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Definition
A network is an ordered four-tuple (G , s, t, c), where G is an
oriented graph, s and t are two distinct vertices of this graph
(called the source and sink, respectively), and c : E (G)→ [0,+∞)
is a function, called the capacity function. The capacity of an edge
e ∈ E (G) is the number c(e).
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Networks can be used to model, for example, a system of
pipes used to transport some resource, such as water or oil;
capacities would be the number of units of volume that a
given pipe can transport per unit time.
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Definition
A feasible flow (or simply flow) in a network (G , s, t, c) is a
function f : E (G)→ [0,+∞) s.t.:

f (e) ≤ c(e) for all e ∈ E (G);
for all v ∈ V (G) \ {s, t}, we have∑
(x ,v)∈E(G)

f (x , v) =
∑

(v ,y)∈E(G)
f (v , y).
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Definition
The value of a flow f in a network (G , s, t, c) is

val(f ) =
( ∑

(s,x)∈E(G)
f (s, x)

)
−
( ∑

(x ,s)∈E(G)
f (x , s)

)
.

A maximum flow in (G , s, t, c) is a flow f ∗ that has maximum
value, i.e. one that satisfies val(f ) ≤ val(f ∗) for all flows f .
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The value of the flow above is π + 6− 1
2 = 11

2 + π.



Theorem 1.1
Every network (G , s, t, c) has a maximum flow.

Proof. Omitted.

Theorem 1.1 should seem plausible, but the proof is not
obvious (since the number of flows is, typically, infinite).
The proof relies on certain results from analysis, which we
omit.
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Definition
An s, t-cut, or simply cut, in a network (G , s, t, c) is a set
R ⊆ E (G) such that G \ R contains no directed path from s to t.
The capacity of the cut R is c(R) =

∑
e∈R

c(e).

s t

Max-flow min-cut theorem
The maximum value of a flow in a network is equal to the
minimum capacity of a cut in that network.



For a network (G , s, t, c), a flow f in that network, and a set
of edges R ⊆ E (G), we write

c(R) =
∑

e∈R
c(e) and f (R) =

∑
e∈R

f (e).

For a directed graph G and disjoint sets A,B ⊆ V (G), we set
S(A,B) = {(a, b) ∈ E (G) | a ∈ A, b ∈ B}.
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For a network (G , s, t, c), disjoint sets A,B ⊆ V (G), and a
flow f , we write

c(A,B) = c(S(A,B)) and f (A,B) = f (S(A,B)).
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Proposition 2.1
Let (G , s, t, c) be a network, and let (A,B) be a partition of V (G)
such that s ∈ A and t ∈ B. Then S(A,B) is a cut in (G , s, t, c).

Proof. Lecture Notes.
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Proposition 2.2
Let (G , s, t, c) be a network, and let R be a cut in this network.
Then there exists a partition (A,B) of V (G) such that s ∈ A,
t ∈ B, and S(A,B) ⊆ R.
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Proof (outline). Let A be the set of all vertices v ∈ V (G) such that
G \ R contains a directed path from s to v , and set B = V (G) \A.
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Lemma 2.3
Let f be a flow in a network (G , s, t, c), and let (A,B) be a
partition of V (G) such that s ∈ A and t ∈ B. Then
val(f ) = f (A,B)− f (B,A). In particular,a we have that

val(f ) =
( ∑

(x ,t)∈E(G)
f (x , t)

)
−
( ∑

(t,x)∈E(G)
f (t, x)

)
.

aThis happens if we take A = V (G) \ {t} and B = {t}.

Proof. Lecture Notes.
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Corollary 2.4
Let f be a flow in a network (G , s, t, c), and let R be a cut. Then
val(f ) ≤ c(R).

Proof.

By Proposition 2.2, there exists a partition (A,B) of V (G)
such that s ∈ A, t ∈ B, and S(A,B) ⊆ R. Then

val(f ) = f (A,B)− f (B,A) by Lemma 2.3

≤ f (A,B) because f (e) ≥ 0 ∀e ∈ E (G)

≤ c(A,B) because f (e) ≤ c(e) ∀e ∈ E (G)

≤ c(R) because S(A,B) ⊆ R and
and c(e) ≥ 0 ∀e ∈ E (G)

which is what we needed to show.
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Definition
An (s, t)-path in a network (G , s, t, c) is a sequence v0, v1, . . . , v`

of vertices of G such that v0 = s, v` = t, and for all
i ∈ {0, . . . , `− 1}, we have that one of (vi , vi+1) and (vi+1, vi )
belongs to E (G).

s t



Definition
Given a flow f in the network (G , s, t, c), an (s, t)-path
v0, v1, . . . , v` in (G , s, t, c) is said to be an f -augmenting path if
the following two conditions are satisfied:

for all i ∈ {1, . . . , `− 1} such that (vi , vi+1) ∈ E (G), we have
that f (vi , vi+1) < c(vi , vi+1);
for all i ∈ {1, . . . , `− 1} such that (vi+1, vi ) ∈ E (G), we have
that f (vi+1, vi ) > 0.
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Lemma 2.5
Let f be a flow in a network (G , s, t, c). Then f is a maximum
flow if and only if there does not exist an f -augmenting path in
(G , s, t, c). Furthermore, if f is a maximum flow, then there exists
a cut R in (G , s, t, c) such that val(f ) = c(R).

Proof.

It suffices the prove the following two statements:
(a) If there exists an f -augmenting path in (G , s, t, c), then f is

not a maximum flow in (G , s, t, c).
(b) If there does not exist an f -augmenting path in (G , s, t, c),

then f is a maximum flow in (G , s, t, c), and furthermore,
there exists a cut R in (G , s, t, c) such that val(f ) = c(R).
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(a) If there exists an f -augmenting path in (G , s, t, c), then f is
not a maximum flow in (G , s, t, c).

Proof of (a). Suppose that v0, . . . , v` (with v0 = s and v` = t) an
f -augmenting path in (G , s, t, c).

Now, set
ε1 = min

(
{c(vi , vi+1)− f (vi , vi+1) | 0 ≤ i ≤ `− 1,

(vi , vi+1) ∈ E (G)} ∪ {∞}
)

;

ε2 = min
(
{f (vi+1, vi ) | 0 ≤ i ≤ `− 1, (vi+1, vi ) ∈ E (G)}

∪{∞}
)

;
ε = min{ε1, ε2}.
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We now define a new flow f ′ as follows:
f ′(vi , vi+1) = f (vi , vi+1) + ε for all i ∈ {0, . . . , `− 1} such
that (vi , vi+1) ∈ E (G);
f ′(vi+1, vi ) = f (vi+1, vi )− ε for all i ∈ {0, . . . , `− 1} such
that (vi+1, vi ) ∈ E (G);
f ′(e) = f (e) for all other edges e.

s t
?+ ε ?− ε ?+ ε ?+ ε ?− ε ?− ε

Then val(f ) < val(f ′), and so f is not a maximum flow. This
proves (a).
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(b) If there does not exist an f -augmenting path in (G , s, t, c),
then f is a maximum flow in (G , s, t, c), and furthermore,
there exists a cut R in (G , s, t, c) such that val(f ) = c(R).

Proof of (b). Suppose that (G , s, t, c) does not admit an
f -augmenting path.

Let A to be the set of all vertices v ∈ V (G)
such that there exists an f -augmenting path from s to v . Let
B = V (G) \ A. Clearly, s ∈ A and t /∈ A. Then f (A,B) = c(A,B)
and f (B,A) = 0, and so

val(f ) = f (A,B)− f (B,A) by Lemma 2.3

= c(A,B) because f (A,B) = c(A,B)
and f (B,A) = 0

It now follows from Corollary 2.4 that f is a maximum flow in
(G , s, t, c). Furthermore, by Proposition 2.1, we know that
R := S(A,B) is a cut, and by what we just showed,
val(f ) = c(A,B) = c(R).
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Max-flow min-cut theorem
The maximum value of a flow in a network is equal to the
minimum capacity of a cut in that network.

Proof. Let (G , s, t, c) be a network, and let f be a maximum flow
in it (the existence of such a flow is guaranteed by Theorem 1.1).
By Lemma 2.5, there exists a cut R in (G , s, t, c) such that
val(f ) = c(R). Furthermore, for any cut R ′ in (G , s, t, c),
Corollary 2.4 guarantees that val(f ) ≤ c(R ′), and consequently,
c(R) ≤ c(R ′); thus, R is a cut of minimum capacity in (G , s, t, c).



Our next goal is to show how to find a maximum flow and a
minimum cut in a network.

The idea is to repeatedly find augmenting paths and update
the flow (increasing its value).
When no augmenting path exists, we instead find a cut whose
capacity is equal to the value of our flow, which (by
Corollary 2.4) guarantees that this cut is of minimum capacity.
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Suppose that f is a flow in a network (G , s, t, c). We now either
find an f -augmenting path in (G , s, t, c), or we find a cut whose
capacity is val(f ), as follows:

1 Set A := {s}.
2 While t /∈ A:

1 Either find vertices x ∈ A and y ∈ V (G) \ A such that
(x , y) ∈ E(G) and f (x , y) < c(x , y), or
(y , x) ∈ E(G) and f (y , x) > 0,

or determine that such x and y do not exist.
2 If we found x and y , then we set backpoint(y) = x , and we

update A := A ∪ {y}.
3 Otherwise, we stop and return the cut S(A,V (G) \ A).1

3 Construct an f -augmenting path by following backpoints
starting from t, and return this path.

1In this case, an argument analogous to the proof of Lemma 2.5 guarantees
that c(A, V (G) \ A) = val(f ).
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Example 3.1
Consider the flow f in the network (G , s, t, c) as in the figure
above. Either find an f -augmenting path, or find a cut whose
capacity is val(f ).



s t

u

v

w

0,2 1,1

1,2

3,3 3,3

0,1

1,1

Solution. We begin with A = {s}. We now iterate several times.

1 We select s ∈ A and u ∈ V (G) \ A, and we set A := {s, u}
and backpoint(u) = s.

2 We select s ∈ A and w ∈ V (G) \A, and we set A := {s, u,w}
and backpoint(w) = s.

3 We select u ∈ A and v ∈ V (G) \ A, and we set
A := {s, u,w , v} and backpoint(v) = u.

4 We select v ∈ A and t ∈ V (G) \ A, and we set
A := {s, u,w , v , t} and backpoint(t) = v .

We now reconstruct our f -augmenting path: s, u, v , t. (It is easy
to see that this really is an f -augmenting path.)
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Solution. We begin with A = {s}. We now iterate several times.
1 We select s ∈ A and u ∈ V (G) \ A, and we set A := {s, u}

and backpoint(u) = s.

2 We select s ∈ A and w ∈ V (G) \A, and we set A := {s, u,w}
and backpoint(w) = s.

3 We select u ∈ A and v ∈ V (G) \ A, and we set
A := {s, u,w , v} and backpoint(v) = u.

4 We select v ∈ A and t ∈ V (G) \ A, and we set
A := {s, u,w , v , t} and backpoint(t) = v .

We now reconstruct our f -augmenting path: s, u, v , t. (It is easy
to see that this really is an f -augmenting path.)
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Solution. We begin with A = {s}. We now iterate several times.
1 We select s ∈ A and u ∈ V (G) \ A, and we set A := {s, u}

and backpoint(u) = s.
2 We select s ∈ A and w ∈ V (G) \A, and we set A := {s, u,w}

and backpoint(w) = s.

3 We select u ∈ A and v ∈ V (G) \ A, and we set
A := {s, u,w , v} and backpoint(v) = u.

4 We select v ∈ A and t ∈ V (G) \ A, and we set
A := {s, u,w , v , t} and backpoint(t) = v .

We now reconstruct our f -augmenting path: s, u, v , t. (It is easy
to see that this really is an f -augmenting path.)



s t

u

v

w

0,2 1,1

1,2

3,3 3,3

0,1

1,1

Solution. We begin with A = {s}. We now iterate several times.
1 We select s ∈ A and u ∈ V (G) \ A, and we set A := {s, u}

and backpoint(u) = s.
2 We select s ∈ A and w ∈ V (G) \A, and we set A := {s, u,w}

and backpoint(w) = s.
3 We select u ∈ A and v ∈ V (G) \ A, and we set

A := {s, u,w , v} and backpoint(v) = u.

4 We select v ∈ A and t ∈ V (G) \ A, and we set
A := {s, u,w , v , t} and backpoint(t) = v .

We now reconstruct our f -augmenting path: s, u, v , t. (It is easy
to see that this really is an f -augmenting path.)
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Solution. We begin with A = {s}. We now iterate several times.
1 We select s ∈ A and u ∈ V (G) \ A, and we set A := {s, u}

and backpoint(u) = s.
2 We select s ∈ A and w ∈ V (G) \A, and we set A := {s, u,w}

and backpoint(w) = s.
3 We select u ∈ A and v ∈ V (G) \ A, and we set

A := {s, u,w , v} and backpoint(v) = u.
4 We select v ∈ A and t ∈ V (G) \ A, and we set

A := {s, u,w , v , t} and backpoint(t) = v .

We now reconstruct our f -augmenting path: s, u, v , t. (It is easy
to see that this really is an f -augmenting path.)
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Solution. We begin with A = {s}. We now iterate several times.
1 We select s ∈ A and u ∈ V (G) \ A, and we set A := {s, u}

and backpoint(u) = s.
2 We select s ∈ A and w ∈ V (G) \A, and we set A := {s, u,w}

and backpoint(w) = s.
3 We select u ∈ A and v ∈ V (G) \ A, and we set

A := {s, u,w , v} and backpoint(v) = u.
4 We select v ∈ A and t ∈ V (G) \ A, and we set

A := {s, u,w , v , t} and backpoint(t) = v .
We now reconstruct our f -augmenting path: s, u, v , t. (It is easy
to see that this really is an f -augmenting path.)
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Example 3.2
Consider the flow f in the network (G , s, t, c) as in the figure
above. Either find an f -augmenting path, or find a cut whose
capacity is val(f ).
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Solution. We begin with A = {s}. We now iterate several times.

1 We select s ∈ A and u ∈ V (G) \ A, and we set A := {s, u}
and backpoint(u) = s.

2 We select s ∈ A and v ∈ V (G) \ A, and we set A := {s, u, v}
and backpoint(v) = s.

There are now no further vertices that we can select, and t /∈ A.
We now see that S(A,V (G) \ A) = {(u, t), (v , t)} is a cut whose
capacity is 2, which is precisely equal to val(f ).



s t

u

v

w

1,2 0,1

1,2

0,3 0,3

1,1

1,1

Solution. We begin with A = {s}. We now iterate several times.
1 We select s ∈ A and u ∈ V (G) \ A, and we set A := {s, u}

and backpoint(u) = s.

2 We select s ∈ A and v ∈ V (G) \ A, and we set A := {s, u, v}
and backpoint(v) = s.

There are now no further vertices that we can select, and t /∈ A.
We now see that S(A,V (G) \ A) = {(u, t), (v , t)} is a cut whose
capacity is 2, which is precisely equal to val(f ).
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Solution. We begin with A = {s}. We now iterate several times.
1 We select s ∈ A and u ∈ V (G) \ A, and we set A := {s, u}

and backpoint(u) = s.
2 We select s ∈ A and v ∈ V (G) \ A, and we set A := {s, u, v}

and backpoint(v) = s.

There are now no further vertices that we can select, and t /∈ A.
We now see that S(A,V (G) \ A) = {(u, t), (v , t)} is a cut whose
capacity is 2, which is precisely equal to val(f ).
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Solution. We begin with A = {s}. We now iterate several times.
1 We select s ∈ A and u ∈ V (G) \ A, and we set A := {s, u}

and backpoint(u) = s.
2 We select s ∈ A and v ∈ V (G) \ A, and we set A := {s, u, v}

and backpoint(v) = s.
There are now no further vertices that we can select, and t /∈ A.
We now see that S(A,V (G) \ A) = {(u, t), (v , t)} is a cut whose
capacity is 2, which is precisely equal to val(f ).



We now describe the Ford-Fulkerson algorithm, which finds a
maximum flow in a network (G , s, t, c). Its steps are as follows:

1 Set f (e) := 0 for all e ∈ E (G).
2 While there exists an f -augmenting path in the network:

1 Find an f -augmenting path v0, . . . , v` (with v0 = s and
v` = t).

2 Set
ε1 = min

(
{c(vi , vi+1)− f (vi , vi+1) | 0 ≤ i ≤ `− 1,

(vi , vi+1) ∈ E(G)} ∪ {∞}
)

;

ε2 = min
(
{f (vi+1, vi) | 0 ≤ i ≤ `− 1, (vi+1, vi) ∈ E(G)}

∪{∞}
)

;
ε = min{ε1, ε2}.

3 Update f as follows:
f (vi , vi+1) := f (vi , vi+1) + ε for all i ∈ {0, . . . , `− 1} such that
(vi , vi+1) ∈ E(G);
f (vi+1, vi) := f (vi+1, vi)− ε for all i ∈ {0, . . . , `− 1} such that
(vi+1, vi) ∈ E(G).

3 Return f .
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Example 3.3
Find a maximum flow and an a cut of minimum capacity in the
network represented in the figure above.
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Solution. We first set f (e) = 0 for all e ∈ E (G).
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We now iterate several times.



s t

u

v

w

0,2 0,1

0,2

0,3 0,3

0,1

0,1

(1) We find an augmenting path s, v , t, we get ε = 1, and we
update f as in the picture below.
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(2) We find an augmenting path s, u, t, we get ε = 1, and we
update f as in the picture below.
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(3) We find a cut S({s, u, v}, {w , t}) = {(u, t), (v , t)} of capacity
is 2, which is precisely equal to val(f ).
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The flow f (blue) is a maximum flow.
The cut S({s, u, v}, {w , t}) = {(u, t), (v , t)} is a minimum
capacity cut.


