# NDMI011: Combinatorics and Graph Theory 1 

## Lecture \#6

Flows and cuts in networks

Irena Penev

November 2, 2020

## Definition

A network is an ordered four-tuple ( $G, s, t, c$ ), where $G$ is an oriented graph, $s$ and $t$ are two distinct vertices of this graph (called the source and sink, respectively), and $c: E(G) \rightarrow[0,+\infty)$ is a function, called the capacity function. The capacity of an edge $e \in E(G)$ is the number $c(e)$.


## Definition

A network is an ordered four-tuple ( $G, s, t, c$ ), where $G$ is an oriented graph, $s$ and $t$ are two distinct vertices of this graph (called the source and sink, respectively), and $c: E(G) \rightarrow[0,+\infty)$ is a function, called the capacity function. The capacity of an edge $e \in E(G)$ is the number $c(e)$.


- Networks can be used to model, for example, a system of pipes used to transport some resource, such as water or oil; capacities would be the number of units of volume that a given pipe can transport per unit time.


## Definition

A feasible flow (or simply flow) in a network ( $G, s, t, c$ ) is a function $f: E(G) \rightarrow[0,+\infty)$ s.t.:

- $f(e) \leq c(e)$ for all $e \in E(G)$;
- for all $v \in V(G) \backslash\{s, t\}$, we have

$$
\sum_{(x, v) \in E(G)} f(x, v)=\sum_{(v, y) \in E(G)} f(v, y) .
$$



## Definition

The value of a flow $f$ in a network $(G, s, t, c)$ is

$$
\operatorname{val}(f)=\left(\sum_{(s, x) \in E(G)} f(s, x)\right)-\left(\sum_{(x, s) \in E(G)} f(x, s)\right) .
$$

A maximum flow in $(G, s, t, c)$ is a flow $f^{*}$ that has maximum value, i.e. one that satisfies $\operatorname{val}(f) \leq \operatorname{val}\left(f^{*}\right)$ for all flows $f$.


- The value of the flow above is $\pi+6-\frac{1}{2}=\frac{11}{2}+\pi$.


## Theorem 1.1

Every network ( $G, s, t, c$ ) has a maximum flow.
Proof. Omitted.

## Theorem 1.1

Every network ( $G, s, t, c$ ) has a maximum flow.
Proof. Omitted.

- Theorem 1.1 should seem plausible, but the proof is not obvious (since the number of flows is, typically, infinite).
- The proof relies on certain results from analysis, which we omit.


## Definition

An $s, t$-cut, or simply cut, in a network ( $G, s, t, c$ ) is a set $R \subseteq E(G)$ such that $G \backslash R$ contains no directed path from $s$ to $t$. The capacity of the cut $R$ is $c(R)=\sum_{e \in R} c(e)$.


Max-flow min-cut theorem
The maximum value of a flow in a network is equal to the minimum capacity of a cut in that network.

- For a network ( $G, s, t, c$ ), a flow $f$ in that network, and a set of edges $R \subseteq E(G)$, we write

$$
c(R)=\sum_{e \in R} c(e) \quad \text { and } \quad f(R)=\sum_{e \in R} f(e) .
$$

- For a network ( $G, s, t, c$ ), a flow $f$ in that network, and a set of edges $R \subseteq E(G)$, we write

$$
c(R)=\sum_{e \in R} c(e) \quad \text { and } \quad f(R)=\sum_{e \in R} f(e) .
$$

- For a directed graph $G$ and disjoint sets $A, B \subseteq V(G)$, we set $S(A, B)=\{(a, b) \in E(G) \mid a \in A, b \in B\}$.

- For a network ( $G, s, t, c$ ), a flow $f$ in that network, and a set of edges $R \subseteq E(G)$, we write

$$
c(R)=\sum_{e \in R} c(e) \quad \text { and } \quad f(R)=\sum_{e \in R} f(e) .
$$

- For a directed graph $G$ and disjoint sets $A, B \subseteq V(G)$, we set $S(A, B)=\{(a, b) \in E(G) \mid a \in A, b \in B\}$.

- For a network ( $G, s, t, c$ ), disjoint sets $A, B \subseteq V(G)$, and a flow $f$, we write

$$
c(A, B)=c(S(A, B)) \quad \text { and } \quad f(A, B)=f(S(A, B))
$$

## Proposition 2.1

Let $(G, s, t, c)$ be a network, and let $(A, B)$ be a partition of $V(G)$ such that $s \in A$ and $t \in B$. Then $S(A, B)$ is a cut in $(G, s, t, c)$.

Proof. Lecture Notes.


## Proposition 2.2

Let ( $G, s, t, c$ ) be a network, and let $R$ be a cut in this network. Then there exists a partition $(A, B)$ of $V(G)$ such that $s \in A$, $t \in B$, and $S(A, B) \subseteq R$.


## Proposition 2.2

Let ( $G, s, t, c$ ) be a network, and let $R$ be a cut in this network. Then there exists a partition $(A, B)$ of $V(G)$ such that $s \in A$, $t \in B$, and $S(A, B) \subseteq R$.


Proof (outline). Let $A$ be the set of all vertices $v \in V(G)$ such that $G \backslash R$ contains a directed path from $s$ to $v$, and set $B=V(G) \backslash A$.

## Lemma 2.3

Let $f$ be a flow in a network $(G, s, t, c)$, and let $(A, B)$ be a partition of $V(G)$ such that $s \in A$ and $t \in B$. Then $\operatorname{val}(f)=f(A, B)-f(B, A)$. In particular, ${ }^{a}$ we have that

$$
\operatorname{val}(f)=\left(\sum_{(x, t) \in E(G)} f(x, t)\right)-\left(\sum_{(t, x) \in E(G)} f(t, x)\right) .
$$

${ }^{\text {a }}$ This happens if we take $A=V(G) \backslash\{t\}$ and $B=\{t\}$.
Proof. Lecture Notes.


## Corollary 2.4

Let $f$ be a flow in a network $(G, s, t, c)$, and let $R$ be a cut. Then $\operatorname{val}(f) \leq c(R)$.

Proof.

## Corollary 2.4

Let $f$ be a flow in a network $(G, s, t, c)$, and let $R$ be a cut. Then $\operatorname{val}(f) \leq c(R)$.

Proof. By Proposition 2.2, there exists a partition $(A, B)$ of $V(G)$ such that $s \in A, t \in B$, and $S(A, B) \subseteq R$.

## Corollary 2.4

Let $f$ be a flow in a network $(G, s, t, c)$, and let $R$ be a cut. Then $\operatorname{val}(f) \leq c(R)$.

Proof. By Proposition 2.2, there exists a partition $(A, B)$ of $V(G)$ such that $s \in A, t \in B$, and $S(A, B) \subseteq R$.

## Corollary 2.4

Let $f$ be a flow in a network $(G, s, t, c)$, and let $R$ be a cut. Then $\operatorname{val}(f) \leq c(R)$.

Proof. By Proposition 2.2, there exists a partition $(A, B)$ of $V(G)$ such that $s \in A, t \in B$, and $S(A, B) \subseteq R$. Then

$$
\begin{array}{rlrl}
\operatorname{val}(f) & =f(A, B)-f(B, A) & & \text { by Lemma } 2.3 \\
& \leq f(A, B) & & \text { because } f(e) \geq 0 \forall e \in E(G) \\
& \leq c(A, B) & & \text { because } f(e) \leq c(e) \forall e \in E( \\
& \leq c(R) & & \\
& & \text { because } S(A, B) \subseteq R \text { and } \\
& & \text { and } c(e) \geq 0 \forall e \in E(G)
\end{array}
$$

which is what we needed to show.

## Definition

An $(s, t)$-path in a network $(G, s, t, c)$ is a sequence $v_{0}, v_{1}, \ldots, v_{\ell}$ of vertices of $G$ such that $v_{0}=s, v_{\ell}=t$, and for all $i \in\{0, \ldots, \ell-1\}$, we have that one of $\left(v_{i}, v_{i+1}\right)$ and $\left(v_{i+1}, v_{i}\right)$ belongs to $E(G)$.


## Definition

Given a flow $f$ in the network ( $G, s, t, c$ ), an ( $s, t$ )-path $v_{0}, v_{1}, \ldots, v_{\ell}$ in ( $G, s, t, c$ ) is said to be an $f$-augmenting path if the following two conditions are satisfied:

- for all $i \in\{1, \ldots, \ell-1\}$ such that $\left(v_{i}, v_{i+1}\right) \in E(G)$, we have that $f\left(v_{i}, v_{i+1}\right)<c\left(v_{i}, v_{i+1}\right)$;
- for all $i \in\{1, \ldots, \ell-1\}$ such that $\left(v_{i+1}, v_{i}\right) \in E(G)$, we have that $f\left(v_{i+1}, v_{i}\right)>0$.



## Lemma 2.5

Let $f$ be a flow in a network ( $G, s, t, c$ ). Then $f$ is a maximum flow if and only if there does not exist an $f$-augmenting path in ( $G, s, t, c$ ). Furthermore, if $f$ is a maximum flow, then there exists a cut $R$ in $(G, s, t, c)$ such that $\operatorname{val}(f)=c(R)$.

Proof.

## Lemma 2.5

Let $f$ be a flow in a network ( $G, s, t, c$ ). Then $f$ is a maximum flow if and only if there does not exist an $f$-augmenting path in $(G, s, t, c)$. Furthermore, if $f$ is a maximum flow, then there exists a cut $R$ in $(G, s, t, c)$ such that $\operatorname{val}(f)=c(R)$.

Proof. It suffices the prove the following two statements:
(a) If there exists an $f$-augmenting path in $(G, s, t, c)$, then $f$ is not a maximum flow in ( $G, s, t, c$ ).
(b) If there does not exist an $f$-augmenting path in $(G, s, t, c)$, then $f$ is a maximum flow in ( $G, s, t, c$ ), and furthermore, there exists a cut $R$ in $(G, s, t, c)$ such that $v a l(f)=c(R)$.
(a) If there exists an $f$-augmenting path in $(G, s, t, c)$, then $f$ is not a maximum flow in ( $G, s, t, c$ ).
Proof of (a). Suppose that $v_{0}, \ldots, v_{\ell}$ (with $v_{0}=s$ and $v_{\ell}=t$ ) an $f$-augmenting path in $(G, s, t, c)$.
(a) If there exists an $f$-augmenting path in $(G, s, t, c)$, then $f$ is not a maximum flow in $(G, s, t, c)$.
Proof of (a). Suppose that $v_{0}, \ldots, v_{\ell}$ (with $v_{0}=s$ and $v_{\ell}=t$ ) an $f$-augmenting path in $(G, s, t, c)$. Now, set

```
- \(\varepsilon_{1}=\min \left(\left\{c\left(v_{i}, v_{i+1}\right)-f\left(v_{i}, v_{i+1}\right) \mid 0 \leq i \leq \ell-1\right.\right.\), \(\left.\left.\left(v_{i}, v_{i+1}\right) \in E(G)\right\} \cup\{\infty\}\right)\);
- \(\varepsilon_{2}=\min \left(\left\{f\left(v_{i+1}, v_{i}\right) \mid 0 \leq i \leq \ell-1,\left(v_{i+1}, v_{i}\right) \in E(G)\right\}\right.\) \(\cup\{\infty\})\);
```

- $\varepsilon=\min \left\{\varepsilon_{1}, \varepsilon_{2}\right\}$.


We now define a new flow $f^{\prime}$ as follows:

- $f^{\prime}\left(v_{i}, v_{i+1}\right)=f\left(v_{i}, v_{i+1}\right)+\varepsilon$ for all $i \in\{0, \ldots, \ell-1\}$ such that $\left(v_{i}, v_{i+1}\right) \in E(G)$;
- $f^{\prime}\left(v_{i+1}, v_{i}\right)=f\left(v_{i+1}, v_{i}\right)-\varepsilon$ for all $i \in\{0, \ldots, \ell-1\}$ such that $\left(v_{i+1}, v_{i}\right) \in E(G)$;
- $f^{\prime}(e)=f(e)$ for all other edges $e$.


We now define a new flow $f^{\prime}$ as follows:

- $f^{\prime}\left(v_{i}, v_{i+1}\right)=f\left(v_{i}, v_{i+1}\right)+\varepsilon$ for all $i \in\{0, \ldots, \ell-1\}$ such that $\left(v_{i}, v_{i+1}\right) \in E(G)$;
- $f^{\prime}\left(v_{i+1}, v_{i}\right)=f\left(v_{i+1}, v_{i}\right)-\varepsilon$ for all $i \in\{0, \ldots, \ell-1\}$ such that $\left(v_{i+1}, v_{i}\right) \in E(G)$;
- $f^{\prime}(e)=f(e)$ for all other edges $e$.


Then $\operatorname{val}(f)<\operatorname{val}\left(f^{\prime}\right)$, and so $f$ is not a maximum flow. This proves (a).
(b) If there does not exist an $f$-augmenting path in $(G, s, t, c)$, then $f$ is a maximum flow in ( $G, s, t, c$ ), and furthermore, there exists a cut $R$ in $(G, s, t, c)$ such that val $(f)=c(R)$.

Proof of (b). Suppose that ( $G, s, t, c$ ) does not admit an $f$-augmenting path.
(b) If there does not exist an $f$-augmenting path in $(G, s, t, c)$, then $f$ is a maximum flow in ( $G, s, t, c$ ), and furthermore, there exists a cut $R$ in $(G, s, t, c)$ such that val $(f)=c(R)$.

Proof of (b). Suppose that ( $G, s, t, c$ ) does not admit an $f$-augmenting path. Let $A$ to be the set of all vertices $v \in V(G)$ such that there exists an $f$-augmenting path from $s$ to $v$. Let $B=V(G) \backslash A$.
(b) If there does not exist an $f$-augmenting path in $(G, s, t, c)$, then $f$ is a maximum flow in ( $G, s, t, c$ ), and furthermore, there exists a cut $R$ in $(G, s, t, c)$ such that $v a l(f)=c(R)$.

Proof of (b). Suppose that ( $G, s, t, c$ ) does not admit an $f$-augmenting path. Let $A$ to be the set of all vertices $v \in V(G)$ such that there exists an $f$-augmenting path from $s$ to $v$. Let $B=V(G) \backslash A$. Clearly, $s \in A$ and $t \notin A$.
(b) If there does not exist an $f$-augmenting path in $(G, s, t, c)$, then $f$ is a maximum flow in ( $G, s, t, c$ ), and furthermore, there exists a cut $R$ in $(G, s, t, c)$ such that val $(f)=c(R)$.

Proof of (b). Suppose that ( $G, s, t, c$ ) does not admit an $f$-augmenting path. Let $A$ to be the set of all vertices $v \in V(G)$ such that there exists an $f$-augmenting path from $s$ to $v$. Let $B=V(G) \backslash A$. Clearly, $s \in A$ and $t \notin A$. Then $f(A, B)=c(A, B)$ and $f(B, A)=0$, and so

$$
\begin{array}{rlrl}
\operatorname{val}(f) & =f(A, B)-f(B, A) & & \text { by Lemma } 2.3 \\
& =c(A, B) & & \text { because } f(A, B)=c(A, B) \\
& & \text { and } f(B, A)=0
\end{array}
$$

(b) If there does not exist an $f$-augmenting path in $(G, s, t, c)$, then $f$ is a maximum flow in ( $G, s, t, c$ ), and furthermore, there exists a cut $R$ in $(G, s, t, c)$ such that val $(f)=c(R)$.

Proof of (b). Suppose that ( $G, s, t, c$ ) does not admit an $f$-augmenting path. Let $A$ to be the set of all vertices $v \in V(G)$ such that there exists an $f$-augmenting path from $s$ to $v$. Let $B=V(G) \backslash A$. Clearly, $s \in A$ and $t \notin A$. Then $f(A, B)=c(A, B)$ and $f(B, A)=0$, and so

$$
\begin{array}{rlrl}
\operatorname{val}(f) & =f(A, B)-f(B, A) & & \text { by Lemma } 2.3 \\
& =c(A, B) & & \text { because } f(A, B)=c(A, B) \\
& & \text { and } f(B, A)=0
\end{array}
$$

It now follows from Corollary 2.4 that $f$ is a maximum flow in ( $G, s, t, c$ ).
(b) If there does not exist an $f$-augmenting path in $(G, s, t, c)$, then $f$ is a maximum flow in $(G, s, t, c)$, and furthermore, there exists a cut $R$ in $(G, s, t, c)$ such that $v a l(f)=c(R)$.

Proof of (b). Suppose that ( $G, s, t, c$ ) does not admit an $f$-augmenting path. Let $A$ to be the set of all vertices $v \in V(G)$ such that there exists an $f$-augmenting path from $s$ to $v$. Let $B=V(G) \backslash A$. Clearly, $s \in A$ and $t \notin A$. Then $f(A, B)=c(A, B)$ and $f(B, A)=0$, and so

$$
\begin{array}{rlrl}
\operatorname{val}(f) & =f(A, B)-f(B, A) & & \text { by Lemma } 2.3 \\
& =c(A, B) & & \text { because } f(A, B)=c(A, B) \\
& & \text { and } f(B, A)=0
\end{array}
$$

It now follows from Corollary 2.4 that $f$ is a maximum flow in ( $G, s, t, c$ ). Furthermore, by Proposition 2.1, we know that $R:=S(A, B)$ is a cut, and by what we just showed, $\operatorname{val}(f)=c(A, B)=c(R)$.

## Max-flow min-cut theorem

The maximum value of a flow in a network is equal to the minimum capacity of a cut in that network.

Proof. Let ( $G, s, t, c$ ) be a network, and let $f$ be a maximum flow in it (the existence of such a flow is guaranteed by Theorem 1.1). By Lemma 2.5, there exists a cut $R$ in $(G, s, t, c)$ such that $\operatorname{val}(f)=c(R)$. Furthermore, for any cut $R^{\prime}$ in $(G, s, t, c)$, Corollary 2.4 guarantees that val $(f) \leq c\left(R^{\prime}\right)$, and consequently, $c(R) \leq c\left(R^{\prime}\right)$; thus, $R$ is a cut of minimum capacity in $(G, s, t, c)$.

- Our next goal is to show how to find a maximum flow and a minimum cut in a network.
- Our next goal is to show how to find a maximum flow and a minimum cut in a network.
- The idea is to repeatedly find augmenting paths and update the flow (increasing its value).
- Our next goal is to show how to find a maximum flow and a minimum cut in a network.
- The idea is to repeatedly find augmenting paths and update the flow (increasing its value).
- When no augmenting path exists, we instead find a cut whose capacity is equal to the value of our flow, which (by Corollary 2.4 ) guarantees that this cut is of minimum capacity.

Suppose that $f$ is a flow in a network ( $G, s, t, c$ ). We now either find an $f$-augmenting path in ( $G, s, t, c$ ), or we find a cut whose capacity is val $(f)$, as follows:
(1) Set $A:=\{s\}$.
(2) While $t \notin A$ :
(1) Either find vertices $x \in A$ and $y \in V(G) \backslash A$ such that

- $(x, y) \in E(G)$ and $f(x, y)<c(x, y)$, or
- $(y, x) \in E(G)$ and $f(y, x)>0$,
or determine that such $x$ and $y$ do not exist.
(2) If we found $x$ and $y$, then we set $\operatorname{backpoint}(y)=x$, and we update $A:=A \cup\{y\}$.
(3) Otherwise, we stop and return the cut $S(A, V(G) \backslash A)$. ${ }^{1}$
(3) Construct an $f$-augmenting path by following backpoints starting from $t$, and return this path.

[^0]

## Example 3.1

Consider the flow $f$ in the network ( $G, s, t, c$ ) as in the figure above. Either find an $f$-augmenting path, or find a cut whose capacity is val( $f$ ).


Solution. We begin with $A=\{s\}$. We now iterate several times.


Solution. We begin with $A=\{s\}$. We now iterate several times.
(1) We select $s \in A$ and $u \in V(G) \backslash A$, and we set $A:=\{s, u\}$ and $\operatorname{backpoint}(u)=s$.


Solution. We begin with $A=\{s\}$. We now iterate several times.
(1) We select $s \in A$ and $u \in V(G) \backslash A$, and we set $A:=\{s, u\}$ and $\operatorname{backpoint}(u)=s$.
(2) We select $s \in A$ and $w \in V(G) \backslash A$, and we set $A:=\{s, u, w\}$ and backpoint $(w)=s$.


Solution. We begin with $A=\{s\}$. We now iterate several times.
(1) We select $s \in A$ and $u \in V(G) \backslash A$, and we set $A:=\{s, u\}$ and $\operatorname{backpoint}(u)=s$.
(2) We select $s \in A$ and $w \in V(G) \backslash A$, and we set $A:=\{s, u, w\}$ and backpoint $(w)=s$.
(3) We select $u \in A$ and $v \in V(G) \backslash A$, and we set $A:=\{s, u, w, v\}$ and backpoint $(v)=u$.


Solution. We begin with $A=\{s\}$. We now iterate several times.
(1) We select $s \in A$ and $u \in V(G) \backslash A$, and we set $A:=\{s, u\}$ and $\operatorname{backpoint}(u)=s$.
(2) We select $s \in A$ and $w \in V(G) \backslash A$, and we set $A:=\{s, u, w\}$ and backpoint $(w)=s$.
(3) We select $u \in A$ and $v \in V(G) \backslash A$, and we set $A:=\{s, u, w, v\}$ and $\operatorname{backpoint}(v)=u$.
(9) We select $v \in A$ and $t \in V(G) \backslash A$, and we set $A:=\{s, u, w, v, t\}$ and $\operatorname{backpoint}(t)=v$.


Solution. We begin with $A=\{s\}$. We now iterate several times.
(1) We select $s \in A$ and $u \in V(G) \backslash A$, and we set $A:=\{s, u\}$ and $\operatorname{backpoint}(u)=s$.
(2) We select $s \in A$ and $w \in V(G) \backslash A$, and we set $A:=\{s, u, w\}$ and backpoint $(w)=s$.
(3) We select $u \in A$ and $v \in V(G) \backslash A$, and we set $A:=\{s, u, w, v\}$ and $\operatorname{backpoint}(v)=u$.
(3) We select $v \in A$ and $t \in V(G) \backslash A$, and we set $A:=\{s, u, w, v, t\}$ and backpoint $(t)=v$.
We now reconstruct our $f$-augmenting path: $s, u, v, t$. (It is easy to see that this really is an $f$-augmenting path.)


## Example 3.2

Consider the flow $f$ in the network ( $G, s, t, c$ ) as in the figure above. Either find an $f$-augmenting path, or find a cut whose capacity is val( $f$ ).


Solution. We begin with $A=\{s\}$. We now iterate several times.


Solution. We begin with $A=\{s\}$. We now iterate several times.
(1) We select $s \in A$ and $u \in V(G) \backslash A$, and we set $A:=\{s, u\}$ and $\operatorname{backpoint}(u)=s$.


Solution. We begin with $A=\{s\}$. We now iterate several times.
(1) We select $s \in A$ and $u \in V(G) \backslash A$, and we set $A:=\{s, u\}$ and $\operatorname{backpoint}(u)=s$.
(2) We select $s \in A$ and $v \in V(G) \backslash A$, and we set $A:=\{s, u, v\}$ and $\operatorname{backpoint}(v)=s$.


Solution. We begin with $A=\{s\}$. We now iterate several times.
(1) We select $s \in A$ and $u \in V(G) \backslash A$, and we set $A:=\{s, u\}$ and $\operatorname{backpoint}(u)=s$.
(2) We select $s \in A$ and $v \in V(G) \backslash A$, and we set $A:=\{s, u, v\}$ and $\operatorname{backpoint}(v)=s$.
There are now no further vertices that we can select, and $t \notin A$. We now see that $S(A, V(G) \backslash A)=\{(u, t),(v, t)\}$ is a cut whose capacity is 2 , which is precisely equal to val $(f)$.

We now describe the Ford-Fulkerson algorithm, which finds a maximum flow in a network ( $G, s, t, c$ ). Its steps are as follows:
(1) Set $f(e):=0$ for all $e \in E(G)$.
(2) While there exists an $f$-augmenting path in the network:
(1) Find an $f$-augmenting path $v_{0}, \ldots, v_{\ell}$ (with $v_{0}=s$ and

$$
\left.v_{\ell}=t\right) .
$$

(2) Set

$$
\begin{aligned}
& \varepsilon_{1}=\min \left(\left\{c\left(v_{i}, v_{i+1}\right)-f\left(v_{i}, v_{i+1}\right) \mid 0 \leq i \leq \ell-1\right.\right. \\
& \left.\left.\left(v_{i}, v_{i+1}\right) \in E(G)\right\} \cup\{\infty\}\right) \\
& \quad \varepsilon_{2}=\min \left(\left\{f\left(v_{i+1}, v_{i}\right) \mid 0 \leq i \leq \ell-1,\left(v_{i+1}, v_{i}\right) \in E(G)\right\}\right. \\
& \cup\{\infty\}) \\
& \text { - } \varepsilon=\min \left\{\varepsilon_{1}, \varepsilon_{2}\right\}
\end{aligned}
$$

(3) Update $f$ as follows:

- $f\left(v_{i}, v_{i+1}\right):=f\left(v_{i}, v_{i+1}\right)+\varepsilon$ for all $i \in\{0, \ldots, \ell-1\}$ such that $\left(v_{i}, v_{i+1}\right) \in E(G)$;
- $f\left(v_{i+1}, v_{i}\right):=f\left(v_{i+1}, v_{i}\right)-\varepsilon$ for all $i \in\{0, \ldots, \ell-1\}$ such that $\left(v_{i+1}, v_{i}\right) \in E(G)$.
(3) Return $f$.



## Example 3.3

Find a maximum flow and an a cut of minimum capacity in the network represented in the figure above.


Solution. We first set $f(e)=0$ for all $e \in E(G)$.


We now iterate several times.

(1) We find an augmenting path $s, v, t$, we get $\varepsilon=1$, and we update $f$ as in the picture below.


(2) We find an augmenting path $s, u, t$, we get $\varepsilon=1$, and we update $f$ as in the picture below.


(3) We find a cut $S(\{s, u, v\},\{w, t\})=\{(u, t),(v, t)\}$ of capacity is 2 , which is precisely equal to $\operatorname{val}(f)$.



- The flow $f$ (blue) is a maximum flow.
- The cut $S(\{s, u, v\},\{w, t\})=\{(u, t),(v, t)\}$ is a minimum capacity cut.


[^0]:    ${ }^{1}$ In this case, an argument analogous to the proof of Lemma 2.5 guarantees that $c(A, V(G) \backslash A)=\operatorname{val}(f)$.

