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Lecture #5

Finite projective planes (part II)

Irena Penev

1 Reminder from the previous lecture

A projective plane is a set system (X,P)1 that satisfies the following three
properties:

(P0) there exists a 4-element subset Q ⊆ X such that every P ∈ P satisfies
|P ∩Q| ≤ 2;

(P1) all distinct P1, P2 ∈ P satisfy |P1 ∩ P2| = 1;

(P2) for all distinct x1, x2 ∈ X, there exists a unique P ∈ P such that
x1, x2 ∈ P .

Elements of X are called points, and elements of P are called lines of the
projective plane (X,P).

A projective plane (X,P) is finite if X is finite.
In the previous lecture, we proved several results about finite projective

planes, which we state below for reference.

Proposition 1.2 from Lecture Notes 4. Let (X,P) be a finite projective
plane. Then all lines in P have the same number of points.

The order of a finite projective plane (X,P) is the number |P | − 1,
where P is any line in P.2 By Proposition 1.2 from Lecture Notes 4, this is
well-defined.

Proposition 1.3 from Lecture Notes 4. The order of any finite projective
plane is at least two.

1This means that X is a set and P ⊆P(X), where P(X) is the power set (i.e. the set
of all subsets) of X.

2So, if (X,P) is a finite projective plane of order n, then each line in P contains exactly
n+ 1 points.
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1 2 3

2 3 1

3 1 2

1 2 3

3 1 2

2 3 1

Figure 2.1: Two 3× 3 Latin squares.

(1, 1) (2, 2) (3, 3)

(2, 3) (3, 1) (1, 2)

(3, 2) (1, 3) (2, 1)

Figure 2.2: The matrix obtained by superimposing the left (red) 3× 3 Latin
square from Figure 2.1 onto the right (blue) one.

Theorem 1.4 from Lecture Notes 4. Let (X,P) be a finite projective
plane of order n. Then all the following hold:

(a) for each point x ∈ X, exactly n+ 1 lines in P pass through x;

(b) |X| = n2 + n+ 1;

(c) |P| = n2 + n+ 1.

In the previous lecture, we also showed that the “dual” of a finite projec-
tive plane is again a projective plane (see Theorem 2.2 from Lecture Notes 4),
but we will not need that result in this lecture.

2 Finite projective planes and Latin squares

For a positive integer n, an n× n Latin square is an n× n array (or matrix)
whose entries are numbers 1, . . . , n, and in which each number 1, . . . , n occurs
exactly once in each row and in each column. Two 3× 3 Latin squares are
represented in Figure 2.1. When we write that [ai,j ]n×n is a Latin square, we
mean that this Latin square is of size n×n, and that for all i, j ∈ {1, . . . , n},
the (i, j)-th entry (i.e. the entry in the i-th row and j-th column) of the
Latin square is ai,j . Now, two n×n Latin squares, say [ai,j ]n×n and [bi,j ]n×n,
are orthogonal if each entry of the matrix matrix obtained by superimposing
A on B, i.e. of the matrix [(ai,j , bi,j)]n×n, is different. Since an n× n matrix
has n2 entries, and the Cartesian product {1, . . . , n}× {1, . . . , n} has exactly
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n2 elements, we see that two n× n Latin squares are orthogonal if and only
if each element of {1, . . . , n} × {1, . . . , n} appears exactly once in the matrix
obtained by superimposing the two n× n Latin squares. For instance, the
Latin squares from Figure 2.1 are orthogonal, as we can see from Figure 2.2.

For a positive integer n, a Latin square A = [ai,j ]n×n and a permutation
π of the set {1, . . . , n}, we set π(A) = [π(ai,j)]n×n; obviously, π(A) is a Latin
square. For example, if

1 3 2

3 2 1

2 1 3

A =

and if π =

(
1 2 3
1 3 2

)
, then

1 2 3

2 3 1

3 1 2

π(A) = .

Proposition 2.1. Let A = [ai,j ]n×n and B = [bi,j ]n×n be orthogonal n× n
Latin squares, and let πA, πB be permutations of the set {1, . . . , n}. Then
πA(A) and πB(B) are orthogonal Latin squares.

Proof. Obvious.3

Theorem 2.2. Let n ≥ 2 be an integer, and let M be a set of pairwise
orthogonal n× n Latin squares. Then |M | ≤ n− 1.

Proof. We may assume that M 6= ∅, for otherwise, the result is immediate.
Set t = |M | and M = {A1, . . . , At}; we must show that t ≤ n− 1. First, for
each i ∈ {1, . . . , t}, we let πi be the permutation of {1, . . . , n} that transforms
the first row of Ai into 1, . . . , n, and let A′i = πi(Ai). By Proposition 2.1,
Latin squares A′1, . . . , A

′
t are pairwise orthogonal. Now, since 1 is (1, 1)-th

entry (i.e. the entry in the first row and first column) of all the matrices
A′1, . . . , A

′
t, we see that 1 is not the (2, 1)-th entry (i.e. the entry in the second

row and first column) of any of the Latin squares A′1, . . . , A
′
t. Further, no two

of A′1, . . . , A
′
t can have the same number in the (2, 1)-th entry; indeed, if for

some distinct i, j ∈ {1, . . . , t}, we had that the (2, 1)-th entry of A′i and A′j
was the same, say k, then (k, k) would be both the (1, k)-th and the (2, 1)-th
entry of the matrix obtained by superimposing A′i and A′j , contrary to the

3Can you see why?
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fact that A′i and A′j are orthogonal. So, each of A′1, . . . , A
′
t has a number

from 2, . . . , n in the (2, 1)-th entry, and no two of A′1, . . . , A
′
t have the same

(2, 1)-th entry; thus, t ≤ n− 1.

Theorem 2.3. Let n ≥ 2 be an integer. Then the following are equivalent:

(a) there exists a finite projective plane of order n;

(b) there exists a collection of n−1 pairwise orthogonal n×n Latin squares.

Proof of “(b) =⇒ (a)” (outline). Assume that (b) is true, and let L1, . . . , Ln−1
be pairwise orthogonal n× n Latin squares. We will give a construction of
the corresponding finite projective plane of order n.4

Our finite projective plane has n2 + n + 1 points, and we call them
r, s, `1, . . . , `n−1, x1,1, . . . , x1,n, x2,1, . . . , x2,n, . . . , xn,1, . . . , xn,n.5

Our finite projective plane has n2 +n+ 1 lines, and we construct them as
follows. One line is B = {r, s, `1, . . . , `n−1}. Further, for each i ∈ {1, . . . , n},
we have the line Ri = {r, xi,1, . . . , xi,n}; and for each j ∈ {1, . . . , n}, we have
the line Sj = {s, x1,j , . . . , xn,j}.6 The points and lines constructed thus far are
represented in Figure 2.3. Now, for each i ∈ {1, . . . , n−1}, the point `i belongs
to the (already constructed) line B, and to n other lines, call them L1

i , . . . , L
n
i ,

which we construct as follows. For all i ∈ {1, . . . , n− 1} and j ∈ {1, . . . , n},
we set Lj

i = {`i} ∪ {xp,q | 1 ≤ p, q ≤ n, and the (p, q)-th entry of Li is j}.
The proof of correctness (i.e. of the fact that we have indeed constructed

a finite projective plane) is left for HW.7

We remark that the proof of the “(a) =⇒ (b)” part of Theorem 2.3 is
similar to the “(b) =⇒ (a)” direction, only it goes the other way (from a
finite projective plne to a collection of pairwise orthogonal Latin squares). To
check your understanding, you can try to give the construction by yourself.

Example 2.4. Let L1 and L2 be, respectively, the left (red) and right (blue)
Latin Square from Figure 2.1. The finite projective plane of order 3 that
corresponds to {L1, L2} is as follows. Its vertices are

r, s, `1, `2, x1,1, x1,2, x1,3, x2,1, x2,2, x2,3, x3,1, x3,2, x3,3.

Its lines are as follows:

4For HW, you will prove that this construction is correct.
5So, we have the points r and s; we have n− 1 points `i; and we have n2 points xi,j .

In total, we have 2 + (n− 1) + n2 = n2 + n+ 1 points.
6We remark that for all i, j ∈ {1, . . . , n}, we have that Ri∩Sj = {xi,j}. We also remark

that, so far, we have constructed 2n+1 lines, and we need to construct (n2+n+1)−(2n+1) =
n2 − n = (n− 1)n more.

7We remark, however, that once we have shown that we have indeed constructed a
finite projective plane, Theorem 1.4 from Lecture Notes 4 immediately implies that the
order of our finite projective plane is n (e.g. because we have n2 + n+ 1 points).
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Figure 2.3: Points and lines (except the Lj
i ’s) of the projective plane from

the proof of Theorem 2.3.

• B = {r, s, `1, `2};

• R1 = {r, x1,1, x1,2, x1,3};

• R2 = {r, x2,1, x2,2, x2,3};

• R3 = {r, x3,1, x3,2, x3,3};

• S1 = {s, x1,1, x2,1, x3,1};

• S2 = {s, x1,2, x2,2, x3,2};

• S3 = {s, x1,3, x2,3, x3,3};

• L1
1 = {`1, x1,1, x2,3, x3,2};

• L2
1 = {`1, x1,2, x2,1, x3,3};

• L3
1 = {`1, x1,3, x2,2, x3,1};

• L1
2 = {`2, x1,1, x2,2, x3,3};

• L2
2 = {`2, x1,2, x2,3, x3,1};

• L3
2 = {`2, x1,3, x2,1, x3,2}.

3 An algebraic construction of projective planes

Let F be any field. As usual, + and · are, respectively, addition and multipli-
cation in F, and 0 and 1 are, respectively, the additive and multiplicative
identity in F. We construct the projective plane FP 2 as follows. We be-
gin with the set T := F3 \ {(0, 0, 0)}, i.e. the set of all ordered triples of
elements of F, except for the triple whose entries are all zero. We then
form a binary relation ∼ on T as follows: for (x1, y1, z1), (x2, y2, z2) ∈ T , we
have (x1, y1, z1) ∼ (x2, y2, z2) if and only if there exists a scalar λ ∈ F \ {0}
such that (x2, y2, z2) = λ(x1, y1, z1).

8 It is easy to see that ∼ is an equiv-
alence relation on T .9 The set of points of FP 2 is T/∼; in other words,
points of FP 2 are the equivalence classes of the equivalence relation ∼ on

8This means that x2 = λx1, y2 = λy1, and z2 = λz1.
9Check this!
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T . We will denote the equivalence class of (x, y, z) ∈ T by (x, y, z), so that
(x, y, z) = {(λx, λy, λz) | λ ∈ F \ {0}}. Thus, the set of points of FP 2 is pre-
cisely the set {(x, y, z) | (x, y, z) ∈ T}. Next, for each (a, b, c) ∈ T , we define
P (a, b, c) to be the set of all points (x, y, z) such that ax+ by+ cz = 0;10 the
lines of FP 2 are precisely the sets P (a, b, c) with (a, b, c) ∈ T . We remark that
for all (a1, b1, c1), (a2, b2, c2) ∈ T , we have that P (a1, b1, c1) = P (a2, b2, c2) if
and only if (a1, b1, c1) ∼ (a2, b2, c2).

11

Theorem 3.1. For each field F, FP 2 is a projective plane.

Proof. We use notation from the construction of FP 2. We must verify that
the points and lines of FP 2 satisfy (P0), (P1), and (P2) from the definition
of a projective plane.

First, we check that (P0) is satisfied for

Q = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}.

We note that each of the following four matrices 1 0 0
0 1 0
0 0 1

 ,
 0 1 0

0 0 1
1 1 1

 ,
 0 0 1

1 1 1
1 0 0

 ,
 1 1 1

1 0 0
0 1 0


has rank three. So, if A is any one of the four matrices above, then Ax = 0
has only the trivial solution, and consequently, no line of FP 2 contains three
(or more) points of Q. So, (P0) is satisfied.

Next, we check that (P1) is satisfied. We fix distinct lines P1, P2

of FP 2, and we show that |P1 ∩ P2| = 1. By construction, there exist
(a1, b1, c1), (a2, b2, c2) ∈ T such that P1 = P (a1, b1, c1) and P2 = P (a2, b2, c2).
Since P1 6= P2, we have that (a1, b1, c1) 6∼ (a2, b2, c2), that is, neither one of
(a1, b1, c1), (a2, b2, c2) is a scalar multiple of the other. We now use Linear
Algebra. We consider the 2× 3 matrix

A =

[
a1 b1 c1
a2 b2 c2

]
.

Since neither row of A is a scalar multiple of the other, we see that rank(A) =
2. On the other hand, by the Rank-Nullity Theorem, we have that rank(A) +

dim ker(A) = 3. So, dim ker(A) = 1. Let
{ x

y
z

} be a basis for ker(A);12

10Note that for all λ ∈ F \ {0}, we have that ax + by + cz = 0 if and only if a(λx) +
b(λy) + c(λz) = 0, and so this is well-defined.

11Check this!
12So, (x, y, z) 6= (0, 0, 0), and we see that (x, y, z) ∈ T . Furthermore, we have that

ker(A) =
{ λx

λy
λz

 | λ ∈ F
}

.
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then P1 ∩ P2 =
{

(x, y, z)
}

, and we deduce |P1 ∩ P2| = 1. Thus, (P1) is

satisfied.
The proof of the fact that (P2) is satisfied is analogous to the proof that

(P1) is satisfied.13

Theorem 3.2. If F is a finite field, with |F| = n, then FP 2 is a finite
projective plane of order n.

Proof. By Theorem 3.1, FP 2 is a projective plane. Furthermore, since F is
finite, it is obvious that the projective plane FP 2 is finite. We must show
that the order of FP 2 is n. In view of Theorem 1.4 from Lecture Notes 4, it
suffices to show that FP 2 has precisely n2 + n+ 1 points. Now, note that
for all (x, y, z) ∈ T , there exists a unique triple (x′, y′, z′) ∈ T such that the
last non-zero coordinate of (x′, y′, z′) is 1 and (x, y, z) ∼ (x′, y′, z′).14 Now,
there are n2 triples of the form (x, y, 1) in T ; there are n triples of the form
(x, 1, 0) in T ; and there is one triple (1, 0, 0) in T . So, there are n2 + n+ 1
equivalence classes of ∼, that is, FP 2 has n2 + n+ 1 points. As we already
pointed out, Theorem 1.4 from Lecture Notes 4 now implies that the finite
projective plane FP 2 is of order n.

It is well-known that for all integers n ≥ 2, there exists a field of size n
if and only if n is a power of a prime (that is, if and only if there exist a
prime number p and a positive integer k such that n = pk). This, together
with Theorem 3.2, implies that if n ≥ 2 is a power of a prime, then there is
a finite projective plane of order n. However, it is not known whether there
exists a finite projective plane whose order is not a power of a prime. It is,
however, known that there are no finite projective planes of order 6 or 10. It
is not known whether there are finite projective planes of order 12. (Note
that every n ∈ {2, . . . , 13} \ {6, 10, 12} is a power of a prime, and so a finite
projective plane of order n does exist.)

13Check this!
14For existence, we observe that for all (x, y, z) ∈ T , we have the following:

• if z 6= 0, then (x, y, z) ∼ (z−1x, z−1y, 1);

• if z = 0 and y 6= 0, then (x, y, z) ∼ (y−1x, 1, 0);

• if y = z = 0, then x 6= 0 (since x, y, z cannot all be zero) and (x, y, z) ∼ (1, 0, 0).

Can you check uniqueness?
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