NDMI011: Combinatorics and Graph Theory 1

Lecture \#5

Finite projective planes (part II)

Irena Penev

October 26, 2020

This lecture consists of three parts:

This lecture consists of three parts:
(1) A brief review of the previous lecture;

This lecture consists of three parts:
(1) A brief review of the previous lecture;
(2) A construction of a finite projective plane from orthogonal Latin squares;

This lecture consists of three parts:
(1) A brief review of the previous lecture;
(2) A construction of a finite projective plane from orthogonal Latin squares;
(3) An algebraic construction of a (not necessarily finite) projective plane.

Part I: A brief review of the previous lecture

Definition

A projective plane is a set system $(X, \mathcal{P})^{a}$ that satisfies the following three properties:
(PO) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| \leq 2$;
(P1) all distinct $P_{1}, P_{2} \in \mathcal{P}$ satisfy $\left|P_{1} \cap P_{2}\right|=1$;
(P2) for all distinct $x_{1}, x_{2} \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_{1}, x_{2} \in P$.
Elements of X are called points, and elements of \mathcal{P} are called lines of the projective plane (X, \mathcal{P}).
A projective plane (X, \mathcal{P}) is finite if X is finite.
${ }^{a}$ This means that X is a set and $\mathcal{P} \subseteq \mathscr{P}(X)$, where $\mathscr{P}(X)$ is the power set (i.e. the set of all subsets) of X.

Proposition 1.2 from Lecture Notes 4
Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Proposition 1.2 from Lecture Notes 4

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Definition

The order of a finite projective plane (X, \mathcal{P}) is the number $|P|-1$, where P is any line in $\mathcal{P} .{ }^{a}$
${ }^{a}$ So, if (X, \mathcal{P}) is a finite projective plane of order n, then each line in \mathcal{P} contains exactly $n+1$ points.

Proposition 1.2 from Lecture Notes 4

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Definition

The order of a finite projective plane (X, \mathcal{P}) is the number $|P|-1$, where P is any line in $\mathcal{P} .{ }^{a}$
${ }^{a}$ So, if (X, \mathcal{P}) is a finite projective plane of order n, then each line in \mathcal{P} contains exactly $n+1$ points.

- By Proposition 1.2 from Lecture Notes 4, this is well-defined.

Proposition 1.2 from Lecture Notes 4

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Definition

The order of a finite projective plane (X, \mathcal{P}) is the number $|P|-1$, where P is any line in $\mathcal{P} .{ }^{a}$
${ }^{a}$ So, if (X, \mathcal{P}) is a finite projective plane of order n, then each line in \mathcal{P} contains exactly $n+1$ points.

- By Proposition 1.2 from Lecture Notes 4, this is well-defined.

Proposition 1.3 from Lecture Notes 4

The order of any finite projective plane is at least two.

Theorem 1.4 from Lecture Notes 4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:
(a) for each point $x \in X$, exactly $n+1$ lines in \mathcal{P} pass through x;
(b) $|X|=n^{2}+n+1$;
(c) $|\mathcal{P}|=n^{2}+n+1$.

Part II: A construction of a finite projective plane from orthogonal Latin squares

Definition

For a positive integer n, an $n \times n$ Latin square is an $n \times n$ array (or matrix) whose entries are numbers $1, \ldots, n$, and in which each number $1, \ldots, n$ occurs exactly once in each row and in each column.

1	2	3
2	3	1
3	1	2

1	2	3
3	1	2
2	3	1

Figure: Two 3×3 Latin squares.

Definition

Two $n \times n$ Latin squares, say $\left[a_{i, j}\right]_{n \times n}$ and $\left[b_{i, j}\right]_{n \times n}$, are orthogonal if each entry of the matrix matrix obtained by superimposing A on B, i.e. of the matrix $\left[\left(a_{i, j}, b_{i, j}\right)\right]_{n \times n}$, is different.

- The red and the blue Latin square (below) are orthogonal.

1	2	3
2	3	1
3	1	2

1	2	3
3	1	2
2	3	1

$(1,1)$	$(2,2)$	$(3,3)$
$(2,3)$	$(3,1)$	$(1,2)$
$(3,2)$	$(1,3)$	$(2,1)$

Definition

Two $n \times n$ Latin squares, say $\left[a_{i, j}\right]_{n \times n}$ and $\left[b_{i, j}\right]_{n \times n}$, are orthogonal if each entry of the matrix matrix obtained by superimposing A on B, i.e. of the matrix $\left[\left(a_{i, j}, b_{i, j}\right)\right]_{n \times n}$, is different.

Definition

Two $n \times n$ Latin squares, say $\left[a_{i, j}\right]_{n \times n}$ and $\left[b_{i, j}\right]_{n \times n}$, are orthogonal if each entry of the matrix matrix obtained by superimposing A on B, i.e. of the matrix $\left[\left(a_{i, j}, b_{i, j}\right)\right]_{n \times n}$, is different.

- An $n \times n$ matrix has n^{2} entries.

Definition

Two $n \times n$ Latin squares, say $\left[a_{i, j}\right]_{n \times n}$ and $\left[b_{i, j}\right]_{n \times n}$, are orthogonal if each entry of the matrix matrix obtained by superimposing A on B, i.e. of the matrix $\left[\left(a_{i, j}, b_{i, j}\right)\right]_{n \times n}$, is different.

- An $n \times n$ matrix has n^{2} entries.
- The Cartesian product $\{1, \ldots, n\} \times\{1, \ldots, n\}$ has exactly n^{2} elements.

Definition

Two $n \times n$ Latin squares, say $\left[a_{i, j}\right]_{n \times n}$ and $\left[b_{i, j}\right]_{n \times n}$, are orthogonal if each entry of the matrix matrix obtained by superimposing A on B, i.e. of the matrix $\left[\left(a_{i, j}, b_{i, j}\right)\right]_{n \times n}$, is different.

- An $n \times n$ matrix has n^{2} entries.
- The Cartesian product $\{1, \ldots, n\} \times\{1, \ldots, n\}$ has exactly n^{2} elements.
- So, two $n \times n$ Latin squares are orthogonal if and only if each element of $\{1, \ldots, n\} \times\{1, \ldots, n\}$ appears exactly once in the matrix obtained by superimposing the two $n \times n$ Latin squares.
- For a positive integer n, a Latin square $A=\left[a_{i, j}\right]_{n \times n}$ and a permutation π of the set $\{1, \ldots, n\}$, we set $\pi(A)=\left[\pi\left(a_{i, j}\right)\right]_{n \times n}$; obviously, $\pi(A)$ is a Latin square.
- For example, if

and if $\pi=\left(\begin{array}{ccc}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right)$, then

Proposition 2.1

Let $A=\left[a_{i, j}\right]_{n \times n}$ and $B=\left[b_{i, j}\right]_{n \times n}$ be orthogonal $n \times n$ Latin squares, and let π_{A}, π_{B} be permutations of the set $\{1, \ldots, n\}$. Then $\pi_{A}(A)$ and $\pi_{B}(B)$ are orthogonal Latin squares.

Proof. Obvious.

Theorem 2.2

Let $n \geq 2$ be an integer, and let M be a set of pairwise orthogonal $n \times n$ Latin squares. Then $|M| \leq n-1$.

Theorem 2.2

Let $n \geq 2$ be an integer, and let M be a set of pairwise orthogonal $n \times n$ Latin squares. Then $|M| \leq n-1$.

Proof (outline). WMA $M \neq \emptyset$ (otherwise it's obvious).

Theorem 2.2

Let $n \geq 2$ be an integer, and let M be a set of pairwise orthogonal $n \times n$ Latin squares. Then $|M| \leq n-1$.

Proof (outline). WMA $M \neq \emptyset$ (otherwise it's obvious). Set $t=|M|$ and $M=\left\{A_{1}, \ldots, A_{t}\right\}$.WTS $t \leq n-1$.

For each $i \in\{1, \ldots, t\}$, we let π_{i} be the permutation of $\{1, \ldots, n\}$ that transforms the first row of A_{i} into $1, \ldots, n$, and let $A_{i}^{\prime}=\pi_{i}\left(A_{i}\right)$.

Theorem 2.2

Let $n \geq 2$ be an integer, and let M be a set of pairwise orthogonal $n \times n$ Latin squares. Then $|M| \leq n-1$.

Proof (outline). WMA $M \neq \emptyset$ (otherwise it's obvious). Set $t=|M|$ and $M=\left\{A_{1}, \ldots, A_{t}\right\}$.WTS $t \leq n-1$.

For each $i \in\{1, \ldots, t\}$, we let π_{i} be the permutation of $\{1, \ldots, n\}$ that transforms the first row of A_{i} into $1, \ldots, n$, and let $A_{i}^{\prime}=\pi_{i}\left(A_{i}\right)$. By Proposition 2.1, $A_{1}^{\prime}, \ldots, A_{t}^{\prime}$ are pairwise orthogonal.

Theorem 2.2

Let $n \geq 2$ be an integer, and let M be a set of pairwise orthogonal $n \times n$ Latin squares. Then $|M| \leq n-1$.

Proof (outline, continued). For distinct $i, j \in\{1, \ldots, t\}$, the matrix obtained by superimposing A_{i}^{\prime} onto A_{j}^{\prime} looks like this:

$(1,1)$	$(2,2)$	\ldots	(n, n)
$(?, ?)$	$(?, ?)$	\ldots	$(?, ?)$
\vdots	\vdots	\ddots	\vdots
$(?, ?)$	$(?, ?)$	\ldots	$(?, ?)$

Theorem 2.2

Let $n \geq 2$ be an integer, and let M be a set of pairwise orthogonal $n \times n$ Latin squares. Then $|M| \leq n-1$.

Proof (outline, continued). For distinct $i, j \in\{1, \ldots, t\}$, the matrix obtained by superimposing A_{i}^{\prime} onto A_{j}^{\prime} looks like this:

$(1,1)$	$(2,2)$	\ldots	(n, n)
$(?, ?)$	$(?, ?)$	\ldots	$(?, ?)$
\vdots	\vdots	\ddots	\vdots
$(?, ?)$	$(?, ?)$	\ldots	$(?, ?)$

So, no A_{i}^{\prime} can have 1 in the $(2,1)$-th spot, and no two of $A_{1}^{\prime}, \ldots, A_{t}^{\prime}$ can have the same $(2,1)$-th entry.

Theorem 2.2

Let $n \geq 2$ be an integer, and let M be a set of pairwise orthogonal $n \times n$ Latin squares. Then $|M| \leq n-1$.

Proof (outline, continued). For distinct $i, j \in\{1, \ldots, t\}$, the matrix obtained by superimposing A_{i}^{\prime} onto A_{j}^{\prime} looks like this:

$(1,1)$	$(2,2)$	\ldots	(n, n)
$(?, ?)$	$(?, ?)$	\ldots	$(?, ?)$
\vdots	\vdots	\ddots	\vdots
$(?, ?)$	$(?, ?)$	\ldots	$(?, ?)$

So, no A_{i}^{\prime} can have 1 in the $(2,1)$-th spot, and no two of $A_{1}^{\prime}, \ldots, A_{t}^{\prime}$ can have the same $(2,1)$-th entry. Thus, we have $n-1$ choices (namely, $2, \ldots, n$) for the (2,1)-th entry, and each choice gets used on at most one of $A_{1}^{\prime}, \ldots, A_{t}^{\prime}$.

Theorem 2.2

Let $n \geq 2$ be an integer, and let M be a set of pairwise orthogonal $n \times n$ Latin squares. Then $|M| \leq n-1$.

Proof (outline, continued). For distinct $i, j \in\{1, \ldots, t\}$, the matrix obtained by superimposing A_{i}^{\prime} onto A_{j}^{\prime} looks like this:

$(1,1)$	$(2,2)$	\ldots	(n, n)
$(?, ?)$	$(?, ?)$	\ldots	$(?, ?)$
\vdots	\vdots	\ddots	\vdots
$(?, ?)$	$(?, ?)$	\ldots	$(?, ?)$

So, no A_{i}^{\prime} can have 1 in the $(2,1)$-th spot, and no two of $A_{1}^{\prime}, \ldots, A_{t}^{\prime}$ can have the same $(2,1)$-th entry. Thus, we have $n-1$ choices (namely, $2, \ldots, n$) for the (2,1)-th entry, and each choice gets used on at most one of $A_{1}^{\prime}, \ldots, A_{t}^{\prime}$. It follows that $t \leq n-1$.

Theorem 2.3

Let $n \geq 2$ be an integer. Then the following are equivalent:
(a) \exists a finite projective plane of order n;
(b) \exists a collection of $n-1$ pairwise orthogonal $n \times n$ Latin squares.

Theorem 2.3

Let $n \geq 2$ be an integer. Then the following are equivalent:
(a) \exists a finite projective plane of order n;
(b) \exists a collection of $n-1$ pairwise orthogonal $n \times n$ Latin squares.

Proof of " $(b) \Longrightarrow(a)$ " (outline).

Theorem 2.3

Let $n \geq 2$ be an integer. Then the following are equivalent:
(a) \exists a finite projective plane of order n;
(b) \exists a collection of $n-1$ pairwise orthogonal $n \times n$ Latin squares.

Proof of " $(b) \Longrightarrow(a)$ " (outline). Assume that (b) is true, and let L_{1}, \ldots, L_{n-1} be pairwise orthogonal $n \times n$ Latin squares. We will give a construction of the corresponding finite projective plane of order n (proof that it works: HW).

Theorem 2.3

Let $n \geq 2$ be an integer. Then the following are equivalent:
(a) \exists a finite projective plane of order n;
(b) \exists a collection of $n-1$ pairwise orthogonal $n \times n$ Latin squares.

Proof of " $(b) \Longrightarrow(a)$ " (outline). Assume that (b) is true, and let L_{1}, \ldots, L_{n-1} be pairwise orthogonal $n \times n$ Latin squares. We will give a construction of the corresponding finite projective plane of order n (proof that it works: HW).

- There are $n^{2}+n+1$ points:
- points r and s;
- points ℓ_{i} for $i \in\{1, \ldots, n-1\}$;
- points $x_{i, j}$ for $i, j \in\{1, \ldots, n\}$.

Theorem 2.3

Let $n \geq 2$ be an integer. Then the following are equivalent:
(a) \exists a finite projective plane of order n;
(b) \exists a collection of $n-1$ pairwise orthogonal $n \times n$ Latin squares.

Proof of " $(b) \Longrightarrow(a)$ " (outline). Assume that (b) is true, and let L_{1}, \ldots, L_{n-1} be pairwise orthogonal $n \times n$ Latin squares. We will give a construction of the corresponding finite projective plane of order n (proof that it works: HW).

- There are $n^{2}+n+1$ points:
- points r and s;
- points ℓ_{i} for $i \in\{1, \ldots, n-1\}$;
- points $x_{i, j}$ for $i, j \in\{1, \ldots, n\}$.
- There are $n^{2}+n+1$ lines:
- line B
- lines R_{i} for $i \in\{1, \ldots, n\}$;
- lines S_{j} for $j \in\{1, \ldots, n\}$;
- lines L_{i}^{j} for $i \in\{1, \ldots, n-1\}$ and $j \in\{1, \ldots, n\}$.

Theorem 2.3

Let $n \geq 2$ be an integer. Then the following are equivalent:
(a) \exists a finite projective plane of order n;
(b) \exists a collection of $n-1$ pairwise orthogonal $n \times n$ Latin squares.

Proof of " $(b) \Longrightarrow(a)$ " (outline, continued). Reminder: L_{1}, \ldots, L_{n-1} are pairwise orthogonal $n \times n$ Latin squares.

- $L_{i}^{j}=\left\{\ell_{i}\right\} \cup\left\{x_{p, q} \mid\right.$ the (p, q)-th entry of L_{i} is $\left.j\right\}$, for $i \in\{1, \ldots, n-1\}$ and $j \in\{1, \ldots, n\}$.

- For example, for L_{1}, L_{2} as above, we get points

$$
r, s, \ell_{1}, \ell_{2}, x_{1,1}, x_{1,2}, x_{1,3}, x_{2,1}, x_{2,2}, x_{2,3}, x_{3,1}, x_{3,2}, x_{3,3}
$$

and lines

- $B=\left\{r, s, \ell_{1}, \ell_{2}\right\}$;
- $L_{1}^{1}=\left\{\ell_{1}, x_{1,1}, x_{2,3}, x_{3,2}\right\}$;
- $R_{1}=\left\{r, x_{1,1}, x_{1,2}, x_{1,3}\right\}$;
- $L_{1}^{2}=\left\{\ell_{1}, x_{1,2}, x_{2,1}, x_{3,3}\right\}$;
- $L_{1}^{3}=\left\{\ell_{1}, x_{1,3}, x_{2,2}, x_{3,1}\right\}$;
- $L_{2}^{1}=\left\{\ell_{2}, x_{1,1}, x_{2,2}, x_{3,3}\right\}$;
- $L_{2}^{2}=\left\{\ell_{2}, x_{1,2}, x_{2,3}, x_{3,1}\right\}$;
- $L_{2}^{3}=\left\{\ell_{2}, x_{1,3}, x_{2,1}, x_{3,2}\right\}$.

Part III: An algebraic construction of a (not necessarily finite) projective plane

- Let \mathbb{F} be any field.
- Let \mathbb{F} be any field.
- + and • are, respectively, addition and multiplication in \mathbb{F}.
- 0 and 1 are, respectively, the additive and multiplicative identity in \mathbb{F}.
- Let \mathbb{F} be any field.
- + and • are, respectively, addition and multiplication in \mathbb{F}.
- 0 and 1 are, respectively, the additive and multiplicative identity in \mathbb{F}.
- We construct the projective plane $\mathbb{F} P^{2}$ as follows.
- Let \mathbb{F} be any field.
- + and • are, respectively, addition and multiplication in \mathbb{F}.
- 0 and 1 are, respectively, the additive and multiplicative identity in \mathbb{F}.
- We construct the projective plane $\mathbb{F} P^{2}$ as follows.
- Let $T:=\mathbb{F}^{3} \backslash\{(0,0,0)\}$.
- Let \mathbb{F} be any field.
- + and • are, respectively, addition and multiplication in \mathbb{F}.
- 0 and 1 are, respectively, the additive and multiplicative identity in \mathbb{F}.
- We construct the projective plane $\mathbb{F} P^{2}$ as follows.
- Let $T:=\mathbb{F}^{3} \backslash\{(0,0,0)\}$.
- For $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right) \in T:\left(x_{1}, y_{1}, z_{1}\right) \sim\left(x_{2}, y_{2}, z_{2}\right)$ if and only if there exists a scalar $\lambda \in \mathbb{F} \backslash\{0\}$ s.t. $\left(x_{2}, y_{2}, z_{2}\right)=\lambda\left(x_{1}, y_{1}, z_{1}\right)$, i.e. $x_{2}=\lambda x_{1}, y_{2}=\lambda y_{1}, z_{2}=\lambda z_{1}$.
- Let \mathbb{F} be any field.
- + and • are, respectively, addition and multiplication in \mathbb{F}.
- 0 and 1 are, respectively, the additive and multiplicative identity in \mathbb{F}.
- We construct the projective plane $\mathbb{F} P^{2}$ as follows.
- Let $T:=\mathbb{F}^{3} \backslash\{(0,0,0)\}$.
- For $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right) \in T:\left(x_{1}, y_{1}, z_{1}\right) \sim\left(x_{2}, y_{2}, z_{2}\right)$ if and only if there exists a scalar $\lambda \in \mathbb{F} \backslash\{0\}$ s.t. $\left(x_{2}, y_{2}, z_{2}\right)=\lambda\left(x_{1}, y_{1}, z_{1}\right)$, i.e. $x_{2}=\lambda x_{1}, y_{2}=\lambda y_{1}, z_{2}=\lambda z_{1}$.
- Obviously, \sim is an equivalence relation on T.
- The equivalence class of $(x, y, z) \in T$ is $\overline{(x, y, z)}=\{(\lambda x, \lambda y, \lambda z) \mid \lambda \in \mathbb{F} \backslash\{0\}\}$.
- Let \mathbb{F} be any field.
- + and • are, respectively, addition and multiplication in \mathbb{F}.
- 0 and 1 are, respectively, the additive and multiplicative identity in \mathbb{F}.
- We construct the projective plane $\mathbb{F} P^{2}$ as follows.
- Let $T:=\mathbb{F}^{3} \backslash\{(0,0,0)\}$.
- For $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right) \in T:\left(x_{1}, y_{1}, z_{1}\right) \sim\left(x_{2}, y_{2}, z_{2}\right)$ if and only if there exists a scalar $\lambda \in \mathbb{F} \backslash\{0\}$ s.t. $\left(x_{2}, y_{2}, z_{2}\right)=\lambda\left(x_{1}, y_{1}, z_{1}\right)$, i.e. $x_{2}=\lambda x_{1}, y_{2}=\lambda y_{1}, z_{2}=\lambda z_{1}$.
- Obviously, \sim is an equivalence relation on T.
- The equivalence class of $(x, y, z) \in T$ is

$$
\overline{(x, y, z)}=\{(\lambda x, \lambda y, \lambda z) \mid \lambda \in \mathbb{F} \backslash\{0\}\} .
$$

- Points of $\mathbb{F} P^{2}$ are the equivalence classes of \sim.
- Let \mathbb{F} be any field.
- + and • are, respectively, addition and multiplication in \mathbb{F}.
- 0 and 1 are, respectively, the additive and multiplicative identity in \mathbb{F}.
- We construct the projective plane $\mathbb{F} P^{2}$ as follows.
- Let $T:=\mathbb{F}^{3} \backslash\{(0,0,0)\}$.
- For $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right) \in T:\left(x_{1}, y_{1}, z_{1}\right) \sim\left(x_{2}, y_{2}, z_{2}\right)$ if and only if there exists a scalar $\lambda \in \mathbb{F} \backslash\{0\}$ s.t. $\left(x_{2}, y_{2}, z_{2}\right)=\lambda\left(x_{1}, y_{1}, z_{1}\right)$, i.e. $x_{2}=\lambda x_{1}, y_{2}=\lambda y_{1}, z_{2}=\lambda z_{1}$.
- Obviously, \sim is an equivalence relation on T.
- The equivalence class of $(x, y, z) \in T$ is

$$
\overline{(x, y, z)}=\{(\lambda x, \lambda y, \lambda z) \mid \lambda \in \mathbb{F} \backslash\{0\}\} .
$$

- Points of $\mathbb{F} P^{2}$ are the equivalence classes of \sim.
- For each $(a, b, c) \in T$:

$$
P(a, b, c)=\{\overline{(x, y, z)} \mid(x, y, z) \in T, a x+b y+c z=0\} .
$$

- Let \mathbb{F} be any field.
- + and • are, respectively, addition and multiplication in \mathbb{F}.
- 0 and 1 are, respectively, the additive and multiplicative identity in \mathbb{F}.
- We construct the projective plane $\mathbb{F} P^{2}$ as follows.
- Let $T:=\mathbb{F}^{3} \backslash\{(0,0,0)\}$.
- For $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right) \in T:\left(x_{1}, y_{1}, z_{1}\right) \sim\left(x_{2}, y_{2}, z_{2}\right)$ if and only if there exists a scalar $\lambda \in \mathbb{F} \backslash\{0\}$ s.t. $\left(x_{2}, y_{2}, z_{2}\right)=\lambda\left(x_{1}, y_{1}, z_{1}\right)$, i.e. $x_{2}=\lambda x_{1}, y_{2}=\lambda y_{1}, z_{2}=\lambda z_{1}$.
- Obviously, \sim is an equivalence relation on T.
- The equivalence class of $(x, y, z) \in T$ is $\overline{(x, y, z)}=\{(\lambda x, \lambda y, \lambda z) \mid \lambda \in \mathbb{F} \backslash\{0\}\}$.
- Points of $\mathbb{F} P^{2}$ are the equivalence classes of \sim.
- For each $(a, b, c) \in T$:
$P(a, b, c)=\{\overline{(x, y, z)} \mid(x, y, z) \in T, a x+b y+c z=0\}$.
- For all $\left(a_{1}, b_{1}, c_{1}\right),\left(a_{2}, b_{2}, c_{2}\right) \in T$, we have that
$P\left(a_{1}, b_{1}, c_{1}\right)=P\left(a_{2}, b_{2}, c_{2}\right)$ if and only if $\left(a_{1}, b_{1}, c_{1}\right) \sim\left(a_{2}, b_{2}, c_{2}\right)$.
- Let \mathbb{F} be any field.
- + and • are, respectively, addition and multiplication in \mathbb{F}.
- 0 and 1 are, respectively, the additive and multiplicative identity in \mathbb{F}.
- We construct the projective plane $\mathbb{F} P^{2}$ as follows.
- Let $T:=\mathbb{F}^{3} \backslash\{(0,0,0)\}$.
- For $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right) \in T:\left(x_{1}, y_{1}, z_{1}\right) \sim\left(x_{2}, y_{2}, z_{2}\right)$ if and only if there exists a scalar $\lambda \in \mathbb{F} \backslash\{0\}$ s.t. $\left(x_{2}, y_{2}, z_{2}\right)=\lambda\left(x_{1}, y_{1}, z_{1}\right)$, i.e. $x_{2}=\lambda x_{1}, y_{2}=\lambda y_{1}, z_{2}=\lambda z_{1}$.
- Obviously, \sim is an equivalence relation on T.
- The equivalence class of $(x, y, z) \in T$ is

$$
\overline{(x, y, z)}=\{(\lambda x, \lambda y, \lambda z) \mid \lambda \in \mathbb{F} \backslash\{0\}\} .
$$

- Points of $\mathbb{F} P^{2}$ are the equivalence classes of \sim.
- For each $(a, b, c) \in T$:

$$
P(a, b, c)=\{\overline{(x, y, z)} \mid(x, y, z) \in T, a x+b y+c z=0\} .
$$

- For all $\left(a_{1}, b_{1}, c_{1}\right),\left(a_{2}, b_{2}, c_{2}\right) \in T$, we have that $P\left(a_{1}, b_{1}, c_{1}\right)=P\left(a_{2}, b_{2}, c_{2}\right)$ if and only if $\left(a_{1}, b_{1}, c_{1}\right) \sim\left(a_{2}, b_{2}, c_{2}\right)$.
- Lines are the sets $P(a, b, c)$ with $(a, b, c) \in T$.

Theorem 3.1

For each field $\mathbb{F}, \mathbb{F} P^{2}$ is a projective plane.

Theorem 3.1

For each field $\mathbb{F}, \mathbb{F} P^{2}$ is a projective plane.
Proof. Reminder: for $(a, b, c) \in T$, $P(a, b, c)=\{\overline{(x, y, z)} \mid(x, y, z) \in T, a x+b y+c z=0\}$.

Theorem 3.1

For each field $\mathbb{F}, \mathbb{F} P^{2}$ is a projective plane.
Proof. Reminder: for $(a, b, c) \in T$, $P(a, b, c)=\{\overline{(x, y, z)} \mid(x, y, z) \in T, a x+b y+c z=0\}$.

First, we check that (P0) is satisfied for

$$
Q=\{\overline{(1,0,0)}, \overline{(0,1,0)}, \overline{(0,0,1)}, \overline{(1,1,1)}\} .
$$

Theorem 3.1

For each field $\mathbb{F}, \mathbb{F} P^{2}$ is a projective plane.
Proof. Reminder: for $(a, b, c) \in T$,
$P(a, b, c)=\{\overline{(x, y, z)} \mid(x, y, z) \in T, a x+b y+c z=0\}$.

First, we check that (P0) is satisfied for

$$
Q=\{\overline{(1,0,0)}, \overline{(0,1,0)}, \overline{(0,0,1)}, \overline{(1,1,1)}\}
$$

We note that each of the following four matrices

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 1 \\
1 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

has rank three.

Theorem 3.1

For each field $\mathbb{F}, \mathbb{F} P^{2}$ is a projective plane.
Proof. Reminder: for $(a, b, c) \in T$,
$P(a, b, c)=\{\overline{(x, y, z)} \mid(x, y, z) \in T, a x+b y+c z=0\}$.

First, we check that (P0) is satisfied for

$$
Q=\{\overline{(1,0,0)}, \overline{(0,1,0)}, \overline{(0,0,1)}, \overline{(1,1,1)}\}
$$

We note that each of the following four matrices

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 1 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

has rank three. So, if A is any one of the four matrices above, then $A \mathbf{x}=\mathbf{0}$ has only the trivial solution, and consequently, no line of $\mathbb{F} P^{2}$ contains three (or more) points of Q.

Theorem 3.1

For each field $\mathbb{F}, \mathbb{F} P^{2}$ is a projective plane.
Proof. Reminder: for $(a, b, c) \in T$,
$P(a, b, c)=\{\overline{(x, y, z)} \mid(x, y, z) \in T, a x+b y+c z=0\}$.

First, we check that (P0) is satisfied for

$$
Q=\{\overline{(1,0,0)}, \overline{(0,1,0)}, \overline{(0,0,1)}, \overline{(1,1,1)}\}
$$

We note that each of the following four matrices

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 1 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

has rank three. So, if A is any one of the four matrices above, then $A \mathbf{x}=\mathbf{0}$ has only the trivial solution, and consequently, no line of $\mathbb{F} P^{2}$ contains three (or more) points of Q. So, (P0) is satisfied.

Theorem 3.1

For each field $\mathbb{F}, \mathbb{F} P^{2}$ is a projective plane.
Proof (continued). Reminder: for $(a, b, c) \in T$, $P(a, b, c)=\{\overline{(x, y, z)} \mid(x, y, z) \in T, a x+b y+c z=0\}$.

Theorem 3.1

For each field $\mathbb{F}, \mathbb{F} P^{2}$ is a projective plane.
Proof (continued). Reminder: for $(a, b, c) \in T$, $P(a, b, c)=\{\overline{(x, y, z)} \mid(x, y, z) \in T, a x+b y+c z=0\}$.

Next, we check that (P1) is satisfied. We fix distinct lines P_{1}, P_{2} of $\mathbb{F} P^{2}$, and we show that $\left|P_{1} \cap P_{2}\right|=1$.

Theorem 3.1

For each field $\mathbb{F}, \mathbb{F} P^{2}$ is a projective plane.
Proof (continued). Reminder: for $(a, b, c) \in T$, $P(a, b, c)=\{\overline{(x, y, z)} \mid(x, y, z) \in T, a x+b y+c z=0\}$.

Next, we check that (P1) is satisfied. We fix distinct lines P_{1}, P_{2} of $\mathbb{F} P^{2}$, and we show that $\left|P_{1} \cap P_{2}\right|=1$. By construction, there exist $\left(a_{1}, b_{1}, c_{1}\right),\left(a_{2}, b_{2}, c_{2}\right) \in T$ s.t. $P_{1}=P\left(a_{1}, b_{1}, c_{1}\right)$ and $P_{2}=P\left(a_{2}, b_{2}, c_{2}\right)$.

Theorem 3.1

For each field $\mathbb{F}, \mathbb{F} P^{2}$ is a projective plane.
Proof (continued). Reminder: for $(a, b, c) \in T$, $P(a, b, c)=\{\overline{(x, y, z)} \mid(x, y, z) \in T, a x+b y+c z=0\}$.

Next, we check that (P1) is satisfied. We fix distinct lines P_{1}, P_{2} of $\mathbb{F} P^{2}$, and we show that $\left|P_{1} \cap P_{2}\right|=1$. By construction, there exist $\left(a_{1}, b_{1}, c_{1}\right),\left(a_{2}, b_{2}, c_{2}\right) \in T$ s.t. $P_{1}=P\left(a_{1}, b_{1}, c_{1}\right)$ and $P_{2}=P\left(a_{2}, b_{2}, c_{2}\right)$. Since $P_{1} \neq P_{2}$, we have that $\left(a_{1}, b_{1}, c_{1}\right) \nsim\left(a_{2}, b_{2}, c_{2}\right)$, that is, neither one of $\left(a_{1}, b_{1}, c_{1}\right),\left(a_{2}, b_{2}, c_{2}\right)$ is a scalar multiple of the other.

Theorem 3.1

For each field $\mathbb{F}, \mathbb{F} P^{2}$ is a projective plane.
Proof (continued). Reminder: for $(a, b, c) \in T$, $P(a, b, c)=\{\overline{(x, y, z)} \mid(x, y, z) \in T, a x+b y+c z=0\}$.

Next, we check that (P1) is satisfied. We fix distinct lines P_{1}, P_{2} of $\mathbb{F} P^{2}$, and we show that $\left|P_{1} \cap P_{2}\right|=1$. By construction, there exist $\left(a_{1}, b_{1}, c_{1}\right),\left(a_{2}, b_{2}, c_{2}\right) \in T$ s.t. $P_{1}=P\left(a_{1}, b_{1}, c_{1}\right)$ and $P_{2}=P\left(a_{2}, b_{2}, c_{2}\right)$. Since $P_{1} \neq P_{2}$, we have that $\left(a_{1}, b_{1}, c_{1}\right) \nsim\left(a_{2}, b_{2}, c_{2}\right)$, that is, neither one of $\left(a_{1}, b_{1}, c_{1}\right),\left(a_{2}, b_{2}, c_{2}\right)$ is a scalar multiple of the other. We now use Linear Algebra.

Theorem 3.1

For each field $\mathbb{F}, \mathbb{F} P^{2}$ is a projective plane.
Proof (continued). Reminder: for $(a, b, c) \in T$, $P(a, b, c)=\{\overline{(x, y, z)} \mid(x, y, z) \in T, a x+b y+c z=0\}$.

$$
A:=\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right] .
$$

Theorem 3.1

For each field $\mathbb{F}, \mathbb{F} P^{2}$ is a projective plane.
Proof (continued). Reminder: for $(a, b, c) \in T$, $P(a, b, c)=\{\overline{(x, y, z)} \mid(x, y, z) \in T, a x+b y+c z=0\}$.

$$
A:=\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right]
$$

Since neither row of A is a scalar multiple of the other, $\operatorname{rank}(A)=2$.

Theorem 3.1

For each field $\mathbb{F}, \mathbb{F} P^{2}$ is a projective plane.
Proof (continued). Reminder: for $(a, b, c) \in T$, $P(a, b, c)=\{\overline{(x, y, z)} \mid(x, y, z) \in T, a x+b y+c z=0\}$.

$$
A:=\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right] .
$$

Since neither row of A is a scalar multiple of the other, $\operatorname{rank}(A)=2$. By the Rank-Nullity Theorem, we have that $\operatorname{rank}(A)+\operatorname{dim} \operatorname{ker}(A)=3$.

Theorem 3.1

For each field $\mathbb{F}, \mathbb{F} P^{2}$ is a projective plane.
Proof (continued). Reminder: for $(a, b, c) \in T$, $P(a, b, c)=\{\overline{(x, y, z)} \mid(x, y, z) \in T, a x+b y+c z=0\}$.

$$
A:=\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right] .
$$

Since neither row of A is a scalar multiple of the other, $\operatorname{rank}(A)=2$. By the Rank-Nullity Theorem, we have that $\operatorname{rank}(A)+\operatorname{dim} \operatorname{ker}(A)=3$. So, $\operatorname{dim} \operatorname{ker}(A)=1$.

Theorem 3.1

For each field $\mathbb{F}, \mathbb{F} P^{2}$ is a projective plane.
Proof (continued). Reminder: for $(a, b, c) \in T$, $P(a, b, c)=\{\overline{(x, y, z)} \mid(x, y, z) \in T, a x+b y+c z=0\}$.

$$
A:=\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right]
$$

Since neither row of A is a scalar multiple of the other, $\operatorname{rank}(A)=2$. By the Rank-Nullity Theorem, we have that $\operatorname{rank}(A)+\operatorname{dim} \operatorname{ker}(A)=3$. So, $\operatorname{dim} \operatorname{ker}(A)=1$.

Let $\left\{(x, y, z)^{T}\right\}$ be a basis for $\operatorname{ker}(A)$, so that $\operatorname{ker}(A)=\left\{(\lambda x, \lambda y, \lambda z)^{T} \mid \lambda \in \mathbb{F}\right\}$.

Theorem 3.1

For each field $\mathbb{F}, \mathbb{F} P^{2}$ is a projective plane.
Proof (continued). Reminder: for $(a, b, c) \in T$, $P(a, b, c)=\{\overline{(x, y, z)} \mid(x, y, z) \in T, a x+b y+c z=0\}$.

$$
A:=\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right]
$$

Since neither row of A is a scalar multiple of the other, $\operatorname{rank}(A)=2$. By the Rank-Nullity Theorem, we have that $\operatorname{rank}(A)+\operatorname{dim} \operatorname{ker}(A)=3$. So, $\operatorname{dim} \operatorname{ker}(A)=1$.

Let $\left\{(x, y, z)^{T}\right\}$ be a basis for $\operatorname{ker}(A)$, so that $\operatorname{ker}(A)=\left\{(\lambda x, \lambda y, \lambda z)^{T} \mid \lambda \in \mathbb{F}\right\}$. Then $P_{1} \cap P_{2}=\{\overline{(x, y, z)}\}$, and we deduce $\left|P_{1} \cap P_{2}\right|=1$. Thus, (P1) is satisfied.

Theorem 3.1

For each field $\mathbb{F}, \mathbb{F} P^{2}$ is a projective plane.
Proof (continued). Reminder: for $(a, b, c) \in T$, $P(a, b, c)=\{\overline{(x, y, z)} \mid(x, y, z) \in T, a x+b y+c z=0\}$.

$$
A:=\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right]
$$

Since neither row of A is a scalar multiple of the other, $\operatorname{rank}(A)=2$. By the Rank-Nullity Theorem, we have that $\operatorname{rank}(A)+\operatorname{dim} \operatorname{ker}(A)=3$. So, $\operatorname{dim} \operatorname{ker}(A)=1$.

Let $\left\{(x, y, z)^{T}\right\}$ be a basis for $\operatorname{ker}(A)$, so that $\operatorname{ker}(A)=\left\{(\lambda x, \lambda y, \lambda z)^{T} \mid \lambda \in \mathbb{F}\right\}$. Then $P_{1} \cap P_{2}=\{\overline{(x, y, z)}\}$, and we deduce $\left|P_{1} \cap P_{2}\right|=1$. Thus, (P1) is satisfied.

The proof of (P2) is similar.

Theorem 3.1

For each field $\mathbb{F}, \mathbb{F} P^{2}$ is a projective plane.

Theorem 1.4 from Lecture Notes 4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:
(a) for each point $x \in X$, exactly $n+1$ lines in \mathcal{P} pass through x;
(b) $|X|=n^{2}+n+1$;
(c) $|\mathcal{P}|=n^{2}+n+1$.

Theorem 3.1

For each field $\mathbb{F}, \mathbb{F} P^{2}$ is a projective plane.

Theorem 1.4 from Lecture Notes 4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:
(a) for each point $x \in X$, exactly $n+1$ lines in \mathcal{P} pass through x;
(b) $|X|=n^{2}+n+1$;
(c) $|\mathcal{P}|=n^{2}+n+1$.

Theorem 3.2

If \mathbb{F} is a finite field, with $|\mathbb{F}|=n$, then $\mathbb{F} P^{2}$ is a finite projective plane of order n.

Proof. By Theorem 3.1, $\mathbb{F} P^{2}$ is a projective plane.

Theorem 3.1

For each field $\mathbb{F}, \mathbb{F} P^{2}$ is a projective plane.

Theorem 1.4 from Lecture Notes 4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:
(a) for each point $x \in X$, exactly $n+1$ lines in \mathcal{P} pass through x;
(b) $|X|=n^{2}+n+1$;
(c) $|\mathcal{P}|=n^{2}+n+1$.

Theorem 3.2

If \mathbb{F} is a finite field, with $|\mathbb{F}|=n$, then $\mathbb{F} P^{2}$ is a finite projective plane of order n.

Proof. By Theorem 3.1, $\mathbb{F} P^{2}$ is a projective plane. Since \mathbb{F} is finite, so is $\mathbb{F} P^{2}$.

Theorem 3.1

For each field $\mathbb{F}, \mathbb{F} P^{2}$ is a projective plane.

Theorem 1.4 from Lecture Notes 4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:
(a) for each point $x \in X$, exactly $n+1$ lines in \mathcal{P} pass through x;
(b) $|X|=n^{2}+n+1$;
(c) $|\mathcal{P}|=n^{2}+n+1$.

Theorem 3.2

If \mathbb{F} is a finite field, with $|\mathbb{F}|=n$, then $\mathbb{F} P^{2}$ is a finite projective plane of order n.

Proof. By Theorem 3.1, $\mathbb{F} P^{2}$ is a projective plane. Since \mathbb{F} is finite, so is $\mathbb{F} P^{2}$. In view of Theorem 1.4 from Lecture Notes 4 , it suffices to show that $\mathbb{F} P^{2}$ has precisely $n^{2}+n+1$ points.

Theorem 3.2

If \mathbb{F} is a finite field, with $|\mathbb{F}|=n$, then $\mathbb{F} P^{2}$ is a finite projective plane of order n.

Proof (continued). Reminder: WTS $\mathbb{F} P^{2}$ has $n^{2}+n+1$ points.

Theorem 3.2

If \mathbb{F} is a finite field, with $|\mathbb{F}|=n$, then $\mathbb{F} P^{2}$ is a finite projective plane of order n.

Proof (continued). Reminder: WTS $\mathbb{F} P^{2}$ has $n^{2}+n+1$ points. Note that for all $(x, y, z) \in T$, there exists a unique triple $\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in T$ s.t. the last non-zero coordinate of $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ is 1 and $(x, y, z) \sim\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$.

Theorem 3.2

If \mathbb{F} is a finite field, with $|\mathbb{F}|=n$, then $\mathbb{F} P^{2}$ is a finite projective plane of order n.

Proof (continued). Reminder: WTS $\mathbb{F} P^{2}$ has $n^{2}+n+1$ points. Note that for all $(x, y, z) \in T$, there exists a unique triple $\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in T$ s.t. the last non-zero coordinate of $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ is 1 and $(x, y, z) \sim\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$. Indeed, for existence:

- if $z \neq 0$, then $(x, y, z) \sim\left(z^{-1} x, z^{-1} y, 1\right)$;
- if $z=0$ and $y \neq 0$, then $(x, y, z) \sim\left(y^{-1} x, 1,0\right)$;
- if $y=z=0$, then $x \neq 0$ (since x, y, z cannot all be zero) and $(x, y, z) \sim(1,0,0)$.
(Uniqueness is easy.)

Theorem 3.2

If \mathbb{F} is a finite field, with $|\mathbb{F}|=n$, then $\mathbb{F} P^{2}$ is a finite projective plane of order n.

Proof (continued). Reminder: WTS $\mathbb{F} P^{2}$ has $n^{2}+n+1$ points. Note that for all $(x, y, z) \in T$, there exists a unique triple $\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in T$ s.t. the last non-zero coordinate of $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ is 1 and $(x, y, z) \sim\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$. Indeed, for existence:

- if $z \neq 0$, then $(x, y, z) \sim\left(z^{-1} x, z^{-1} y, 1\right)$;
- if $z=0$ and $y \neq 0$, then $(x, y, z) \sim\left(y^{-1} x, 1,0\right)$;
- if $y=z=0$, then $x \neq 0$ (since x, y, z cannot all be zero) and $(x, y, z) \sim(1,0,0)$.
(Uniqueness is easy.)
There are n^{2} triples of the form $(x, y, 1)$ in T; there are n triples of the form $(x, 1,0)$ in T; and there is one triple $(1,0,0)$ in T.

Theorem 3.2

If \mathbb{F} is a finite field, with $|\mathbb{F}|=n$, then $\mathbb{F} P^{2}$ is a finite projective plane of order n.

Proof (continued). Reminder: WTS $\mathbb{F} P^{2}$ has $n^{2}+n+1$ points. Note that for all $(x, y, z) \in T$, there exists a unique triple $\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in T$ s.t. the last non-zero coordinate of $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ is 1 and $(x, y, z) \sim\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$. Indeed, for existence:

- if $z \neq 0$, then $(x, y, z) \sim\left(z^{-1} x, z^{-1} y, 1\right)$;
- if $z=0$ and $y \neq 0$, then $(x, y, z) \sim\left(y^{-1} x, 1,0\right)$;
- if $y=z=0$, then $x \neq 0$ (since x, y, z cannot all be zero) and $(x, y, z) \sim(1,0,0)$.
(Uniqueness is easy.)
There are n^{2} triples of the form $(x, y, 1)$ in T; there are n triples of the form $(x, 1,0)$ in T; and there is one triple $(1,0,0)$ in T. So, there are $n^{2}+n+1$ equivalence classes of \sim, that is, $\mathbb{F} P^{2}$ has $n^{2}+n+1$ points.

Theorem 3.2

If \mathbb{F} is a finite field, with $|\mathbb{F}|=n$, then $\mathbb{F} P^{2}$ is a finite projective plane of order n.

Proof (continued). Reminder: WTS $\mathbb{F} P^{2}$ has $n^{2}+n+1$ points. Note that for all $(x, y, z) \in T$, there exists a unique triple $\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in T$ s.t. the last non-zero coordinate of $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ is 1 and $(x, y, z) \sim\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$. Indeed, for existence:

- if $z \neq 0$, then $(x, y, z) \sim\left(z^{-1} x, z^{-1} y, 1\right)$;
- if $z=0$ and $y \neq 0$, then $(x, y, z) \sim\left(y^{-1} x, 1,0\right)$;
- if $y=z=0$, then $x \neq 0$ (since x, y, z cannot all be zero) and $(x, y, z) \sim(1,0,0)$.
(Uniqueness is easy.)
There are n^{2} triples of the form $(x, y, 1)$ in T; there are n triples of the form $(x, 1,0)$ in T; and there is one triple $(1,0,0)$ in T. So, there are $n^{2}+n+1$ equivalence classes of \sim, that is, $\mathbb{F} P^{2}$ has $n^{2}+n+1$ points. So, $\mathbb{F} P^{2}$ is of order n.

Theorem 3.2

If \mathbb{F} is a finite field, with $|\mathbb{F}|=n$, then $\mathbb{F} P^{2}$ is a finite projective plane of order n.

Theorem 3.2

If \mathbb{F} is a finite field, with $|\mathbb{F}|=n$, then $\mathbb{F} P^{2}$ is a finite projective plane of order n.

- It is well-known that for all integers $n \geq 2$, there exists a field of size n if and only if n is a power of a prime (that is, if and only if there exist a prime number p and a positive integer k s.t. $n=p^{k}$).

Theorem 3.2

If \mathbb{F} is a finite field, with $|\mathbb{F}|=n$, then $\mathbb{F} P^{2}$ is a finite projective plane of order n.

- It is well-known that for all integers $n \geq 2$, there exists a field of size n if and only if n is a power of a prime (that is, if and only if there exist a prime number p and a positive integer k s.t. $n=p^{k}$).
- This, together with Theorem 3.2, implies that if $n \geq 2$ is a power of a prime, then there is a finite projective plane of order n.

Theorem 3.2

If \mathbb{F} is a finite field, with $|\mathbb{F}|=n$, then $\mathbb{F} P^{2}$ is a finite projective plane of order n.

- It is well-known that for all integers $n \geq 2$, there exists a field of size n if and only if n is a power of a prime (that is, if and only if there exist a prime number p and a positive integer k s.t. $n=p^{k}$).
- This, together with Theorem 3.2, implies that if $n \geq 2$ is a power of a prime, then there is a finite projective plane of order n.
- However, it is not known whether there exists a finite projective plane whose order is not a power of a prime.

Theorem 3.2

If \mathbb{F} is a finite field, with $|\mathbb{F}|=n$, then $\mathbb{F} P^{2}$ is a finite projective plane of order n.

- It is well-known that for all integers $n \geq 2$, there exists a field of size n if and only if n is a power of a prime (that is, if and only if there exist a prime number p and a positive integer k s.t. $n=p^{k}$).
- This, together with Theorem 3.2, implies that if $n \geq 2$ is a power of a prime, then there is a finite projective plane of order n.
- However, it is not known whether there exists a finite projective plane whose order is not a power of a prime.
- It is, however, known that there are no finite projective planes of order 6 or 10 .

Theorem 3.2

If \mathbb{F} is a finite field, with $|\mathbb{F}|=n$, then $\mathbb{F} P^{2}$ is a finite projective plane of order n.

- It is well-known that for all integers $n \geq 2$, there exists a field of size n if and only if n is a power of a prime (that is, if and only if there exist a prime number p and a positive integer k s.t. $n=p^{k}$).
- This, together with Theorem 3.2, implies that if $n \geq 2$ is a power of a prime, then there is a finite projective plane of order n.
- However, it is not known whether there exists a finite projective plane whose order is not a power of a prime.
- It is, however, known that there are no finite projective planes of order 6 or 10.
- It is not known whether there are finite projective planes of order 12.

