
NDMI011: Combinatorics and Graph Theory 1

Lecture #6

Flows and cuts in networks

Irena Penev

1 Network flows and cuts

A network is an ordered four-tuple (G, s, t, c), where G is an oriented graph,
s and t are two distinct vertices of this graph (called the source and sink,
respectively), and c : E(G) → [0,+∞) is a function, called the capacity
function (see Figure 1.1 for an example). The capacity of an edge e ∈ E(G)
is the number c(e).

Networks can be used to model, for example, a system of pipes used
to transport some resource, such as water or oil; capacities would be the
number of units of volume that a given pipe can transport per unit time.

A feasible flow (or simply flow) in a network (G, s, t, c) is a function
f : E(G)→ [0,+∞) that satisfies the following two properties (see Figure 1.2
for an example):

• f(e) ≤ c(e) for all e ∈ E(G);1

• for all v ∈ V (G) \ {s, t}, we have
∑

(x,v)∈E(G)

f(x, v) =
∑

(v,y)∈E(G)

f(v, y).2

The value of a flow f is

val(f) =
(∑

(s,x)∈E(G)

f(s, x)
)
−
(∑

(x,s)∈E(G)

f(x, s)
)
.

A maximum flow in (G, s, t, c) is a flow f∗ that has maximum value, i.e. one
that satisfies val(f) ≤ val(f∗) for all flows f .

Theorem 1.1. Every network (G, s, t, c) has a maximum flow.

1This means that flow cannot be higher than capacity.
2This means that, for each vertex other than the source and the sink, the in-flow is

equal to the out-flow. This condition is called the conservation of flow condition.

1

π

2π

6

2

1
2

3

5
4

9 6

8s t

Figure 1.1: A network with capacities in red.

π,π

π,2π

6,6

1
2 ,2

1
2 ,

1
2

1,3

9
2 ,5

7
2 ,4

√
2,9 π +

√
2,6

2−
√
2,8s t

Figure 1.2: A network flow. Flows are in blue and capacities are in red.

s t

Figure 1.3: A cut in a network. (The edges of the cut are in red.)

Proof. Omitted.

Theorem 1.1 should certainly seem plausible, and yet it is not entirely
obvious how one might prove it (since the number of flows is, typically,
infinite). The proof relies on certain results from analysis, which we omit.

An s, t-cut, or simply cut, in a network (G, s, t, c) is a set R ⊆ E(G)
such that G \R contains no directed path from s to t (see Figure 1.3 for an
example). The capacity of the cut R is c(R) =

∑
e∈R

c(e).

Our main theorem (proven in the next section) is the following.

Max-flow min-cut theorem. The maximum value of a flow in a network
is equal to the minimum capacity of a cut in that network.

2

s t

A

B

Figure 2.1: A cut S(A,B) in a network. (The edges of the cut are in red.)

2 Proof of the Max-flow min-cut theorem

We now need some terminology and notation. First, for a network (G, s, t, c),
a flow f in that network, and a set of edges R ⊆ E(G), we write

• c(R) =
∑
e∈R

c(e);

• f(R) =
∑
e∈R

f(e).

Next, for a directed graph G and disjoint sets A,B ⊆ V (G), we set

S(A,B) = {(a, b) ∈ E | a ∈ A, b ∈ B}.

Thus, S(A,B) is the set of all arcs from A to B (see Figure 2.1 for an
example).3

For a network (G, s, t, c), disjoint sets A,B ⊆ V (G), and a flow f , we
write

• c(A,B) = c(S(A,B));4

• f(A,B) = f(S(A,B)).

Proposition 2.1. Let (G, s, t, c) be a network, and let (A,B) be a partition
of V (G) such that s ∈ A and t ∈ B. Then S(A,B) is a cut in (G, s, t, c).

Proof. Let P = p0, p1, . . . , p`, with p0 = s and p` = t, be a directed path
in G. By hypothesis, p0 = s ∈ A and p` = t ∈ B; let i ∈ {0, . . . , ` − 1}
be maximum with the property that pi ∈ A. Then pi+1 ∈ B, and see that

3S(A,B) does not contain arcs from B to A!
4According to our notation, c(S(A,B)) =

∑
e∈S(A,B)

c(e), i.e. c(A,B) is the sum of

capacities of all the edges from A to B.

3

(pi, pi+1) ∈ S(A,B), i.e. the directed path P uses an edge of S(A,B). Since
the path P was chosen arbitrarily, it follows G \R contains no directed paths
from s to t, and so S(A,B) is indeed a cut of (G, s, t, c).

Proposition 2.2. Let (G, s, t, c) be a network, and let R be a cut in this
network. Then there exists a partition (A,B) of V (G) such that s ∈ A, t ∈ B,
and S(A,B) ⊆ R.5

Proof. Let A be the set of all vertices v ∈ V (G) such that G \ R contains
a directed path from s to v, and set B = V (G) \ A. Clearly, s ∈ A and
t ∈ B.6 We now claim that S(A,B) ⊆ R. Suppose otherwise, and fix an
edge (x, y) ∈ S(A,B) \R. (In particular, y ∈ B.) Let P = p0, . . . , p`, with
p0 = s and p` = x, be a directed path in G \ R. Since (x, y) /∈ R, we then
have that p0, . . . , p`, y is a directed path from s to y in G \ R, and so by
construction, we have that y ∈ A, contrary to the fact that y ∈ B.

Lemma 2.3. Let f be a flow in a network (G, s, t, c), and let (A,B) be a parti-
tion of V (G) such that s ∈ A and t ∈ B. Then val(f) = f(A,B)−f(B,A). In

particular,7 we have that val(f) =
(∑

(x,t)∈E(G)

f(x, t)
)
−
(∑

(t,x)∈E(G)

f(t, x)
)

.

Proof. By the definition of a flow, for all vertices v ∈ A \ {s}, we have that(∑
(v,x)∈E(G)

f(v, x)
)
−
(∑

(x,v)∈E(G)

f(x, v)
)

= 0,

and consequently,

∑
v∈A\{s}

((∑
(v,x)∈E(G)

f(v, x)
)
−
(∑

(x,v)∈E(G)

f(x, v)
))

= 0,

On the other hand, for the source s, we have that(∑
(s,x)∈E(G)

f(s, x)
)
−
(∑

(x,s)∈E(G)

f(x, s)
)

= val(f).

By adding the last two equalities, we get

∑
v∈A

((∑
(v,x)∈E(G)

f(v, x)
)
−
(∑

(x,v)∈E(G)

f(x, v)
))

= val(f).

5Note that this implies that c(A,B) ≤ c(R). Thus, our proof of the Max-flow min-cut
theorem, it will be enough to consider cuts of the form S(A,B), where (A,B) is a partition
of V (G), with s ∈ A and t ∈ B; cuts of this form are sometimes called elementary cuts.

6The fact that t /∈ A follows from the fact that R is a cut in (G, s, t, c), and so there
are no directed paths from s to t in G \R; so, t ∈ B.

7This happens if we take A = V (G) \ {t} and B = {t}.

4

Note that for each edge (u1, u2) ∈ E(G) such that u1, u2 ∈ A, the term
f(u1, u2) appears exactly twice in the sum above: once with the + sign,8

and one with the − sign.9 After we cancel out such terms, what remains is
precisely f(A,B)− f(B,A) = val(f), which is what we needed to show.

Corollary 2.4. Let f be a flow in a network (G, s, t, c), and let R be a cut.
Then val(f) ≤ c(R).

Proof. By Proposition 2.2, there exists a partition (A,B) of V (G) such that
s ∈ A, t ∈ B, and S(A,B) ⊆ R. Then

val(f) = f(A,B)− f(B,A) by Lemma 2.3

≤ f(A,B) because f(e) ≥ 0 for all e ∈ E(G)

≤ c(A,B) because f(e) ≤ c(e) for all e ∈ E(G)

≤ c(R) because S(A,B) ⊆ R and
and c(e) ≥ 0 for all e ∈ E(G)

which is what we needed to show.

We now introduce a key new concept: that of an “augmenting path.”
First, an (s, t)-path in a network (G, s, t, c) is a sequence v0, v1, . . . , v` of
vertices of G such that v0 = s, v` = t, and for all i ∈ {0, . . . , `− 1}, we have
that one of (vi, vi+1) and (vi+1, vi) belongs to E(G). Note that an (s, t)-path
may, but need not be, a directed (s, t)-path (see the figure below for an
example).

s t

Now, given a flow f in the network (G, s, t, c), an (s, t)-path v0, v1, . . . , v` in
(G, s, t, c) is said to be an f -augmenting path if the following two conditions
are satisfied (see Figure 2.2 for an example):

• for all i ∈ {1, . . . , ` − 1} such that (vi, vi+1) ∈ E(G), we have that
f(vi, vi+1) < c(vi, vi+1);

• for all i ∈ {1, . . . , ` − 1} such that (vi+1, vi) ∈ E(G), we have that
f(vi+1, vi) > 0.

8For this, we take v = u1, x = u2, and (v, x) ∈ E(G) to add f(u1, u2) (via the first
sum)

9For this, we take v = u2, x = u1, and (x, v) ∈ E(G) to subtract f(u1, u2) (via the
second sum).

5

π,π

π,2π

6,6

1
2 ,2

1
2 ,

1
2

1,3

9
2 ,5

7
2 ,4

√
2,9 π +

√
2,6

2−
√
2,8s t

Figure 2.2: An f -augmenting path (edges in blue) in a network (G, s, t, c).
(Flow is in blue and capacities are in red.)

Lemma 2.5. Let f be a flow in a network (G, s, t, c). Then f is a maximum
flow if and only if there does not exist an f-augmenting path in (G, s, t, c).
Furthermore, if f is a maximum flow, then there exists a cut R in (G, s, t, c)
such that val(f) = c(R).

Proof. It suffices the prove the following two statements:

(a) if there exists an f -augmenting path in (G, s, t, c), then f is not a
maximum flow in (G, s, t, c);

(b) if there does not exist an f -augmenting path in (G, s, t, c), then f is a
maximum flow in (G, s, t, c), and furthermore, there exists a cut R in
(G, s, t, c) such that val(f) = c(R).

We first prove (a). Suppose that v0, . . . , v` (with v0 = s and v` = t) an
f -augmenting path in (G, s, t, c). Now, set

• ε1 = min
(
{c(vi, vi+1)− f(vi, vi+1) | 0 ≤ i ≤ `− 1, (vi, vi+1) ∈ E(G)}∪

{∞}
)

;

• ε2 = min
(
{f(vi+1, vi) | 0 ≤ i ≤ `− 1, (vi+1, vi) ∈ E(G)} ∪ {∞}

)
;

• ε = min{ε1, ε2}.10

Since v0, . . . , v` is an f -augmenting path, we have that ε1, ε2 > 0, and
consequently, ε > 0. We now define a new flow f ′ as follows:

• f ′(vi, vi+1) = f(vi, vi+1)+ε for all i ∈ {0, . . . , `−1} such that (vi, vi+1) ∈
E(G);11

10The reason we have ∞ in the definition of ε1 and ε2 is because our f -augmenting path
may have only “with-the-flow” or only “against-the-flow” edges, and we cannot take the
minimum of an empty set. Note, however, that at least one of ε1 and ε2 is a real number
(and not ∞), and consequently, ε is a real number.

11So, for edges on our augmenting path directed with the flow, we increase the flow by ε.

6

• f ′(vi+1, vi) = f(vi+1, vi)−ε for all i ∈ {0, . . . , `−1} such that (vi+1, vi) ∈
E(G);12

• f ′(e) = f(e) for all other edges e.

It is easy to verify that f ′ is indeed a feasible flow.13 Furthermore, by
construction, val(f ′) = val(f) + ε, and so (since ε > 0) we have that
val(f ′) > val(f), and so f is not a maximum flow in (G, s, t, c).

It remains to prove (b). For this, we suppose that (G, s, t, c) does not
admit an f -augmenting path, and we show that f is a maximum flow. Let
A be the set of all vertices v ∈ V (G) such that there exists a path v0, . . . , v`
with v0 = s and v` = v, and satisfying the following properties:14

• for all i ∈ {1, . . . , ` − 1} such that (vi, vi+1) ∈ E(G), we have that
f(vi, vi+1) < c(vi, vi+1);

• for all i ∈ {1, . . . , ` − 1} such that (vi+1, vi) ∈ E(G), we have that
f(vi+1, vi) > 0.

Set B = V (G) \ A. Clearly, s ∈ A and t ∈ B.15 Further, for all x ∈ A and
y ∈ B,

• if (x, y) ∈ E(G), then f(x, y) = c(x, y), and

• if (y, x) ∈ E(G), then f(y, x) = 0.16

Note that this implies that f(A,B) = c(A,B) and f(B,A) = 0. But now we
have that

val(f) = f(A,B)− f(B,A) by Lemma 2.3

= c(A,B) because f(A,B) = c(A,B)
and f(B,A) = 0

It now follows from Corollary 2.4 that f is a maximum flow in (G, s, t, c).17

Furthermore, by Proposition 2.1, we know that R := S(A,B) is a cut, and
by what we just showed, val(f) = c(A,B) = c(R).

12So, for edges on our augmenting path directed against the flow, we decrease the flow
by ε.

13Check this!
14Essentially, but somewhat informally, we are choosing A to be the set of all vertices

v ∈ V (G) such that there exists an f -augmenting path from s to v.
15If we had t ∈ A, then by the construction of A, there would be an f -augmenting path

in (G, s, t, c).
16Otherwise, there would be an f -augmenting path from s to y, contrary to the fact

that y /∈ A.
17Indeed, suppose f ′ is any flow in (G, s, t, c). Then by Corollary 2.4, we have that

val(f ′) ≤ cap(A,B), and so by what we just showed, val(f ′) ≤ val(f).

7

We are now ready to prove the Max-flow min-cut theorem, restated below.

Max-flow min-cut theorem. The maximum value of a flow in a network
is equal to the minimum capacity of a cut in that network.

Proof. Let (G, s, t, c) be a network, and let f be a maximum flow in it (the
existence of such a flow is guaranteed by Theorem 1.1). By Lemma 2.5,
there exists a cut R in (G, s, t, c) such that val(f) = c(R). Furthermore,
for any cut R′ in (G, s, t, c), Corollary 2.4 guarantees that val(f) ≤ c(R′),
and consequently, c(R) ≤ c(R′); thus, R is a cut of minimum capacity in
(G, s, t, c).

3 The Ford-Fulkerson algorithm

The proof of Lemma 2.5 can easily be converted into an algorithm that finds
a maximum flow and a minimum capacity of a cut in an input network. The
idea is to repeatedly find augmenting paths and update the flow (increasing
its value). When no augmenting path exists, we instead find a cut whose
capacity is equal to the value of our flow, which (by Corollary 2.4) guarantees
that this cut is of minimum capacity.

Suppose that f is a flow in a network (G, s, t, c). We now either find an
f -augmenting path in (G, s, t, c), or we find a cut whose capacity is val(f),
as follows:

1. Set A := {s}.

2. While t /∈ A:

(a) Either find vertices x ∈ A and y ∈ V (G) \A such that

• (x, y) ∈ E(G) and f(x, y) < c(x, y), or

• (y, x) ∈ E(G) and f(y, x) > 0,

or determine that such x and y do not exist.

(b) If we found x and y, then we set backpoint(y) = x, and we update
A := A ∪ {y}.

(c) Otherwise, we stop and return the cut S(A, V (G) \A).18

3. Construct an f -augmenting path by following backpoints starting from
t, and return this path.

Example 3.1. Consider the flow f in the network (G, s, t, c) in Figure 3.1.
Either find an f -augmenting path, or find a cut whose capacity is val(f).

18In this case, an argument analogous to the proof of Lemma 2.5 guarantees that
c(A, V (G) \A) = val(f).

8

s t

u

v

w

0,2 1,1

1,2

3,3 3,3

0,1

1,1

Figure 3.1: The network and flow from Example 3.1. Flows are in blue and
capacities in red.

s t

u

v

w

1,2 0,1

1,2

0,3 0,3

1,1

1,1

Figure 3.2: The network and flow from Example 3.2. Flows are in blue and
capacities in red.

Solution. We begin with A = {s}. We now iterate several times.

1. We select s ∈ A and u ∈ V (G) \ A, and we set A := {s, u} and
backpoint(u) = s.

2. We select s ∈ A and w ∈ V (G) \ A, and we set A := {s, u, w} and
backpoint(w) = s.

3. We select u ∈ A and v ∈ V (G) \ A, and we set A := {s, u, w, v} and
backpoint(v) = u.

4. We select v ∈ A and t ∈ V (G) \A, and we set A := {s, u, w, v, t} and
backpoint(t) = v.

We now reconstruct our f -augmenting path: s, u, v, t. (It is easy to see that
this really is an f -augmenting path.)

Example 3.2. Consider the flow f in the network (G, s, t, c) in Figure 3.2.
Either find an f -augmenting path, or find a cut whose capacity is val(f).

Solution. We begin with A = {s}. We now iterate several times.

9

1. We select s ∈ A and u ∈ V (G) \ A, and we set A := {s, u} and
backpoint(u) = s.

2. We select s ∈ A and v ∈ V (G) \ A, and we set A := {s, u, v} and
backpoint(v) = s.

There are now no further vertices that we can select, and t /∈ A. We now see
that S(A, V (G) \ A) = {(u, t), (v, t)} is a cut whose capacity is 2, which is
precisely equal to val(f).

We now describe the Ford-Fulkerson algorithm, which finds a maximum
flow in a network (G, s, t, c). Its steps are as follows:

1. Set f(e) := 0 for all e ∈ E(G).

2. While there exists an f -augmenting path in the network:

(a) Find an f -augmenting path v0, . . . , v` (with v0 = s and v` = t).

(b) Set

• ε1 = min
(
{c(vi, vi+1)−f(vi, vi+1) | 0 ≤ i ≤ `−1, (vi, vi+1) ∈

E(G)} ∪ {∞}
)

;

• ε2 = min
(
{f(vi+1, vi) | 0 ≤ i ≤ ` − 1, (vi+1, vi) ∈ E(G)} ∪

{∞}
)

;

• ε = min{ε1, ε2}.
(c) Update f as follows:

• f(vi, vi+1) := f(vi, vi+1)+ε for all i ∈ {0, . . . , `−1} such that
(vi, vi+1) ∈ E(G);19

• f(vi+1, vi) := f(vi+1, vi)−ε for all i ∈ {0, . . . , `−1} such that
(vi+1, vi) ∈ E(G).20

3. Return f .

Example 3.3. Find a maximum flow and an a cut of minimum capacity in
the network represented in Figure 3.3.

Solution. We first set f(e) = 0 for all e ∈ E(G) (see the figure below, with
flow in blue and capacities in red).

19So, for edges on our augmenting path directed with the flow, we increase the flow by ε.
20So, for edges on our augmenting path directed against the flow, we decrease the flow

by ε.

10

s t

u

v

w

2 1

2

3 3

1

1

Figure 3.3: The network from Example 3.3.

s t

u

v

w

0,2 0,1

0,2

0,3 0,3

0,1

0,1

We now iterate several times.

1. We find an augmenting path s, v, t, we get ε = 1, and we update f as
in the picture below (flow in blue and capacities in red).

s t

u

v

w

0,2 0,1

1,2

0,3 0,3

1,1

0,1

2. We find an augmenting path s, u, t, we get ε = 1, and we update f as
in the picture below (flow in blue and capacities in red).

s t

u

v

w

1,2 0,1

1,2

0,3 0,3

1,1

1,1

11

3. We find a cut S({s, u, v}, {w, t}) = {(u, t), (v, t)} of capacity is 2, which
is precisely equal to val(f).

s t

u

v

w

1,2 0,1

1,2

0,3 0,3

1,1

1,1

The flow f is a maximum flow, and the cut S({s, u, v}, {w, t}) = {(u, t), (v, t)}
is a minimum capacity cut.

12

