f(Vigy1,vi) —e forall i € {0,...,¢ — 1} such
that (vit1,vi) € E(G);
e f'(e) = f(e) for all other edges e.

We now define a new flow f’ as follows:
o f'(vi,vit1) = f(vi,viy1) +¢ forall i € {0,...,¢ — 1} such
that (V,'7 V,'_|_1) S E(G),
o f'(viy1,vi) = f(Vigy1,vi) —e forall i € {0,...,¢ — 1} such
that (vit1,vi) € E(G);
e f'(e) = f(e) for all other edges e.

Then val(f) < val(f’), and so f is not a maximum flow. This
proves (a).

(b) If there does not exist an f-augmenting path in (G, s, t, c),
then f is a maximum flow in (G, s, t, c), and furthermore,
there exists a cut R in (G, s, t, c) such that val(f) = c(R).

Proof of (b). Suppose that (G, s, t, c) does not admit an
f-augmenting path.

(b) If there does not exist an f-augmenting path in (G, s, t, c),
then f is a maximum flow in (G, s, t, c), and furthermore,
there exists a cut R in (G, s, t, c) such that val(f) = c(R).

Proof of (b). Suppose that (G, s, t, c) does not admit an
f-augmenting path. Let A to be the set of all vertices v € V(G)

such that there exists an f-augmenting path from s to v. Let
B=V(G)\A.

(b) If there does not exist an f-augmenting path in (G, s, t, c),
then f is a maximum flow in (G, s, t, c), and furthermore,
there exists a cut R in (G, s, t, c) such that val(f) = c(R).

Proof of (b). Suppose that (G, s, t, c) does not admit an
f-augmenting path. Let A to be the set of all vertices v € V(G)

such that there exists an f-augmenting path from s to v. Let
B = V(G)\ A. Clearly, s € Aand t ¢ A.

(b) If there does not exist an f-augmenting path in (G, s, t, c),
then f is a maximum flow in (G, s, t, c), and furthermore,
there exists a cut R in (G, s, t, c) such that val(f) = c(R).

Proof of (b). Suppose that (G, s, t, c) does not admit an
f-augmenting path. Let A to be the set of all vertices v € V(G)
such that there exists an f-augmenting path from s to v. Let

B = V(G)\ A. Clearly, s€ Aand t ¢ A. Then f(A,B) = c(A, B)
and f(B,A) =0, and so

val(f) = f(A,B)—f(B,A) by Lemma 2.3

= ¢(A,B) because (A, B) = ¢(A, B)
and f(B,A) =0

(b) If there does not exist an f-augmenting path in (G, s, t, c),
then f is a maximum flow in (G, s, t, c), and furthermore,
there exists a cut R in (G, s, t, c) such that val(f) = c(R).

Proof of (b). Suppose that (G, s, t, c) does not admit an
f-augmenting path. Let A to be the set of all vertices v € V(G)
such that there exists an f-augmenting path from s to v. Let

B = V(G)\ A. Clearly, s€ Aand t ¢ A. Then f(A,B) = c(A, B)
and f(B,A) =0, and so

val(f) = f(A,B)—f(B,A) by Lemma 2.3

= ¢(A,B) because (A, B) = ¢(A, B)
and f(B,A) =0

It now follows from Corollary 2.4 that f is a maximum flow in
(G,s,t,c).

(b) If there does not exist an f-augmenting path in (G, s, t, c),
then f is a maximum flow in (G, s, t, c), and furthermore,
there exists a cut R in (G, s, t, c) such that val(f) = c(R).

Proof of (b). Suppose that (G, s, t, c) does not admit an
f-augmenting path. Let A to be the set of all vertices v € V(G)
such that there exists an f-augmenting path from s to v. Let

B = V(G)\ A. Clearly, s€ Aand t ¢ A. Then f(A,B) = c(A, B)
and f(B,A) =0, and so

val(f) = f(A,B)—f(B,A) by Lemma 2.3

= ¢(A,B) because (A, B) = ¢(A, B)
and f(B,A) =0

It now follows from Corollary 2.4 that f is a maximum flow in
(G,s, t,c). Furthermore, by Proposition 2.1, we know that

R := S(A, B) is a cut, and by what we just showed,

val(f) = c(A, B) = ¢(R).

Max-flow min-cut theorem

The maximum value of a flow in a network is equal to the
minimum capacity of a cut in that network.

Proof. Let (G,s,t,c) be a network, and let f be a maximum flow
in it (the existence of such a flow is guaranteed by Theorem 1.1).
By Lemma 2.5, there exists a cut R in (G, s, t, c) such that

val(f) = c(R). Furthermore, for any cut R" in (G, s, t,c),
Corollary 2.4 guarantees that val(f) < ¢(R’), and consequently,
c(R) < ¢(R'); thus, R is a cut of minimum capacity in (G, s, t, ¢).

@ Our next goal is to show how to find a maximum flow and a
minimum cut in a network.

@ Our next goal is to show how to find a maximum flow and a
minimum cut in a network.

@ The idea is to repeatedly find augmenting paths and update
the flow (increasing its value).

@ Our next goal is to show how to find a maximum flow and a
minimum cut in a network.

@ The idea is to repeatedly find augmenting paths and update
the flow (increasing its value).

@ When no augmenting path exists, we instead find a cut whose
capacity is equal to the value of our flow, which (by
Corollary 2.4) guarantees that this cut is of minimum capacity.

Suppose that f is a flow in a network (G, s, t,c). We now either
find an f-augmenting path in (G, s, t,c), or we find a cut whose
capacity is val(f), as follows:

Q Set A:= {s}.
@ While t ¢ A:
@ Either find vertices x € A and y € V(G) \ A such that

e (x,y) € E(G) and f(x,y) < c(x,y), or
e (y,x) € E(G) and f(y,x) >0,
or determine that such x and y do not exist.
@ If we found x and y, then we set backpoint(y) = x, and we
update A:= AU {y}.
@ Otherwise, we stop and return the cut S(A, V(G) \ A).1
© Construct an f-augmenting path by following backpoints
starting from t, and return this path.

Yn this case, an argument analogous to the proof of Lemma 2.5 guarantees
that c(A, V(G) \ A) = val(f).

Consider the flow f in the network (G, s, t, c) as in the figure
above. Either find an f-augmenting path, or find a cut whose
capacity is val(f).

Solution. We begin with A = {s}. We now iterate several times.

Solution. We begin with A = {s}. We now iterate several times.
Q@ Weselect s€ Aand ue V(G)\ A and we set A:= {s,u}
and backpoint(u) = s.

Solution. We begin with A = {s}. We now iterate several times.
Q@ Weselect s€ Aand ue V(G)\ A and we set A:= {s,u}
and backpoint(u) = s.
@ Weselect s€ Aand w € V(G)\ A, and we set A := {s,u, w}
and backpoint(w) = s.

Solution. We begin with A = {s}. We now iterate several times.
Q@ Weselect s€ Aand ue V(G)\ A and we set A:= {s,u}
and backpoint(u) = s.
@ Weselect s€ Aand w € V(G)\ A, and we set A := {s,u, w}
and backpoint(w) = s.
© Weselect ue Aand v e V(G)\ A, and we set
A:={s,u,w, v} and backpoint(v) = u.

Solution. We begin with A = {s}. We now iterate several times.

o

2]
o
o

We select s € A and u € V(G)\ A, and we set A := {s, u}
and backpoint(u) = s.

We select s € Aand w € V(G) \ A, and we set A := {s,u, w}
and backpoint(w) = s.

We select u € A and v € V(G) \ A, and we set

A:={s,u,w, v} and backpoint(v) = u.

We select v € Aand t € V(G) \ A, and we set
A:={s,u,w,v,t} and backpoint(t) = v.

Solution. We begin with A = {s}. We now iterate several times.
Q@ Weselect s€ Aand ue V(G)\ A and we set A:= {s,u}
and backpoint(u) = s.
@ Weselect s€ Aand w € V(G)\ A, and we set A := {s,u, w}
and backpoint(w) = s.
© Weselect ue Aand v e V(G)\ A, and we set
A:={s,u,w, v} and backpoint(v) = u.
Q Weselect ve Aand t € V(G)\ A, and we set
A:={s,u,w,v,t} and backpoint(t) = v.
We now reconstruct our f-augmenting path: s, u, v, t. (It is easy
to see that this really is an f-augmenting path.)

Consider the flow f in the network (G, s, t,c) as in the figure
above. Either find an f-augmenting path, or find a cut whose
capacity is val(f).

1,2

<)

0,3 0,3

w

Solution. We begin with A = {s}. We now iterate several times.

Solution. We begin with A = {s}. We now iterate several times.

Q@ Weselect s€ Aand ue V(G)\ A and we set A:= {s,u}
and backpoint(u) = s.

Solution. We begin with A = {s}. We now iterate several times.

Q@ Weselect s€ Aand ue V(G)\ A and we set A:= {s,u}
and backpoint(u) = s.

@ Weselect s€ Aand v € V(G)\ A, and we set A= {s,u,v}
and backpoint(v) = s.

Solution. We begin with A = {s}. We now iterate several times.
Q@ Weselect s€ Aand ue V(G)\ A and we set A:= {s,u}
and backpoint(u) = s.
@ Weselect s€ Aand v € V(G)\ A, and we set A= {s,u,v}
and backpoint(v) = s.

There are now no further vertices that we can select, and t ¢ A.
We now see that S(A, V(G) \ A) = {(u, t),(v,t)} is a cut whose
capacity is 2, which is precisely equal to val(f).

We now describe the Ford-Fulkerson algorithm, which finds a
maximum flow in a network (G, s, t, c). Its steps are as follows:
@ Set f(e) :=0 for all e € E(G).
@ While there exists an f-augmenting path in the network:
® Find an f-augmenting path v, ..., v, (with vy = s and
vy = t).
@ Set
@ €1 = min ({C(V,', Vig1) — F(vi,vig1) |0 < i<l —1,

(vi,vit1) € E(G)}U{oo});
o £2 = min ({f(v,-+17 V)10 <i<t—1,(vis vi) € E(G)}

Ufec});

o ¢ =min{e1, e}

@ Update f as follows:

(] IC(V,‘7 V,'+1) = f”(V,'7 V,'+1) +e€ for all i € {O, N ,Z — 1} such that
(vi, vit1) € E(G);

o f(Vig1,vi) := f(Vig1,vi) —e for all i € {0,...,¢ — 1} such that
(V,'+1, V,') S E(G)

© Return f.

Find a maximum flow and an a cut of minimum capacity in the
network represented in the figure above.

We now iterate several times.

(1) We find an augmenting path s, v, t, we get ¢ = 1, and we
update f as in the picture below.

(2) We find an augmenting path s, u, t, we get ¢ = 1, and we
update f as in the picture below.

(3) We find a cut S({s, u, v}, {w, t}) = {(u, t), (v, t)} of capacity
is 2, which is precisely equal to val(f).

@ The flow f (blue) is a maximum flow.

e The cut S({s,u,v},{w,t}) = {(u,t), (v, t)} is a minimum
capacity cut.

