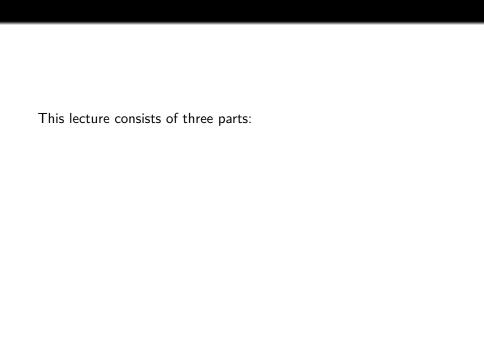
NDMI011: Combinatorics and Graph Theory 1

Lecture #5

Finite projective planes (part II)

Irena Penev

October 26, 2020



This lecture consists of three parts:

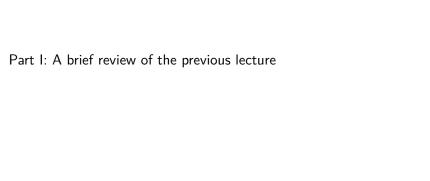
A brief review of the previous lecture;

This lecture consists of three parts:

- A brief review of the previous lecture;
- A construction of a finite projective plane from orthogonal Latin squares;

This lecture consists of three parts:

- A brief review of the previous lecture;
- A construction of a finite projective plane from orthogonal Latin squares;
- An algebraic construction of a (not necessarily finite) projective plane.



A projective plane is a set system $(X, \mathcal{P})^a$ that satisfies the following three properties:

- (P0) there exists a 4-element subset $Q \subseteq X$ s.t. every $P \in \mathcal{P}$ satisfies $|P \cap Q| < 2$;
- (P1) all distinct $P_1, P_2 \in \mathcal{P}$ satisfy $|P_1 \cap P_2| = 1$;
- (P2) for all distinct $x_1, x_2 \in X$, there exists a unique $P \in \mathcal{P}$ s.t. $x_1, x_2 \in P$.

Elements of X are called *points*, and elements of \mathcal{P} are called *lines* of the projective plane (X, \mathcal{P}) .

A projective plane (X, \mathcal{P}) is *finite* if X is finite.

^aThis means that X is a set and $\mathcal{P} \subseteq \mathscr{P}(X)$, where $\mathscr{P}(X)$ is the power set (i.e. the set of all subsets) of X.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Definition

The *order* of a finite projective plane (X, \mathcal{P}) is the number |P|-1, where P is any line in \mathcal{P} .

^aSo, if (X, \mathcal{P}) is a finite projective plane of order n, then each line in \mathcal{P} contains exactly n+1 points.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Definition

The *order* of a finite projective plane (X, \mathcal{P}) is the number |P| - 1, where P is any line in \mathcal{P} .

^aSo, if (X, \mathcal{P}) is a finite projective plane of order n, then each line in \mathcal{P} contains exactly n+1 points.

• By Proposition 1.2 from Lecture Notes 4, this is well-defined.

Let (X, \mathcal{P}) be a finite projective plane. Then all lines in \mathcal{P} have the same number of points.

Definition

The *order* of a finite projective plane (X, \mathcal{P}) is the number |P|-1, where P is any line in \mathcal{P} .

^aSo, if (X, \mathcal{P}) is a finite projective plane of order n, then each line in \mathcal{P} contains exactly n+1 points.

• By Proposition 1.2 from Lecture Notes 4, this is well-defined.

Proposition 1.3 from Lecture Notes 4

The order of any finite projective plane is at least two.

Theorem 1.4 from Lecture Notes 4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- (a) for each point $x \in X$, exactly n+1 lines in $\mathcal P$ pass through x;
- (b) $|X| = n^2 + n + 1$;
- (c) $|\mathcal{P}| = n^2 + n + 1$.

art II: A construction of a finite projective plane from orthogonal atin squares

For a positive integer n, an $n \times n$ Latin square is an $n \times n$ array (or matrix) whose entries are numbers $1, \ldots, n$, and in which each number $1, \ldots, n$ occurs exactly once in each row and in each column.

1	2	3
2	3	1
3	1	2

1	2	3
3	1	2
2	3	1

Figure: Two 3×3 Latin squares.

Two $n \times n$ Latin squares, say $[a_{i,j}]_{n \times n}$ and $[b_{i,j}]_{n \times n}$, are orthogonal if each entry of the matrix matrix obtained by superimposing A on B, i.e. of the matrix $[(a_{i,j},b_{i,j})]_{n \times n}$, is different.

• The red and the blue Latin square (below) are orthogonal.

1	2	3
2	3	1
3	1	2

1	2	3
3	1	2
2	3	1

(1, 1)	(2, 2)	(3, 3)
(2,3)	(3, 1)	(1, 2)
(<mark>3, 2</mark>)	(1, 3)	(2,1)

Two $n \times n$ Latin squares, say $[a_{i,j}]_{n \times n}$ and $[b_{i,j}]_{n \times n}$, are *orthogonal* if each entry of the matrix matrix obtained by superimposing A on B, i.e. of the matrix $[(a_{i,j},b_{i,j})]_{n \times n}$, is different.

Two $n \times n$ Latin squares, say $[a_{i,j}]_{n \times n}$ and $[b_{i,j}]_{n \times n}$, are *orthogonal* if each entry of the matrix matrix obtained by superimposing A on B, i.e. of the matrix $[(a_{i,j},b_{i,j})]_{n \times n}$, is different.

• An $n \times n$ matrix has n^2 entries.

Two $n \times n$ Latin squares, say $[a_{i,j}]_{n \times n}$ and $[b_{i,j}]_{n \times n}$, are *orthogonal* if each entry of the matrix matrix obtained by superimposing A on B, i.e. of the matrix $[(a_{i,j},b_{i,j})]_{n \times n}$, is different.

- An $n \times n$ matrix has n^2 entries.
- The Cartesian product $\{1, \ldots, n\} \times \{1, \ldots, n\}$ has exactly n^2 elements.

Two $n \times n$ Latin squares, say $[a_{i,j}]_{n \times n}$ and $[b_{i,j}]_{n \times n}$, are *orthogonal* if each entry of the matrix matrix obtained by superimposing A on B, i.e. of the matrix $[(a_{i,j},b_{i,j})]_{n \times n}$, is different.

- An $n \times n$ matrix has n^2 entries.
- The Cartesian product $\{1, \ldots, n\} \times \{1, \ldots, n\}$ has exactly n^2 elements.
- So, two $n \times n$ Latin squares are orthogonal if and only if each element of $\{1,\ldots,n\} \times \{1,\ldots,n\}$ appears exactly once in the matrix obtained by superimposing the two $n \times n$ Latin squares.

• For a positive integer n, a Latin square $A = [a_{i,j}]_{n \times n}$ and a permutation π of the set $\{1, \ldots, n\}$, we set $\pi(A) = [\pi(a_{i,i})]_{n \times n}$; obviously, $\pi(A)$ is a Latin square.

• For example, if

$$A = \begin{array}{c|cccc} 1 & 3 & 2 \\ \hline 3 & 2 & 1 \\ \hline 2 & 1 & 3 \\ \hline \end{array}$$

and if
$$\pi = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$
, then

Proposition 2.1

Let $A = [a_{i,j}]_{n \times n}$ and $B = [b_{i,j}]_{n \times n}$ be orthogonal $n \times n$ Latin squares, and let π_A, π_B be permutations of the set $\{1, \ldots, n\}$. Then $\pi_A(A)$ and $\pi_B(B)$ are orthogonal Latin squares.

Proof. Obvious.

Let $n \ge 2$ be an integer, and let M be a set of pairwise orthogonal $n \times n$ Latin squares. Then $|M| \le n - 1$.

Let $n \ge 2$ be an integer, and let M be a set of pairwise orthogonal $n \times n$ Latin squares. Then $|M| \le n - 1$.

Proof (outline). WMA $M \neq \emptyset$ (otherwise it's obvious).

Let $n \ge 2$ be an integer, and let M be a set of pairwise orthogonal $n \times n$ Latin squares. Then $|M| \le n - 1$.

Proof (outline). WMA $M \neq \emptyset$ (otherwise it's obvious). Set t = |M| and $M = \{A_1, \dots, A_t\}$. WTS $t \leq n - 1$.

For each $i \in \{1, ..., t\}$, we let π_i be the permutation of $\{1, ..., n\}$ that transforms the first row of A_i into 1, ..., n, and let $A'_i = \pi_i(A_i)$.

Let $n \ge 2$ be an integer, and let M be a set of pairwise orthogonal $n \times n$ Latin squares. Then |M| < n - 1.

Proof (outline). WMA $M \neq \emptyset$ (otherwise it's obvious). Set t = |M| and $M = \{A_1, \dots, A_t\}$. WTS $t \leq n - 1$.

For each $i \in \{1, \ldots, t\}$, we let π_i be the permutation of $\{1, \ldots, n\}$ that transforms the first row of A_i into $1, \ldots, n$, and let $A_i' = \pi_i(A_i)$. By Proposition 2.1, A_1', \ldots, A_t' are pairwise orthogonal.

Let $n \ge 2$ be an integer, and let M be a set of pairwise orthogonal $n \times n$ Latin squares. Then $|M| \le n - 1$.

Proof (outline, continued). For distinct $i, j \in \{1, ..., t\}$, the matrix obtained by superimposing A_i' onto A_j' looks like this:

(1, 1)	(2, 2)		(n, n)
(?,?)	(?,?)		(?,?)
:	:	٠	:
(?,?)	(?,?)		(?,?)

Let $n \ge 2$ be an integer, and let M be a set of pairwise orthogonal $n \times n$ Latin squares. Then $|M| \le n - 1$.

Proof (outline, continued). For distinct $i, j \in \{1, ..., t\}$, the matrix obtained by superimposing A'_i onto A'_i looks like this:

(1, 1)	(2, 2)		(n, n)
(?,?)	(?,?)		(?,?)
:	:	٠.,	
(?,?)	(?,?)		(?,?)

So, no A_i' can have 1 in the (2,1)-th spot, and no two of A_1',\ldots,A_t' can have the same (2,1)-th entry.

Let $n \ge 2$ be an integer, and let M be a set of pairwise orthogonal $n \times n$ Latin squares. Then $|M| \le n - 1$.

Proof (outline, continued). For distinct $i, j \in \{1, ..., t\}$, the matrix obtained by superimposing A_i' onto A_i' looks like this:

(1, 1)	(2, 2)		(n,n)
(?,?)	(?,?)	***	(?,?)
:	:	٠.,	:
(?,?)	(?,?)		(?,?)

So, no A_i' can have 1 in the (2,1)-th spot, and no two of A_1', \ldots, A_t' can have the same (2,1)-th entry. Thus, we have n-1 choices (namely, $2, \ldots, n$) for the (2,1)-th entry, and each choice gets used on at most one of A_1', \ldots, A_t' .

Let $n \ge 2$ be an integer, and let M be a set of pairwise orthogonal $n \times n$ Latin squares. Then $|M| \le n - 1$.

Proof (outline, continued). For distinct $i, j \in \{1, ..., t\}$, the matrix obtained by superimposing A'_i onto A'_i looks like this:

(1, 1)	(2, 2)		(n,n)
(?,?)	(?,?)	***	(?,?)
:	:	٠.,	:
(?,?)	(?,?)		(?,?)

So, no A_i' can have 1 in the (2,1)-th spot, and no two of A_1', \ldots, A_t' can have the same (2,1)-th entry. Thus, we have n-1 choices (namely, $2, \ldots, n$) for the (2,1)-th entry, and each choice gets used on at most one of A_1', \ldots, A_t' . It follows that $t \leq n-1$.

Let $n \ge 2$ be an integer. Then the following are equivalent:

- (a) \exists a finite projective plane of order n;
- (b) \exists a collection of n-1 pairwise orthogonal $n \times n$ Latin squares.

Let $n \ge 2$ be an integer. Then the following are equivalent:

- (a) \exists a finite projective plane of order n;
- (b) \exists a collection of n-1 pairwise orthogonal $n \times n$ Latin squares.

Proof of "(b) \Longrightarrow (a)" (outline).

Let $n \ge 2$ be an integer. Then the following are equivalent:

- (a) \exists a finite projective plane of order n;
- (b) \exists a collection of n-1 pairwise orthogonal $n \times n$ Latin squares.

Proof of "(b) \Longrightarrow (a)" (outline). Assume that (b) is true, and let L_1, \ldots, L_{n-1} be pairwise orthogonal $n \times n$ Latin squares. We will give a construction of the corresponding finite projective plane of order n (proof that it works: HW).

Let $n \ge 2$ be an integer. Then the following are equivalent:

- (a) \exists a finite projective plane of order n;
- (b) \exists a collection of n-1 pairwise orthogonal $n \times n$ Latin squares.

Proof of "(b) \Longrightarrow *(a)" (outline)*. Assume that (b) is true, and let L_1, \ldots, L_{n-1} be pairwise orthogonal $n \times n$ Latin squares. We will give a construction of the corresponding finite projective plane of order n (proof that it works: HW).

- There are $n^2 + n + 1$ points:
 - points r and s;
 - points ℓ_i for $i \in \{1, \ldots, n-1\}$;
 - points $x_{i,j}$ for $i,j \in \{1,\ldots,n\}$.

Let $n \ge 2$ be an integer. Then the following are equivalent:

- (a) \exists a finite projective plane of order n;
- (b) \exists a collection of n-1 pairwise orthogonal $n \times n$ Latin squares.

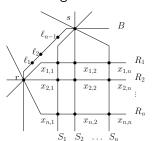
Proof of "(b) \Longrightarrow *(a)" (outline)*. Assume that (b) is true, and let L_1, \ldots, L_{n-1} be pairwise orthogonal $n \times n$ Latin squares. We will give a construction of the corresponding finite projective plane of order n (proof that it works: HW).

- There are $n^2 + n + 1$ points:
 - points r and s;
 - points ℓ_i for $i \in \{1, \dots, n-1\}$;
 - points $x_{i,j}$ for $i, j \in \{1, ..., n\}$.
- There are $n^2 + n + 1$ lines:
 - line B
 - lines R_i for $i \in \{1, \ldots, n\}$;
 - lines S_i for $j \in \{1, \ldots, n\}$;
 - lines L_i^j for $i \in \{1, ..., n-1\}$ and $j \in \{1, ..., n\}$.

Let $n \ge 2$ be an integer. Then the following are equivalent:

- (a) \exists a finite projective plane of order n;
- (b) \exists a collection of n-1 pairwise orthogonal $n \times n$ Latin squares.

Proof of "(b) \Longrightarrow (a)" (outline, continued). Reminder: L_1, \ldots, L_{n-1} are pairwise orthogonal $n \times n$ Latin squares.



• $L_i^j = \{\ell_i\} \cup \{x_{p,q} \mid \text{the } (p,q)\text{-th entry of } L_i \text{ is } j\}$, for $i \in \{1, \dots, n-1\}$ and $j \in \{1, \dots, n\}$.

$$L_1 = \begin{array}{c|cccc} & 1 & 2 & 3 & \\ & 2 & 3 & 1 & \\ & 3 & 1 & 2 & \end{array}$$

$$L_2 = egin{array}{ccccc} 1 & 2 & 3 \\ & 3 & 1 & 2 \\ & 2 & 3 & 1 \end{array}$$

• For example, for L_1, L_2 as above, we get points

$$r, s, \ell_1, \ell_2, x_{1,1}, x_{1,2}, x_{1,3}, x_{2,1}, x_{2,2}, x_{2,3}, x_{3,1}, x_{3,2}, x_{3,3}.$$

and lines

•
$$B = \{r, s, \ell_1, \ell_2\};$$

•
$$R_1 = \{r, x_{1,1}, x_{1,2}, x_{1,3}\};$$

•
$$R_2 = \{r, x_{2,1}, x_{2,2}, x_{2,3}\};$$

• $R_3 = \{r, x_{3,1}, x_{3,2}, x_{3,3}\};$

•
$$R_3 = \{r, x_{3,1}, x_{3,2}, x_{3,3}\};$$

•
$$S_1 = \{s, x_{1,1}, x_{2,1}, x_{3,1}\};$$

• $S_2 = \{s, x_{1,2}, x_{2,2}, x_{3,2}\};$

•
$$S_3 = \{s, x_{1,3}, x_{2,3}, x_{3,3}\};$$

•
$$L_1^1 = \{\ell_1, x_{1,1}, x_{2,3}, x_{3,2}\};$$

$$\bullet \ \ L_1^2=\{\ell_1,x_{1,2},x_{2,1},x_{3,3}\};$$

•
$$L_1^3 = \{\ell_1, x_{1,3}, x_{2,2}, x_{3,1}\};$$

• $L_2^1 = \{\ell_2, x_{1,1}, x_{2,2}, x_{3,3}\};$

•
$$L_2^2 = \{\ell_2, x_{1,2}, x_{2,3}, x_{3,1}\};$$

•
$$L_2^3 = \{\ell_2, x_{1,3}, x_{2,1}, x_{3,2}\}.$$

Part III: An algebraic construction of a (not necessarily finite)	
projective plane	

 \bullet Let $\mathbb F$ be any field.

- Let F be any field.
 + and · are, respectively, addition and multiplication in F.
 - 0 and 1 are, respectively, the additive and multiplicative identity in F.

- Let F be any field.
 + and · are, respectively, addition and multiplication in F.
 - 0 and 1 are, respectively, the additive and multiplicative identity in F.
- We construct the projective plane $\mathbb{F}P^2$ as follows.

- Let $\mathbb F$ be any field.
 - + and \cdot are, respectively, addition and multiplication in \mathbb{F} . • 0 and 1 are, respectively, the additive and multiplicative
 - ullet 0 and 1 are, respectively, the additive and multiplicative identity in \mathbb{F} .
- ullet We construct the projective plane $\mathbb{F}P^2$ as follows.
- Let $T := \mathbb{F}^3 \setminus \{(0,0,0)\}.$

- Let F be any field. \bullet + and \cdot are, respectively, addition and multiplication in \mathbb{F} .
 - 0 and 1 are, respectively, the additive and multiplicative identity in \mathbb{F} .
- We construct the projective plane $\mathbb{F}P^2$ as follows.
- Let $T := \mathbb{F}^3 \setminus \{(0,0,0)\}.$
- For $(x_1, y_1, z_1), (x_2, y_2, z_2) \in T$: $(x_1, y_1, z_1) \sim (x_2, y_2, z_2)$ if and only if there exists a scalar $\lambda \in \mathbb{F} \setminus \{0\}$ s.t. $(x_2, y_2, z_2) = \lambda(x_1, y_1, z_1)$, i.e. $x_2 = \lambda x_1, y_2 = \lambda y_1, z_2 = \lambda z_1$.

- Let F be any field. \bullet + and \cdot are, respectively, addition and multiplication in \mathbb{F} .
 - 0 and 1 are, respectively, the additive and multiplicative identity in \mathbb{F} .
- We construct the projective plane $\mathbb{F}P^2$ as follows.
- Let $T := \mathbb{F}^3 \setminus \{(0,0,0)\}.$

• The equivalence class of $(x, y, z) \in T$ is $(x, y, z) = \{(\lambda x, \lambda y, \lambda z) \mid \lambda \in \mathbb{F} \setminus \{0\}\}.$

- For $(x_1, y_1, z_1), (x_2, y_2, z_2) \in T$: $(x_1, y_1, z_1) \sim (x_2, y_2, z_2)$ if and only if there exists a scalar $\lambda \in \mathbb{F} \setminus \{0\}$ s.t.
- $(x_2, y_2, z_2) = \lambda(x_1, y_1, z_1)$, i.e. $x_2 = \lambda x_1$, $y_2 = \lambda y_1$, $z_2 = \lambda z_1$. • Obviously, \sim is an equivalence relation on T.

- Let F be any field. \bullet + and \cdot are, respectively, addition and multiplication in \mathbb{F} .
 - 0 and 1 are, respectively, the additive and multiplicative identity in \mathbb{F} .
- We construct the projective plane $\mathbb{F}P^2$ as follows.

 $(x, y, z) = \{(\lambda x, \lambda y, \lambda z) \mid \lambda \in \mathbb{F} \setminus \{0\}\}.$ • Points of $\mathbb{F}P^2$ are the equivalence classes of \sim .

- Let $T := \mathbb{F}^3 \setminus \{(0,0,0)\}.$
- For $(x_1, y_1, z_1), (x_2, y_2, z_2) \in T$: $(x_1, y_1, z_1) \sim (x_2, y_2, z_2)$ if and only if there exists a scalar $\lambda \in \mathbb{F} \setminus \{0\}$ s.t.
- $(x_2, y_2, z_2) = \lambda(x_1, y_1, z_1)$, i.e. $x_2 = \lambda x_1$, $y_2 = \lambda y_1$, $z_2 = \lambda z_1$.
- Obviously, \sim is an equivalence relation on T. • The equivalence class of $(x, y, z) \in T$ is

- Let F be any field. \bullet + and \cdot are, respectively, addition and multiplication in \mathbb{F} .
 - 0 and 1 are, respectively, the additive and multiplicative identity in \mathbb{F} .
- We construct the projective plane $\mathbb{F}P^2$ as follows.
- Let $T := \mathbb{F}^3 \setminus \{(0,0,0)\}.$ • For $(x_1, y_1, z_1), (x_2, y_2, z_2) \in T$: $(x_1, y_1, z_1) \sim (x_2, y_2, z_2)$ if
- and only if there exists a scalar $\lambda \in \mathbb{F} \setminus \{0\}$ s.t.
- $(x_2, y_2, z_2) = \lambda(x_1, y_1, z_1)$, i.e. $x_2 = \lambda x_1$, $y_2 = \lambda y_1$, $z_2 = \lambda z_1$. • Obviously, \sim is an equivalence relation on T.
- The equivalence class of $(x, y, z) \in T$ is
- $(x, y, z) = \{(\lambda x, \lambda y, \lambda z) \mid \lambda \in \mathbb{F} \setminus \{0\}\}.$ • Points of $\mathbb{F}P^2$ are the equivalence classes of \sim .
- For each $(a, b, c) \in T$:

- Let F be any field.
 + and · are, respectively, addition and multiplication in F.
 - 0 and 1 are, respectively, the additive and multiplicative identity in F.
- ullet We construct the projective plane $\mathbb{F}P^2$ as follows.
- Let $T := \mathbb{F}^3 \setminus \{(0,0,0)\}$. • For $(x_1,y_1,z_1), (x_2,y_2,z_2) \in T$: $(x_1,y_1,z_1) \sim (x_2,y_2,z_2)$ if and only if there exists a scalar $\lambda \in \mathbb{F} \setminus \{0\}$ s.t.
- and only if there exists a scalar $\lambda \in \mathbb{F} \setminus \{0\}$ s.t. $(x_2, y_2, z_2) = \lambda(x_1, y_1, z_1)$, i.e. $x_2 = \lambda x_1$, $y_2 = \lambda y_1$, $z_2 = \lambda z_1$. Obviously, \sim is an equivalence relation on T.
- The equivalence class of $(x, y, z) \in T$ is $(x, y, z) = \{(\lambda x, \lambda y, \lambda z) \mid \lambda \in \mathbb{F} \setminus \{0\}\}.$
- Points of $\mathbb{F}P^2$ are the equivalence classes of \sim .
- For each $(a, b, c) \in T$: $P(a, b, c) = \{ \overline{(x, y, z)} \mid (x, y, z) \in T, ax + by + cz = 0 \}.$
 - $P(a,b,c) = \{(x,y,z) \mid (x,y,z) \in T, ax + by + cz \}$ • For all $(a_1,b_1,c_1), (a_2,b_2,c_2) \in T$, we have that $P(a_1,b_1,c_1) = P(a_2,b_2,c_2)$ if and only if $(a_1,b_1,c_1) \sim (a_2,b_2,c_2)$.

- Let F be any field. \bullet + and \cdot are, respectively, addition and multiplication in \mathbb{F} .
 - 0 and 1 are, respectively, the additive and multiplicative identity in \mathbb{F} .
- We construct the projective plane $\mathbb{F}P^2$ as follows.
- Let $T := \mathbb{F}^3 \setminus \{(0,0,0)\}.$ • For $(x_1, y_1, z_1), (x_2, y_2, z_2) \in T$: $(x_1, y_1, z_1) \sim (x_2, y_2, z_2)$ if and only if there exists a scalar $\lambda \in \mathbb{F} \setminus \{0\}$ s.t.
- $(x_2, y_2, z_2) = \lambda(x_1, y_1, z_1)$, i.e. $x_2 = \lambda x_1$, $y_2 = \lambda y_1$, $z_2 = \lambda z_1$. • Obviously, \sim is an equivalence relation on T.
- The equivalence class of $(x, y, z) \in T$ is
- $(x, y, z) = \{(\lambda x, \lambda y, \lambda z) \mid \lambda \in \mathbb{F} \setminus \{0\}\}.$
 - Points of $\mathbb{F}P^2$ are the equivalence classes of \sim . • For each $(a, b, c) \in T$: $P(a.b.c) = {\overline{(x,y,z)} \mid (x,y,z) \in T, ax + by + cz = 0}.$
 - For all $(a_1, b_1, c_1), (a_2, b_2, c_2) \in T$, we have that $P(a_1, b_1, c_1) = P(a_2, b_2, c_2)$ if and only if $(a_1, b_1, c_1) \sim (a_2, b_2, c_2).$
 - Lines are the sets P(a, b, c) with $(a, b, c) \in T$.

For each field \mathbb{F} , $\mathbb{F}P^2$ is a projective plane.

For each field \mathbb{F} , $\mathbb{F}P^2$ is a projective plane.

Proof. Reminder: for $(a, b, c) \in T$, $P(a, b, c) = \{\overline{(x, y, z)} \mid (x, y, z) \in T, ax + by + cz = 0\}$.

For each field \mathbb{F} , $\mathbb{F}P^2$ is a projective plane.

Proof. Reminder: for $(a, b, c) \in T$, $P(a, b, c) = \{\overline{(x, y, z)} \mid (x, y, z) \in T, ax + by + cz = 0\}$.

First, we check that (P0) is satisfied for

$$Q = \{ \overline{(1,0,0)}, \overline{(0,1,0)}, \overline{(0,0,1)}, \overline{(1,1,1)} \}.$$

For each field \mathbb{F} , $\mathbb{F}P^2$ is a projective plane.

Proof. Reminder: for $(a, b, c) \in T$, $P(a, b, c) = \{\overline{(x, y, z)} \mid (x, y, z) \in T, ax + by + cz = 0\}$.

First, we check that (P0) is satisfied for

$$Q = \{ \overline{(1,0,0)}, \overline{(0,1,0)}, \overline{(0,0,1)}, \overline{(1,1,1)} \}.$$

We note that each of the following four matrices

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 \\
1 & 1 & 1 \\
1 & 0 & 0
\end{bmatrix}, \begin{bmatrix}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}$$

has rank three.

For each field \mathbb{F} , $\mathbb{F}P^2$ is a projective plane.

Proof. Reminder: for
$$(a, b, c) \in T$$
, $P(a, b, c) = \{ \overline{(x, y, z)} \mid (x, y, z) \in T, ax + by + cz = 0 \}$.

First, we check that (P0) is satisfied for

$$Q = {\overline{(1,0,0)}, \overline{(0,1,0)}, \overline{(0,0,1)}, \overline{(1,1,1)}}.$$

We note that each of the following four matrices

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

has rank three. So, if A is any one of the four matrices above, then $A\mathbf{x} = \mathbf{0}$ has only the trivial solution, and consequently, no line of $\mathbb{F}P^2$ contains three (or more) points of Q.

For each field \mathbb{F} , $\mathbb{F}P^2$ is a projective plane.

Proof. Reminder: for
$$(a, b, c) \in T$$
, $P(a, b, c) = \{ \overline{(x, y, z)} \mid (x, y, z) \in T, ax + by + cz = 0 \}$.

First, we check that (P0) is satisfied for

$$Q = {\overline{(1,0,0)}, \overline{(0,1,0)}, \overline{(0,0,1)}, \overline{(1,1,1)}}.$$

We note that each of the following four matrices

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

has rank three. So, if A is any one of the four matrices above, then $A\mathbf{x} = \mathbf{0}$ has only the trivial solution, and consequently, no line of $\mathbb{F}P^2$ contains three (or more) points of Q. So, (P0) is satisfied.

For each field \mathbb{F} , $\mathbb{F}P^2$ is a projective plane.

Proof (continued). Reminder: for $(a, b, c) \in T$, $P(a, b, c) = \{ \overline{(x, y, z)} \mid (x, y, z) \in T, ax + by + cz = 0 \}.$

For each field \mathbb{F} , $\mathbb{F}P^2$ is a projective plane.

Proof (continued). Reminder: for $(a, b, c) \in T$, $P(a, b, c) = \{ \overline{(x, y, z)} \mid (x, y, z) \in T, ax + by + cz = 0 \}$.

Next, we check that (P1) is satisfied. We fix distinct lines P_1, P_2 of $\mathbb{F}P^2$, and we show that $|P_1 \cap P_2| = 1$.

For each field \mathbb{F} , $\mathbb{F}P^2$ is a projective plane.

Proof (continued). Reminder: for $(a, b, c) \in T$, $P(a, b, c) = \{ \overline{(x, y, z)} \mid (x, y, z) \in T, ax + by + cz = 0 \}$.

Next, we check that (P1) is satisfied. We fix distinct lines P_1 , P_2 of $\mathbb{F}P^2$, and we show that $|P_1 \cap P_2| = 1$. By construction, there exist $(a_1, b_1, c_1), (a_2, b_2, c_2) \in T$ s.t. $P_1 = P(a_1, b_1, c_1)$ and $P_2 = P(a_2, b_2, c_2)$.

For each field \mathbb{F} , $\mathbb{F}P^2$ is a projective plane.

Proof (continued). Reminder: for
$$(a, b, c) \in T$$
, $P(a, b, c) = \{ \overline{(x, y, z)} \mid (x, y, z) \in T, ax + by + cz = 0 \}$.

Next, we check that (P1) is satisfied. We fix distinct lines P_1, P_2 of $\mathbb{F}P^2$, and we show that $|P_1 \cap P_2| = 1$. By construction, there exist $(a_1, b_1, c_1), (a_2, b_2, c_2) \in T$ s.t. $P_1 = P(a_1, b_1, c_1)$ and $P_2 = P(a_2, b_2, c_2)$. Since $P_1 \neq P_2$, we have that $(a_1, b_1, c_1) \not\sim (a_2, b_2, c_2)$, that is, neither one of $(a_1, b_1, c_1), (a_2, b_2, c_2)$ is a scalar multiple of the other.

For each field \mathbb{F} , $\mathbb{F}P^2$ is a projective plane.

Proof (continued). Reminder: for
$$(a, b, c) \in T$$
, $P(a, b, c) = \{ \overline{(x, y, z)} \mid (x, y, z) \in T, ax + by + cz = 0 \}$.

Next, we check that (P1) is satisfied. We fix distinct lines P_1, P_2 of $\mathbb{F}P^2$, and we show that $|P_1 \cap P_2| = 1$. By construction, there exist $(a_1, b_1, c_1), (a_2, b_2, c_2) \in T$ s.t. $P_1 = P(a_1, b_1, c_1)$ and $P_2 = P(a_2, b_2, c_2)$. Since $P_1 \neq P_2$, we have that $(a_1, b_1, c_1) \not\sim (a_2, b_2, c_2)$, that is, neither one of $(a_1, b_1, c_1), (a_2, b_2, c_2)$ is a scalar multiple of the other. We now use Linear Algebra.

For each field \mathbb{F} , $\mathbb{F}P^2$ is a projective plane.

Proof (continued). Reminder: for $(a, b, c) \in T$, $P(a, b, c) = \{ \overline{(x, y, z)} \mid (x, y, z) \in T, ax + by + cz = 0 \}$.

$$A := \left[\begin{array}{ccc} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{array} \right].$$

For each field \mathbb{F} , $\mathbb{F}P^2$ is a projective plane.

Proof (continued). Reminder: for $(a, b, c) \in T$, $P(a, b, c) = \{ \overline{(x, y, z)} \mid (x, y, z) \in T, ax + by + cz = 0 \}$.

$$A := \left| \begin{array}{ccc} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{array} \right|.$$

Since neither row of A is a scalar multiple of the other, rank(A) = 2.

For each field \mathbb{F} , $\mathbb{F}P^2$ is a projective plane.

Proof (continued). Reminder: for $(a, b, c) \in T$, $P(a, b, c) = \{ \overline{(x, y, z)} \mid (x, y, z) \in T, ax + by + cz = 0 \}$.

$$A := \left[\begin{array}{ccc} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{array}\right].$$

Since neither row of A is a scalar multiple of the other, rank(A) = 2. By the Rank-Nullity Theorem, we have that $rank(A) + dim \ ker(A) = 3$.

For each field \mathbb{F} , $\mathbb{F}P^2$ is a projective plane.

Proof (continued). Reminder: for $(a, b, c) \in T$, $P(a, b, c) = \{ \overline{(x, y, z)} \mid (x, y, z) \in T, ax + by + cz = 0 \}$.

$$A := \left[\begin{array}{ccc} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{array}\right].$$

Since neither row of A is a scalar multiple of the other, rank(A) = 2. By the Rank-Nullity Theorem, we have that $rank(A) + dim \ ker(A) = 3$. So, $dim \ ker(A) = 1$.

For each field \mathbb{F} , $\mathbb{F}P^2$ is a projective plane.

Proof (continued). Reminder: for $(a, b, c) \in T$, $P(a, b, c) = \{ \overline{(x, y, z)} \mid (x, y, z) \in T, ax + by + cz = 0 \}$.

$$A := \left[\begin{array}{ccc} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{array} \right].$$

Since neither row of A is a scalar multiple of the other, rank(A) = 2. By the Rank-Nullity Theorem, we have that $rank(A) + dim \ ker(A) = 3$. So, $dim \ ker(A) = 1$.

Let $\{(x, y, z)^T\}$ be a basis for $\ker(A)$, so that $\ker(A) = \{(\lambda x, \lambda y, \lambda z)^T \mid \lambda \in \mathbb{F}\}.$

For each field \mathbb{F} , $\mathbb{F}P^2$ is a projective plane.

Proof (continued). Reminder: for $(a, b, c) \in T$, $P(a, b, c) = \{ \overline{(x, y, z)} \mid (x, y, z) \in T, ax + by + cz = 0 \}$.

$$A := \left[\begin{array}{ccc} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{array} \right].$$

Since neither row of A is a scalar multiple of the other, rank(A) = 2. By the Rank-Nullity Theorem, we have that $rank(A) + dim \ ker(A) = 3$. So, $dim \ ker(A) = 1$.

Let $\{(x,y,z)^T\}$ be a basis for $\ker(A)$, so that $\ker(A) = \{(\lambda x, \lambda y, \lambda z)^T \mid \lambda \in \mathbb{F}\}$. Then $P_1 \cap P_2 = \{\overline{(x,y,z)}\}$, and we deduce $|P_1 \cap P_2| = 1$. Thus, (P1) is satisfied.

For each field \mathbb{F} , $\mathbb{F}P^2$ is a projective plane.

Proof (continued). Reminder: for $(a, b, c) \in T$, $P(a, b, c) = \{ \overline{(x, y, z)} \mid (x, y, z) \in T, ax + by + cz = 0 \}$.

$$A := \left[\begin{array}{ccc} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{array} \right].$$

Since neither row of A is a scalar multiple of the other, rank(A) = 2. By the Rank-Nullity Theorem, we have that rank(A) + dim ker(A) = 3. So, dim ker(A) = 1.

Let $\{(x,y,z)^T\}$ be a basis for $\ker(A)$, so that $\ker(A) = \{(\lambda x, \lambda y, \lambda z)^T \mid \lambda \in \mathbb{F}\}$. Then $P_1 \cap P_2 = \{\overline{(x,y,z)}\}$, and we deduce $|P_1 \cap P_2| = 1$. Thus, (P1) is satisfied.

The proof of (P2) is similar.

For each field \mathbb{F} , $\mathbb{F}P^2$ is a projective plane.

Theorem 1.4 from Lecture Notes 4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- (a) for each point $x \in X$, exactly n+1 lines in $\mathcal P$ pass through x;
- (b) $|X| = n^2 + n + 1$;
- (c) $|\mathcal{P}| = n^2 + n + 1$.

For each field \mathbb{F} , $\mathbb{F}P^2$ is a projective plane.

Theorem 1.4 from Lecture Notes 4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- (a) for each point $x \in X$, exactly n+1 lines in \mathcal{P} pass through x;
- (b) $|X| = n^2 + n + 1$;
- (c) $|\mathcal{P}| = n^2 + n + 1$.

Theorem 3.2

If \mathbb{F} is a finite field, with $|\mathbb{F}| = n$, then $\mathbb{F}P^2$ is a finite projective plane of order n.

Proof. By Theorem 3.1, $\mathbb{F}P^2$ is a projective plane.

For each field \mathbb{F} , $\mathbb{F}P^2$ is a projective plane.

Theorem 1.4 from Lecture Notes 4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- (a) for each point $x \in X$, exactly n+1 lines in \mathcal{P} pass through x;
- (b) $|X| = n^2 + n + 1$;
- (c) $|\mathcal{P}| = n^2 + n + 1$.

Theorem 3.2

If \mathbb{F} is a finite field, with $|\mathbb{F}| = n$, then $\mathbb{F}P^2$ is a finite projective plane of order n.

Proof. By Theorem 3.1, $\mathbb{F}P^2$ is a projective plane. Since \mathbb{F} is finite, so is $\mathbb{F}P^2$.

For each field \mathbb{F} , $\mathbb{F}P^2$ is a projective plane.

Theorem 1.4 from Lecture Notes 4

Let (X, \mathcal{P}) be a finite projective plane of order n. Then all the following hold:

- (a) for each point $x \in X$, exactly n+1 lines in \mathcal{P} pass through x;
- (b) $|X| = n^2 + n + 1$;
- (c) $|\mathcal{P}| = n^2 + n + 1$.

Theorem 3.2

If \mathbb{F} is a finite field, with $|\mathbb{F}| = n$, then $\mathbb{F}P^2$ is a finite projective plane of order n.

Proof. By Theorem 3.1, $\mathbb{F}P^2$ is a projective plane. Since \mathbb{F} is finite, so is $\mathbb{F}P^2$. In view of Theorem 1.4 from Lecture Notes 4, it suffices to show that $\mathbb{F}P^2$ has precisely n^2+n+1 points.

If $\mathbb F$ is a finite field, with $|\mathbb F|=n$, then $\mathbb FP^2$ is a finite projective plane of order n.

Proof (continued). Reminder: WTS $\mathbb{F}P^2$ has $n^2 + n + 1$ points.

If \mathbb{F} is a finite field, with $|\mathbb{F}| = n$, then $\mathbb{F}P^2$ is a finite projective plane of order n.

Proof (continued). Reminder: WTS $\mathbb{F}P^2$ has n^2+n+1 points. Note that for all $(x,y,z)\in T$, there exists a unique triple $(x',y',z')\in T$ s.t. the last non-zero coordinate of (x',y',z') is 1 and $(x,y,z)\sim (x',y',z')$.

If \mathbb{F} is a finite field, with $|\mathbb{F}| = n$, then $\mathbb{F}P^2$ is a finite projective plane of order n.

Proof (continued). Reminder: WTS $\mathbb{F}P^2$ has n^2+n+1 points. Note that for all $(x,y,z)\in T$, there exists a unique triple $(x',y',z')\in T$ s.t. the last non-zero coordinate of (x',y',z') is 1 and $(x,y,z)\sim (x',y',z')$. Indeed, for existence:

- if $z \neq 0$, then $(x, y, z) \sim (z^{-1}x, z^{-1}y, 1)$;
- if z = 0 and $y \neq 0$, then $(x, y, z) \sim (y^{-1}x, 1, 0)$;
- if y=z=0, then $x\neq 0$ (since x,y,z cannot all be zero) and $(x,y,z)\sim (1,0,0)$.

(Uniqueness is easy.)

If \mathbb{F} is a finite field, with $|\mathbb{F}| = n$, then $\mathbb{F}P^2$ is a finite projective plane of order n.

Proof (continued). Reminder: WTS $\mathbb{F}P^2$ has n^2+n+1 points. Note that for all $(x,y,z)\in T$, there exists a unique triple $(x',y',z')\in T$ s.t. the last non-zero coordinate of (x',y',z') is 1 and $(x,y,z)\sim (x',y',z')$. Indeed, for existence:

- if $z \neq 0$, then $(x, y, z) \sim (z^{-1}x, z^{-1}y, 1)$;
- if z = 0 and $y \neq 0$, then $(x, y, z) \sim (y^{-1}x, 1, 0)$;
- if y = z = 0, then $x \neq 0$ (since x, y, z cannot all be zero) and $(x, y, z) \sim (1, 0, 0)$.

(Uniqueness is easy.)

There are n^2 triples of the form (x, y, 1) in T; there are n triples of the form (x, 1, 0) in T; and there is one triple (1, 0, 0) in T.

If \mathbb{F} is a finite field, with $|\mathbb{F}| = n$, then $\mathbb{F}P^2$ is a finite projective plane of order n.

Proof (continued). Reminder: WTS $\mathbb{F}P^2$ has n^2+n+1 points. Note that for all $(x,y,z)\in T$, there exists a unique triple $(x',y',z')\in T$ s.t. the last non-zero coordinate of (x',y',z') is 1 and $(x,y,z)\sim (x',y',z')$. Indeed, for existence:

- if $z \neq 0$, then $(x, y, z) \sim (z^{-1}x, z^{-1}y, 1)$;
- if z = 0 and $y \neq 0$, then $(x, y, z) \sim (y^{-1}x, 1, 0)$;
- if y = z = 0, then $x \neq 0$ (since x, y, z cannot all be zero) and $(x, y, z) \sim (1, 0, 0)$.

(Uniqueness is easy.)

There are n^2 triples of the form (x,y,1) in T; there are n triples of the form (x,1,0) in T; and there is one triple (1,0,0) in T. So, there are n^2+n+1 equivalence classes of \sim , that is, $\mathbb{F}P^2$ has n^2+n+1 points.

If \mathbb{F} is a finite field, with $|\mathbb{F}| = n$, then $\mathbb{F}P^2$ is a finite projective plane of order n.

Proof (continued). Reminder: WTS $\mathbb{F}P^2$ has n^2+n+1 points. Note that for all $(x,y,z)\in T$, there exists a unique triple $(x',y',z')\in T$ s.t. the last non-zero coordinate of (x',y',z') is 1 and $(x,y,z)\sim (x',y',z')$. Indeed, for existence:

- if $z \neq 0$, then $(x, y, z) \sim (z^{-1}x, z^{-1}y, 1)$;
- if z = 0 and $y \neq 0$, then $(x, y, z) \sim (y^{-1}x, 1, 0)$;
- if y = z = 0, then $x \neq 0$ (since x, y, z cannot all be zero) and $(x, y, z) \sim (1, 0, 0)$.

(Uniqueness is easy.)

There are n^2 triples of the form (x, y, 1) in T; there are n triples of the form (x, 1, 0) in T; and there is one triple (1, 0, 0) in T. So, there are $n^2 + n + 1$ equivalence classes of \sim , that is, $\mathbb{F}P^2$ has $n^2 + n + 1$ points. So, $\mathbb{F}P^2$ is of order n.

If \mathbb{F} is a finite field, with $|\mathbb{F}| = n$, then $\mathbb{F}P^2$ is a finite projective plane of order n.

• It is well-known that for all integers $n \ge 2$, there exists a field of size n if and only if n is a power of a prime (that is, if and only if there exist a prime number p and a positive integer k s.t. $n = p^k$).

- It is well-known that for all integers $n \ge 2$, there exists a field of size n if and only if n is a power of a prime (that is, if and only if there exist a prime number p and a positive integer k s.t. $n = p^k$).
- This, together with Theorem 3.2, implies that if $n \ge 2$ is a power of a prime, then there is a finite projective plane of order n.

- It is well-known that for all integers $n \ge 2$, there exists a field of size n if and only if n is a power of a prime (that is, if and only if there exist a prime number p and a positive integer k s.t. $n = p^k$).
- This, together with Theorem 3.2, implies that if $n \ge 2$ is a power of a prime, then there is a finite projective plane of order n.
- However, it is **not** known whether there exists a finite projective plane whose order is not a power of a prime.

- It is well-known that for all integers $n \ge 2$, there exists a field of size n if and only if n is a power of a prime (that is, if and only if there exist a prime number p and a positive integer k s.t. $n = p^k$).
- This, together with Theorem 3.2, implies that if $n \ge 2$ is a power of a prime, then there is a finite projective plane of order n.
- However, it is **not** known whether there exists a finite projective plane whose order is not a power of a prime.
- It is, however, known that there are no finite projective planes of order 6 or 10.

- It is well-known that for all integers $n \ge 2$, there exists a field of size n if and only if n is a power of a prime (that is, if and only if there exist a prime number p and a positive integer k s.t. $n = p^k$).
- This, together with Theorem 3.2, implies that if $n \ge 2$ is a power of a prime, then there is a finite projective plane of order n.
- However, it is **not** known whether there exists a finite projective plane whose order is not a power of a prime.
- It is, however, known that there are no finite projective planes of order 6 or 10.
- It is **not** known whether there are finite projective planes of order 12.